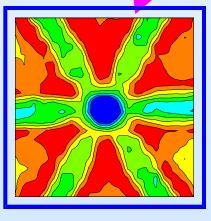

First results from emission channeling lattice location experiments of ²⁷Mg in nitride semiconductors

U. Wahl^{1,2}, J.G. Correia^{1,2,3}, S. Decoster⁴, L. Pereira^{4,5}, L. Amorim¹, N. Catarino¹, M.R. da Silva²

 Instituto Tecnológico e Nuclear, Sacavém, Portugal
 Centro de Física Nuclear da Universidade de Lisboa, Portugal
 CERN-PH, Geneva, Switzerland
 Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Belgium
 Departamento Física, Universidade do Porto, Portugal

IS453 EC-SLI experiment Emission Channeling with Short-Lived Isotopes

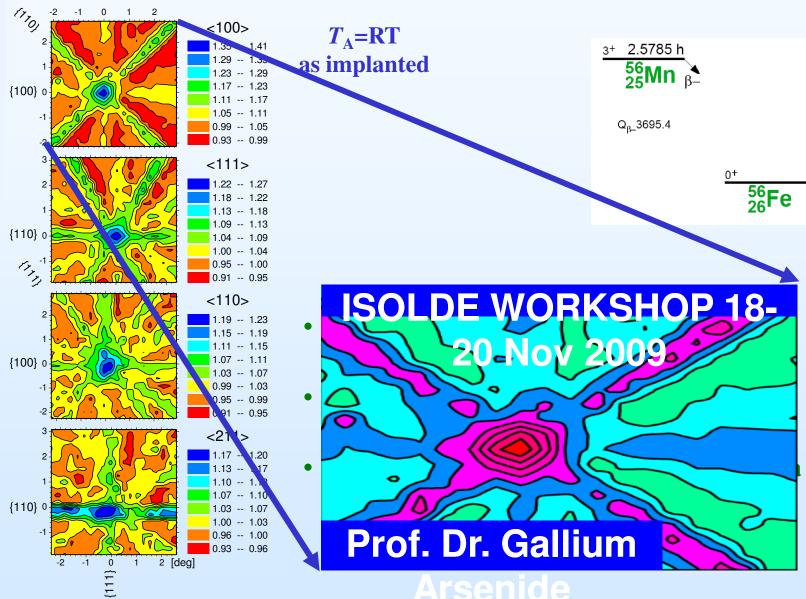

Emission channeling lattice location: basic principle

single crystal or epitaxial film

2-dimensional position- and energysensitive detector

%-

ISOLDE CERN e.g. 27Mg, 56Mn radioactive ions



decay particles: conversion electrons, $\beta^{-}, \beta^{+}, \alpha$

2D emission patterns characterize specific lattice sites of the emitting atoms

Last year's talk: β⁻ emission channeling patterns from ⁵⁶Mn in GaAs

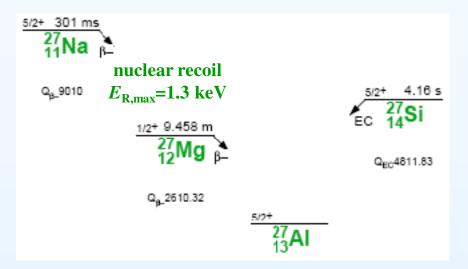
Univ. 56 Mn, EC On-line

One of the physics cases of EC-SLI proposal: Lattice location of Mg in nitride semiconductors

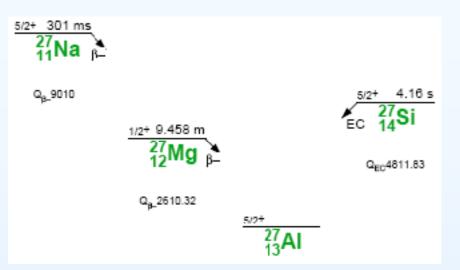
- Mg is the only technologically relevant acceptor in the nitride semiconductors GaN, AlN and possibly also in InN (→ optoelectronics, blue and white LEDs)
- ⇒ Knowledge on the lattice location of Mg is crucial for understanding the problems related to *p*-type doping of the nitride semiconductors (substitutional *vs* interstitial Mg)

Emission channeling lattice location experiments for Mg have been considered for more than 10 years, but available isotopes are difficult:

- ²⁵Mg (12 s) β⁺ → ²³Na (stable): short-lived, requires on-line measurements, huge ²³Na contamination
- ${}^{27}Mg (9.5 \text{ min}) \beta^- \rightarrow {}^{27}Al \text{ (stable): short-lived, requires on-line measurements, huge } {}^{27}Al \text{ contamination}$
- ²⁸Mg (21.7 h) $\beta^- \rightarrow 2^8$ Al (2.2 min): β^- emission channeling patterns mixed with those of radioactive daugnter

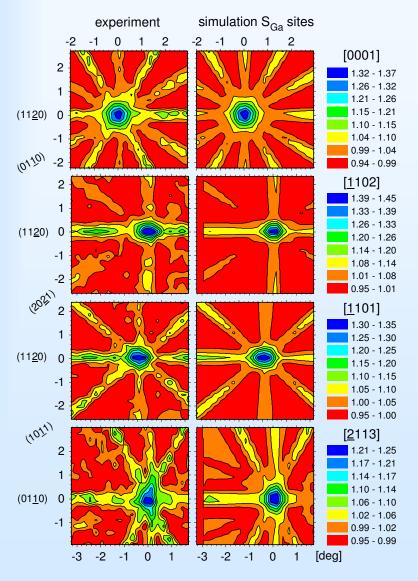

EC-SLI on-line setup coupled to GHM beam line

- On-line setup available and in use since 2007
- Equipped with fast position-sensitive Si pad detector that allows for data taking rates up to 3.5 kHz
- In August 2009 the setup was moved to GHM, occupying the space that was available following the removal of the PHOENIX ECRIS experiment
- Sept. 2009: First ²⁷Mg beam time, reduced to ~2.5 shifts only, due to Booster vacuum problems


Major Problem with mass 27 beams: ²⁷Al contamination

- Normal target operating conditions (target 450 A, line 280 A, ~2000°C): mass 27 beams from SiC-W or UC-W surface ionization targets dominated by stable ²⁷Al
- SiC target # 409:
- ~3.6 nA ²⁷Al or 2×10¹⁰ ions/s with NO protons on target ~5 nA ²⁷Al or 3×10¹⁰ ions/s with ~1.5 μA protons ON while ²⁷Mg RILIS yields are around 5 pA or 3×10⁷ ions/s
- \Rightarrow ²⁷Al is thermally released contamination of target material
- ⇒ EC-SLI experiments with such a contamination are not feasible (single-crystalline samples would be destroyed during analysis)

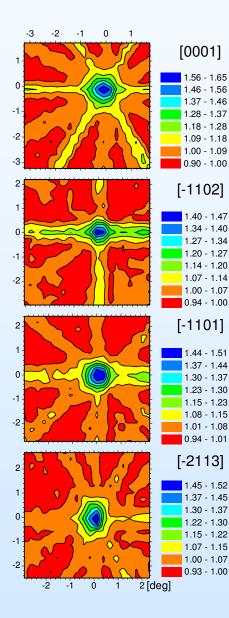
Major Problem with mass 27 beams: ²⁷Al contamination



- T_{boil} (Al) = 2450°C vs T_{boil} (Mg) = 1107°C
- ⇒ outdiffusion of Al from target can be reduced effectively by running the target under relatively cool conditions, with less severe losses for Mg
- ⇒ With target 220 A, line 250 A, estimated temperature 1000-1200°C with proton beam on target, we obtained around 2-5 pA of ²⁷Al, ~0.3 pA or 2×10⁶ ions/s of ²⁷Mg (estimated from ~1500 Hz count rate of detector)
- $\Rightarrow Reduction of factor ~1000-2500 for ²⁷Al, factor ~15-20 for ²⁷Mg$

β^- emission channeling patterns from ^{27}Mg in GaN

T_A=RT as-implanted


- ²⁷Mg+ ²⁷Na implanted (~10¹¹ cm⁻² per pattern on 1 mm beamspot)
- beam off \Rightarrow emission channeling patterns measured from ${}^{27}Mg \beta^$ particles only
- preliminary fit results (not corrected for background, inaccurate depth profile): ~30% ²⁷Mg on substitutional Ga sites,

possible Mg interstitial fraction
5-10% on hexagonal H or O sites

 Relatively high β⁻ endpoint energy of ²⁷Mg causes quite narrow channeling effects, improved angular resolution would help

β^- emission channeling patterns from ^{27}Mg in AlN

T_A=RT as implanted

- emission channeling patterns measured from ${}^{27}Mg \beta^-$ particles
- qualitative result: ²⁷Mg on substitutional Al sites
- Assessment of possible interstitial sites will require comparison to simulations (not yet available)

Conclusions

- despite considerable problems, the first ²⁷Mg run of EC-SLI was successful
- removing the stable ²⁷Al contamination is just about feasible for EC-SLI experiments but needs to be improved
- ²⁷Mg occupies mostly substitutional Ga sites in GaN and substitutional Al sites in AlN

Future plans:

- simultaneous implantation and measurement up to 900°C (requires aluminized mylar foil in front of detector)
- improve angular resolution by factor of 2 by increasing distance of detector to sample (loss of factor 4 in solid angle!)
- lattice location of ²⁷Mg in InN
- ²⁷Mg lattice location experiments will be subject of PhD thesis of Ligia Amorim (IKS Leuven)

