Light Radio-isotopes ## **Nuclear Astrophysics, Neutrino Physics** and **Fundamental Interactions** O. Aviv¹, D. Berkovits², M. Hass¹, O. Heber¹, T. Hirsh^{1,2}, V. Kumar², M. Lewitowicz³, F. de-Oliveira³, G. Ron⁴, S. Vaintraub^{1,2} - 1. The Weizmann Institute of Science, Rehovot, ISRAEL - 2. Soreq Nuclear Research Center, Yavne, ISRAEL - 3. GANIL, Caen, FRANCE - 4. LBL, Berkeley, USA ### ECR Ion Source, RFQ and 1st cryo-module in situ The SARAF accelerator at Soreq, Israel. Summer 2009 Final Commissioning of Phase —I Nov. 2009 - 1 mA p @ 3.5 MeV ## ⁶He production (n, α) cross section Production yield of the order of 10¹³ ⁶He per 1 mA d@40 MeV Remember also ¹¹B(n, α)⁸Li # ⁶He vs. ⁸Li Production using SARAF/SPIRAL2 40 MeV d on Lithium neutrons SARAF/SPIRAL2 d-Li neutron flux is more suitable for ⁶He production than ⁸Li 11 B(n,α)⁸Li and ¹¹B(n,2n)¹⁰B from ENDFB6.8 70 11 B(n,α)⁸Li 11 B(n,2n)¹⁰B 40 20 10 5 10 15 20 E_n [MeV] ¹¹B(n,α)⁸Li ⁸Li → β⁻ $t_{0.5} = 838 \text{ ms}$ ## **Extraction of** ❖ISOLDE Exp. T. Stora at al. 17.4.2009 ⁶He #### **Schematics and pictures of ISOLDE setup** #### **Courtesy of Tierry Stora and the ISOLDE Ion-Source group** #### **♦• Preliminary results of ISOLDE BeO run – April 2009** #### **♦** See talk by Thierry Stora – this WORKSHOP ## The β beam (from Mats Lindroos – CERN) Production of an intense collimated neutrino (antineutrino) beam directed at neutrino detectors via β decay of accelerated radioactive ions ## ⁶He and ⁸Li beams in WIS *****~6·10⁷ ⁶He/s ~2·10⁷ ⁸Li/s Extraction by diffusion ***Efficiency?** ## **β-Decay Physics** - Transition rate W (inverse lifetime) - In case of nonoriented nuclei $$dW \propto \xi \left(1 + a \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + b \frac{m}{E_e} + \dots\right)$$ **❖Beta-neutrino correlation coefficient** • In case of oriented nuclei $(\vec{J}$ - nuclear polarization) $$dW \propto \xi \left(1 + A \frac{\vec{p}_e}{E_e} \cdot \vec{J} + D \vec{J} \cdot \frac{(\vec{p}_e \times \vec{p}_v)}{E_e E_v} + R \vec{\sigma}_e \cdot \frac{(\vec{J} \times \vec{p}_e)}{E_e} + \dots \right)$$ J. D. Jackson, S. B. Treiman and H. W. Wyld, Nucl. Phys. 4, 206 (1957) ## Why RNB's in Traps? - No possibility for detection of neutrinos - Small effects measurements low energy of ions, multiple scattering, angle resolution - Atoms/Ions are pin-point in a trap - → Increase of accuracy in measurements: - Angular correlations - Energy ### Example: ⁶He beta decay See, e.g, Flechard et al, PRL (2008) $$dW \propto a\xi \left(\frac{p_e}{E_e}\cos\theta\right)$$ $$dW_{SM}(^{6}He) \propto -\frac{1}{3} \left(\frac{p_{e}}{E_{e}} \cos \theta\right)$$ ❖ν_e Electron anti-neutrino - New physics beyond the Standard Model's - ❖ V-A structure ### Current Status on ⁶He - **❖** ~2 % limit on any possible deviation hence improve limit - Statistics + systematic limitations - ❖ Flechard et al: "....MOT" (Magneto Optical Trap)" - ❖ But He is noble gas metastable state for MOT - Statistics **❖** Field free region **❖**Exit mirror **❖L=407 mm** #### **❖**Trapping ion beams at keV energies **♦ MPI – HD Participation** **♦ Fig. 2** A schematic view of the EST for β-decay studies. The radioactive ion, like 6 He, moves with E_k -4.2 keV between the reflecting electrodes. The β electrons are detected in position sensitive counters while the recoiling ions, due to kinematic focusing, are detected with very high efficiency in either one (determined by the instantaneous direction) of the annular MCP counters. ### R&D steps at the WI - **❖** ⁶He (+ ions) and ⁸Li (neutrals) production and extractions - EIBT parameters (bunching (pre-trapping), bunch size, timing (with ⁴He) --- Re-use hardware from the 14 UD Pelletron - ❖ RNB in Trap and detection system - First measurements - **❖ SARAF...** Model dependence of the neutrino-deuteron disintegration cross sections at low energies http://il.arxiv.org/abs/nucl-th/0702073v1 #### Prospects for Detecting a Neutrino Magnetic Moment with a Tritium Source and Beta-beams #### G. C. McLaughlin Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, gcmclaug@ncsu.edu Institut de Physique Nucléaire, F-91406 Orsay cedex, France #### C. Volpe Institut de Physique Nucléaire, F-91406 Orsay cedex, France, volpe@ipno.in2p3.fr Fig. 3. BETA-BEAMS: Number of neutrino-electron scattering events from a Helium-6 ion source produced at the rate 10^{15} per second, and a 4π detector of 10 m in radius. The diamonds show the number of scatterings if the neutrino has a magnetic moment of $\mu_{\nu} = 10^{-10} \mu_{B}$, the stars present the number of events if $\mu_{\nu} = 5 \times 10^{-11} \mu_{B}$, and the triangles give the number of events if the neutrino has a magnetic moment of $\mu_{\nu} = 10^{-11} \mu_{B}$. The histogram shows the expected number of events for a vanishing neutrino magnetic moment. $$\frac{d\sigma}{dT} = \frac{G_F^2 m_e}{2\pi} \left[(g_V + g_A)^2 + (g_V - g_A)^2 \left(1 - \frac{T}{E_\nu} \right)^2 + (g_A^2 - g_V^2) \frac{m_e T}{E_\nu^2} \right] + \frac{\pi \alpha^2 \mu_\nu^2}{m_e^2} \frac{1 - T/E_\nu}{T} \tag{1}$$ where $g_V = 2 \sin^2 \theta_W + 1/2$, θ_W is the Weinberg angle, $g_A = 1/2$ (-1/2) for ν_e ($\bar{\nu}_e$), m_e is the electron mass and G_F is the Fermi coupling constant. Following Eq. (1) we consider scattering of neutrino on free electrons. The effect of atomic binding is discussed in [13]. These cross sections have to be averaged by the neutrino flux from the relevant source : $$\left\langle \frac{d\sigma}{dT} \right\rangle = \frac{\int \frac{dN_{\nu}}{dE_{\nu}} \frac{d\sigma(E_{\nu})}{dT} dE_{\nu}}{\int \frac{dN_{\nu}}{dE_{\nu}} dE_{\nu}} \tag{2}$$ where dN_{ν}/dE_{ν} is the number of neutrinos per unit energy emitted by the neutrino source. Note that the electron recoil energy is restricted to the values : $$T \lesssim \frac{2E_{\nu}^2}{2E_{\nu} + m_e} \tag{3}$$ $\mu_{sm} = 3 \bullet 10^{-19} [\mu_{\nu}/eV], but.....$ #### **Tentative results** #### Lower yield, but, better extraction.. #### <u>Via neutron converter – ⁶He, ⁸Li, ...</u> - **❖ Simulations Geant4, MCNP PRODUCTION rate of ~10¹³/mA!!!** - Converter design - *Target design Diffusion & Extraction (BeO fibers, **Boron Nitrite fibers)** <u>Direct production – 14,150, 18Ne,...</u> - Design of targets (heat) for direct production (O and Ne); materials (gas?), ... - Extraction. Nitrogen is "bad". Perhaps CO₂? M. Loiselet, LLN ¹²C(³He,n)¹⁴O and ¹²C(⁴He,n)¹⁵O **Experiment:** Beam, Team, Detectors (RMS-like, Si ball, EXOGAM..)... #### Diffusion & Decay of He6 in BeO #### Towards a full proposal – objectives and milestones. **Soreq neutron generator** **Soreq Phase I** **GANIL** (neutrons from C+C) **ISOLDE** (neutrons from 1 GeV spallation) 2009-2011 Target (s) manufacturing. Parameters for experimental setup, synergy with detector (particle, gamma, separator) projects - **❖ 2012-.....** SPIRAL-II - * 2012-..... SARAF??... ## ⁸Li Production Experiment #### **Partial sample of representative papers** J.L. Fisker et al. The Importance of $^{15}O(\alpha,\gamma)$ ^{19}Ne to X-Ray Bursts and Superbursts Arxive-ph/0702412 Feb. 2007 J.L. Fisker et al. Experimental measurements of the $^{15}O(\alpha,\gamma)^{19}Ne$ reaction rate vs. observations of type I X-ray bursts Nuclear Physics A 718, (2003) 605 B. Davids et al. Alpha-decay branching ratios of near-threshold states in 19 Ne and the astrophysical rate of 15 O(α,γ) 19 Ne PRC 67 065809 (2003) K. E. Rehm et al. Branching ration $\Gamma_{\alpha}/\Gamma_{\gamma}$ of the 4.033 MeV 3/2+ state in ¹⁹Ne Nuclear Physics A 688 (2001)465c. S. Cherubini et al. The $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$ reaction using a ^{18}Ne radioactive beam # 4 #### **SUMMARY** - Scientific Case - ❖ Calculations and simulations exist but much more R&D needed Presented at several recent scientific conferences. **Funds: EC (infrastructure), Local** - ❖ "Road Map" towards a full experiment test experiments! - **❖ OPEN COLLABORATION** participation welcome!! ## **β-Decay Physics** For pure Fermi or pure Gamow-Teller (GT) transitions the correlations coefficients become independent of the nuclear matrix elements The correlations coefficients depends on scalar, yector, axial- β vector and tensor coefficients in β -decay Hamiltonian i=S,P,V,A,T For example, ⁶He β-decay (pure GT) beta-neutrino correlation coefficient can be measured in order to check the presence of tensor interactions ## X-Ray Bursts and the "rp" process These movies simulate an x-ray burst and the rapid-proton capture ("rp") process. The calculation begins at T9=T/10^9 K=40 with only neutrons and protons. As time progresses and the temperature drops below T9=10, nucleons assemble into 4He nuclei then into heavier mass nuclides. Once T9 falls below about 4, the QSE among the heavy nuclei begins to break down. Charged-particle reactions freeze out, and flow to higher mass number occurs via nuclear beta decay. This is the classical r-process phase. The rp process and x-ray bursts site of nucleo synthesis ❖A new class of ion trapping devices: The Electrostatic Linear Ion Beam Trap **❖** Physical Principle: **❖** Photon Optics and Ion Optics **❖**are Equivalent **∜**V₁ $V_1 < V_2$ **⊹**R **❖**Photons can be Trapped in an **❖Optical Resonator ⊹**L **⇔**E_k, q **❖**lons can be Trapped in an **❖** Electrical Resonator? *****V *****V **∜** V>E_k/c Fusion Reactions in the Sun: The CNO cycler ¹⁴O (α,p) ❖ Proposed at GANIL # Mass accretion from a companion into a neutron star (black hole). Role of ¹⁴O, ¹⁵O and ¹⁸Ne in the physics of x-ray bursts ⁴He(¹⁵O,γ)¹⁹NE M. Wiescher et al. Erice Conference, 2007 J.L. Fisker et al., arXiv:astro-ph/070241 Fig. 3.14. (a) Example of a very regular burst recurrence pattern, observed for 1820–303 (from Haberl *et al.* 1987). (b) Irregular burst recurrence, observed from 1636–536 (from Sztajno *et al.* 1985). ### **Typical X-ray bursts:** - 10^{36} - 10^{38} erg/s - duration 10 s 100s - recurrence: hours-days - regular or irregular Frequent and very bright phenomenon! $(\text{stars } 10^{33}\text{-}10^{35} \text{ erg/s})$ ### Long-learned lesson: "orders-of-magnitude improvement in sensitivity of measurement – enhanced understanding and possibilities". ¹⁴N(d,2n)¹⁴O cross section and yield for a 2 mA deuteron beam ¹⁴N(d,n)¹⁵O cross section and yield for a 2 mA deuterons beam But, extraction of atomic oxygen... A first experimental approach to the ^{15}O + α elastic scattering - Eur. Phys. J. A27, 183 (2006) F. Vanderbist, P. Leleux, C. Angulo, E. Casarejos, M. Couder, M. Loiselet, G. Ryckewaert, P. Descouvement, M. Aliotta, T. Davinson, Z. Liu, and P.J. Woods Recent experiments have determined Γ_{α} (or put limits to Γ_{α}) for levels in ¹⁹Ne up to 5.092 MeV excitation energy. A conclusion is that a direct measurement of the ¹⁵O(α , γ)¹⁹Ne reaction in the region of astrophysical interest is <u>currently impossible</u>: ¹⁵O beams of intensity larger than 10¹¹ pps on target would be required indeed to measure the ¹⁵O(a, γ)¹⁹Ne cross-section in inverse kinematics in the energy region surrounding the first state above threshold, at 4.033 MeV.... ### Examples of Reactions with RNB's for Astrophysics - ${}^{8}B(p,\gamma){}^{9}C$ - ${}^{8}B(\alpha,p)^{11}C$ - ${}^{9}C(\alpha,p)^{12}N$ - ${}^{11}C(p,\gamma){}^{12}N$ #### HOT PROTON-PROTON CHAINS #### **ISOLDE experiment IS424 (Sept. '07):** (in collaboration with P.J. Woods et al.). The use of a 17 F beam from the upgraded REX-ISOLDE facility to study the astrophysically important 14 O(a,p) 17 F reaction in time reverse kinematics. - REX-ISOLDE + MINIBALL - Only $\sim 10^{3} \, ^{17} \text{F/s}$ On-line data of p- γ coincidences – Indicating the 1st excited state of ¹⁷F #### **EURISOL INTERNATIONAL ADVISORY PANEL:** ".... no progress has been made with the study of alternative production schemes of ⁶He and ¹⁸Ne using low energy beams and strongly recommends that this study be completed.... The outcome of this study is an essential ingredient for the analysis whether it is technically feasible to decouple EURISOL and the beta-beams completely #### **GANIL** experiment – accepted by GANIL PAC: (in collaboration with Marialuisa Aliotta et al.) Plan to investigate the *direct* $^{14}O(\alpha,p)^{17}F$ reaction at four different energies in the energy region $E_{cm}=1.0-2.5$ MeV Calculated total S(E) factor. Constructive (+) and destructive (-) interference between the Jpp=1⁻ 6.15 MeV state and the direct l=1 partial wave contribution are shown. ### Type II Supernovae ${}^{8}\text{Li}(\alpha,n)^{11}\text{B}$ ## Accelerator artist view ## ⁶He or ⁸Li production measurements by betas Or other pulsed neutron source - **★** Easy experiment - All cross sections are already known - ★ Measuring ⁶He and ⁸Li betas is hard - Only very thin 23 November 2009 ## ¹¹BN ## SEM picture of BN #### **Properties** | General | | |-------------------|--| | Name | Boron nitride | | Chemical formula | BN | | Appearance | White solid | | CAS Number | 10043-11-5 | | Physical | | | Formula weight | 24.818 g/mol | | Melting Point | 2967 °C | | Boiling point | 3273 °C | | Density | 2.18×10 ³ kg/m ³ | | Crystal structure | hexagonal or tetrahedral-
cubic | | Solubility | insoluble | A scanning electron microscope image of the boron nitride nanotube (enriched with boron 10). They were produced by grinding a powder of the isotope boron 10 in a ball mill for many hours and then heating the crushed powder to around 1100 °C for 6 hours in an atmosphere of ammonia. - ✓ Exists in fibers and nanotubes forms - ✓ Could be bought in any shape and form. ### Available online at www.sciencedirect.com Beam Interactions with Materials & Atoms Nuclear Instruments and Methods in Physics Research B 204 (2003) 303-313 www.elsevier.com/locate/nimb #### Oxide fiber targets at ISOLDE U. Köster ^{a,*}, U.C. Bergmann ^a, D. Carminati ^a, R. Catherall ^a, J. Cederkäll ^a, J.G. Correia ^a, B. Crepieux ^a, M. Dietrich ^a, K. Elder ^{a,b}, V.N. Fedoseyev ^{a,c}, L. Fraile ^a, S. Franchoo ^a, H. Fynbo ^a, U. Georg ^a, T. Giles ^a, A. Joinet ^a, O.C. Jonsson ^a, R. Kirchner ^d, Ch. Lau ^a, J. Lettry ^a, H.J. Maier ^e, V.I. Mishin ^c, M. Oinonen ^a, K. Peräjärvi ^a, H.L. Ravn ^a, T. Rinaldi ^{a,f}, M. Santana-Leitner ^a, U. Wahl ^g, L. Weissman ^a, the ISOLDE Collaboration ^a - ✓ Could be made in fibers form. - No need of enrichment - Very toxic.23 November 2009 duced ⁶He is released before its decay. BeO, which can be heated to even higher temperatures, should thus guarantee an efficient release also from large volume targets. BeO, the most refractory Be com- | Beryllium oxide | | | |----------------------|----------------------------|--| | Other names | Beryllia | | | Identifiers | | | | CAS number | 1304-56-9 | | | Pro | perties | | | Molecular
formula | BeO | | | Molar mass | 25.01 | | | Appearance | white solid | | | Density | 3.0 g/cm³ (solid) | | | Melting point | 2530 °C | | | Boiling point | 3900 °C | | | Hazards | | | | MSDS | External MSDS | | | EU classification | Highly toxic (T+) | | | | Carc. Cat. 2 | | | NFPA 704 | 4 4 | | 4/