Mathematica in HEP - Large Scale Data Processing and ROOT Interoperability

JNI REIBURG

Manuel Guth - University of Freiburg Sebastian White - CERN/U. Virginia

HEP Diana 30.10.2017

Structure

- Motivation
- Mathematica calls ROOT
- ROOT calls Mathematica
- Wolfram Cloud
- Summary

Motivation

- Mathematica widely used in theoretical physics
 - Possibility to interact with experimental side?
- How to make use of analytical Mathematica tools within ROOT?
- Is there a quick tool to check data quality e.g. at test beam?
- What about direct analysis of big data sets from experiment?

Mathematica Importer for ROOTFiles

- Taking advantage of nice and simple plotting features of Mathematica
- Simple compared to other programming languages
- Allow theorists to directly use data, provided from experiments
- Detailed description:

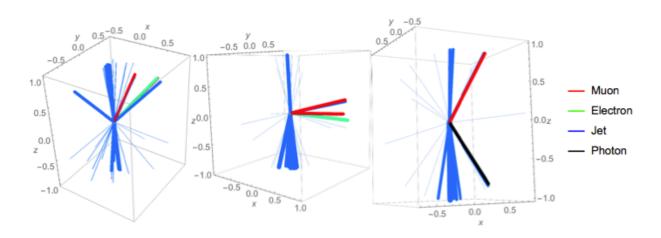
http://library.wolfram.com/infocenter/Articles/7793/

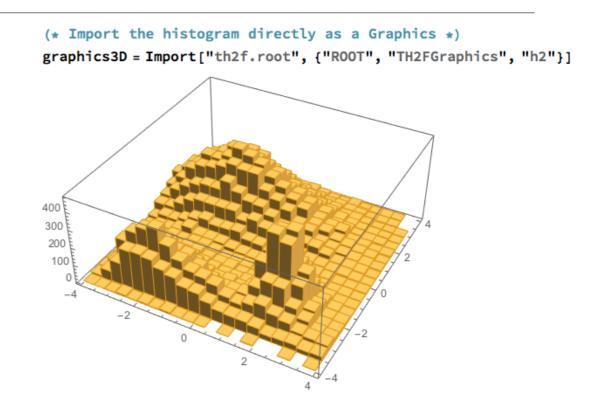
```
(* This imports the histogram data of a given TH1F object. *)
histdata = Import["demo.root", {"R00T", "TH1FData", "h7"}];

The data is of the form:
{{x1, ∆x1, count1, error1}, {x2, ∆x2, count2, error2}, ...}

(* show first 10 entries in a grid *)
head = {"x", "∆x", "count", "∆count"};

Grid[Join[{head}, Take[histdata, 10]], Frame → All]
```


x	Δx	count	∆count	
-4.	0.08	0.	0.	
-3.92	0.08	0.	0.	
-3.84	0.08	0.	0.	
-3.76	0.08	0.	0.	
-3.68	0.08	0.	0.	
-3.6	0.08	0.	0.	
-3.52	0.08	0.	0.	
-3.44	0.08	0.	0.	
-3.36	0.08	1.	1.	
-3.28	0.08	0.	0.	


```
(* Options available to Histogram[] can be passed directly. *)
graphics2 = Import["demo.root", {"ROOT", "TH1FGraphics", "h7"},
    ColorFunction → Function[{height}, ColorData["Rainbow"][height]]]
```

Mathematica Importer for ROOTFiles

 LHC Data Exploration from Natalia Kovalchuk:

http://community.wolfram.com/groups/-/m/t/1137265

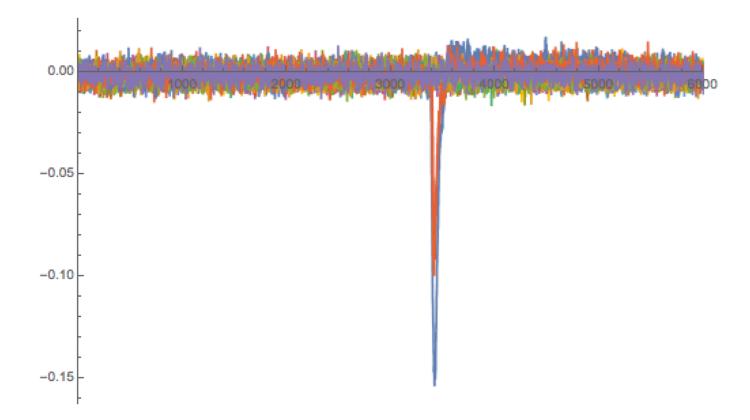
 Nice starting point for undergraduated students

Mathematica Importer for ROOTFiles

- Feedback
 - Marvin Johnson (DUNE)
 - "Mathematica's rich set of built in functions eliminates the need to generate my own code either in ROOT or Python. [..] allows real time analysis of data from test beams"
 - Missing Subfolder support from ROOTFile importer
 - Natalia Kovalchuk
 - Would need expansion of data type
 - Since Mathematica Importer for ROOTFiles is back working (minor changes were needed) -> new features can be implemented (need feedback from community)

ROOT calls Mathematica

- ROOT can interact via MathLink with Mathematica
- Mathlink is included in the Mathematica installation
- Supported for Linux and macOS
- https://root.cern.ch/how/how-use-mathematica-root

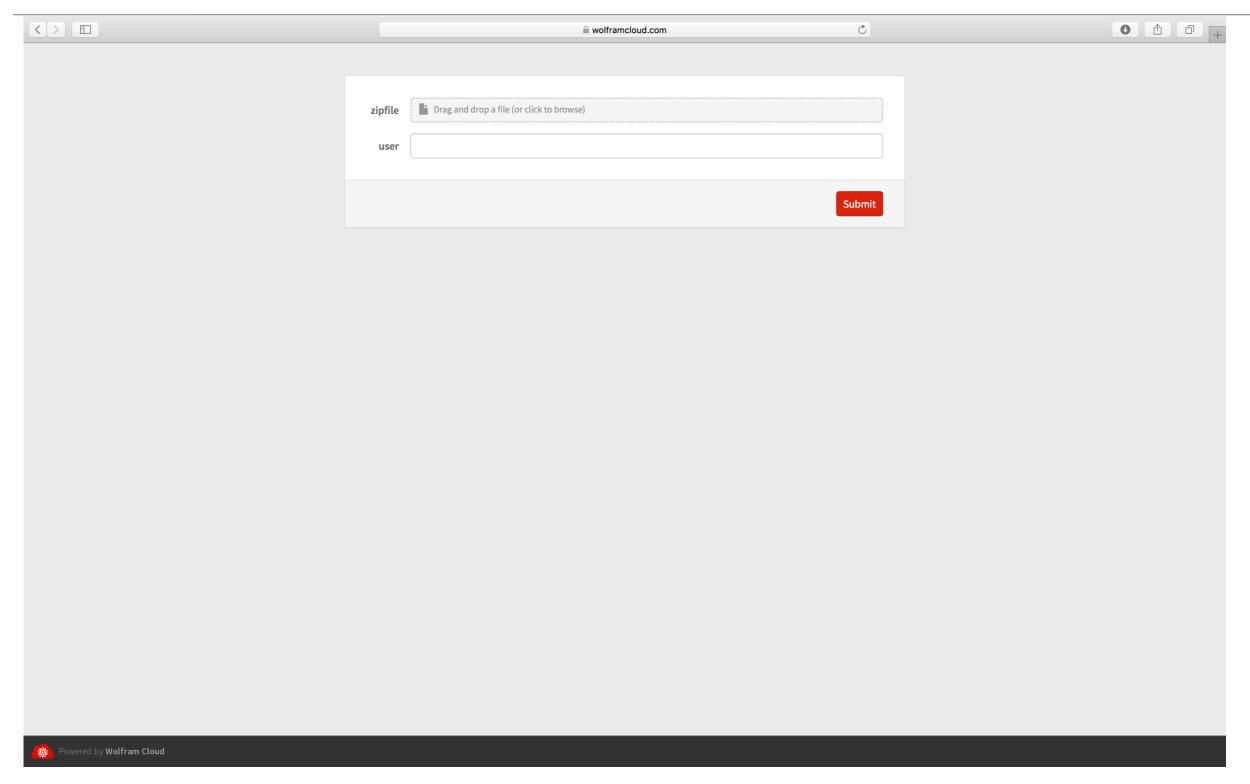

ROOT calls Mathematica

- If there is no big interchange necessary
 - Parser from ROOT to wolframscript would be easy
 - Interplay only possible via strings
 - For small applications maybe more useful e.g. calculating an analytical Integral

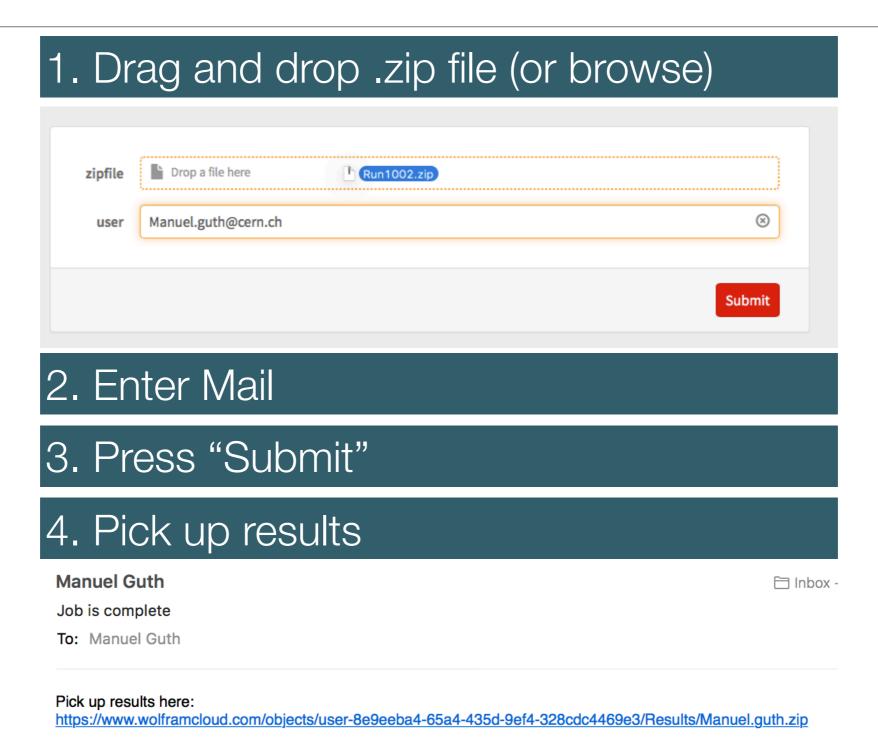
```
[root [0] TString inte = (TString)gSystem -> GetFromPipe("wolframscript -code 'Integrate[Sin[2x],{x,0,4}]'")
  (TString &) "Sin[4]^2"[8]
[root [1] TString inteN = (TString)gSystem -> GetFromPipe("wolframscript -code 'N[Integrate[Sin[2x],{x,0,4}]]'")
  (TString &) "0.5727500169043067"[18]
[root [0] TString inteN = (TString)gSystem -> GetFromPipe("wolframscript -code 'N[Integrate[Sin[2x],{x,0,4}]]'")
  (TString &) "0.5727500169043067"[18]
[root [1] Double_t d_inteN = inteN.Atof()
  (double) 0.572750
  root [2]
```

Conversion of Lecroy Binaries in Mathematica

- New plugin was written to convert binaries from Lecroy Oscilloscopes within Mathematica
- No need for intermediate step (C++, python, matlab)

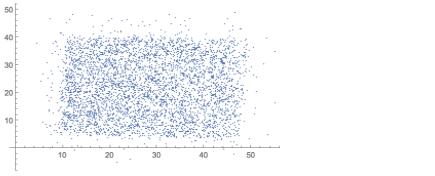

Reading Binary files ReadFile[Infile_] := Module[{file = Infile}, str = OpenRead[file, BinaryFormat → True]; readHeader[str_] := Module[{struc}, struc = { {"templateName", "UnsignedInteger8", 16}, {"commType1", "Integer8", 1}, {"commOrder1", "Integer8", 1} {"waveDescriptor", "Integer32", 1). {"userText", "Integer32", 1}, "regDesc1", "Integer32", 1), {"trigtimeArray", "Integer32", 1}, {"resArray1", "Integer32", 1}, {"waveArrav2", "Integer32", 1}, {"resArray2", "Integer32", 1}, "resArray3", "Integer32", 1), "instrumentNumber", "Integer32", 1}, {"traceLabel", "UnsignedInteger8", 16), {"reserved2", "Integer16", 1} {"verticalGain", "Real32", 1}, {"maxValue", "Real32", 1}. {"minValue", "Real32", 1}, {"nominalBits", "Integer16", 1}, ("nominalSubArrayCount", "Integer16", 1) "horizontalInterval", "Real32", 1), {"horizontalOffset", "Real64", 1}, ["pixelOffset", "Real64", 1}, {"verticalUnit", "UnsignedInteger8", 48}, {"horizontalUncertainty", "Real32", 1), {"triggerTimeMin", "Integer8", 1}, {"triggerTimeHour", "Integer8", 1}, {"triggerTimeMonth", "Integer8", 1), {"triggerTimeR", "Integer16", 1}, {"aqcDuration", "Real32", 1}, {"recordType", "Integer16", 1} {"processingDone", "Integer16", 1}. {"risSweeps", "Integer16", 1}, {"vertCoupling", "Integer16", 1} {"probeAtt", "Real32", 1}, {"fixedVertGain", "Integer16", 1}, {"bandwidthLimit", "Integer16", 1}, {"verticalVernier", "Real32", 1}, {"agcVertOffset", "Real32", 1}, {"waveSource", "Integer16", 1} Map[<|First@# → BinaryReadList[str, Sequence @@ Rest[#]]|> &, struc, 1]]; rewind[str_, n_] := SetStreamPosition[str, StreamPosition[str] - n]; \$HistoryLength = 0; While [! StringMatchO[FromCharacterCode@BinarvReadList[str. "UnsignedInteger8", 81, "WAVEDESC"], rewind[str. 71]: header = Map[If[Length[#] > 1, FromCharacterCode[#], First@#] &, Join @@ readHeader[str]]; rewind[str, -header@"userText"]; trigTimeArray = Partition[BinaryReadList[str, "Real64", 2 header@"subArrayCount", ByteOrdering ---1], 2]; rewind[str, -header@"risTimeArray"]; waveArray = BinaryReadList[str, "Integer16", header@"waveArrayCount", ByteOrdering → -1];

 $waves = \texttt{MapIndexed}[\{(\#2[2] - 1) \star \texttt{header} \bullet \texttt{"horizontalInterval"} + \texttt{trigTimeArray}[\#2[1], 2], \#I \star \texttt{header} \bullet \texttt{"verticalGain"} - \texttt{header} \bullet \texttt{"horizontalInterval"} + \texttt{trigTimeArray}[\#2[1], 2], \#I \star \texttt{header} \bullet \texttt{"horizontalInterval"} + \texttt{horizontalInterval"} + \texttt{horizontalInterval} + \texttt{horizontalInterval}$

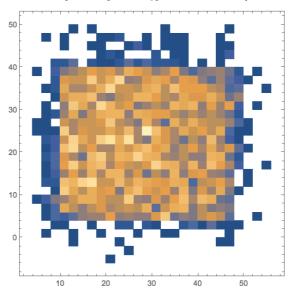

Cloud Deploy

- General Idea:
 - Having a simple tool in the browser to perform quick data check
 - Idea came up during PICOSEC test beam (RD51 project, more details here) to check quality of time series data
- Principle:
 - Upload data in zip format to web page
 - · After computation, getting mail alert
 - Picking up the results from an specific URL
- Realised in great collaboration with Jesus Hernandez from Wolfram

Cloud Deploy



Cloud Deploy


Data Format similar to hdf5/ pandas

- Data format similar as in python (e.g. pandas)
- Quick displaying tools with cuts etc. (DensityHistogram, Histogram3D, SmoothDensityHistogram, Query[Histogram, "Y"], ...)
- Easy and fast handling (no need to mess with indices)

Another few ways to look at the data

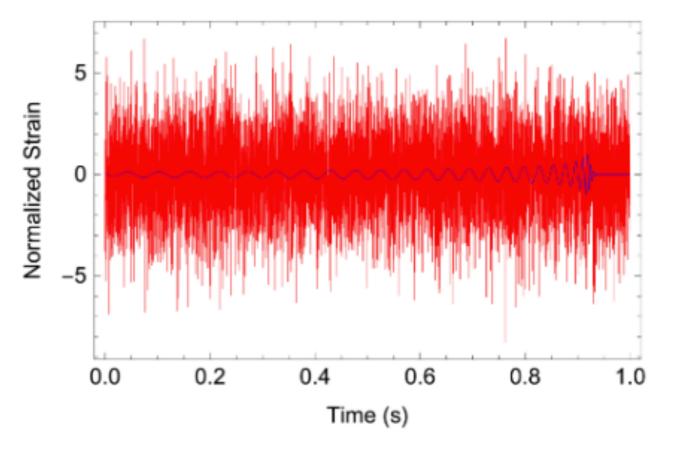
runs970ds [Select[MemberQ[eventsFromCuts, #SRSCount] &], {"X", "Y"}] // DensityHistogram

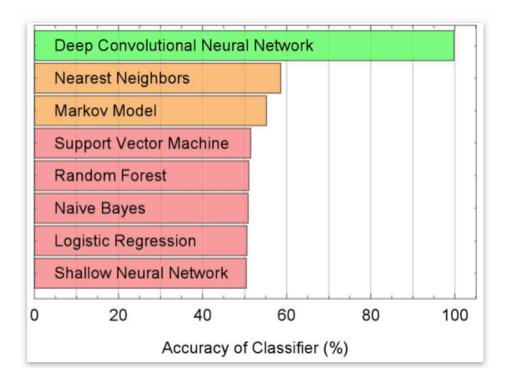
Data Format similar to hdf5/ pandas

- Performed fits can be directly stored in well accessible table format
- Also after cuts, e.g. event number stays associated
- Fast and simple accessible
- Sample data/fit from HyperFast Silicon (HFS) data within 2017 PICOSEC

Map function across waves

Here I use MapIndexed (this allows me to use the position as an argument). Dataset groups the results together.

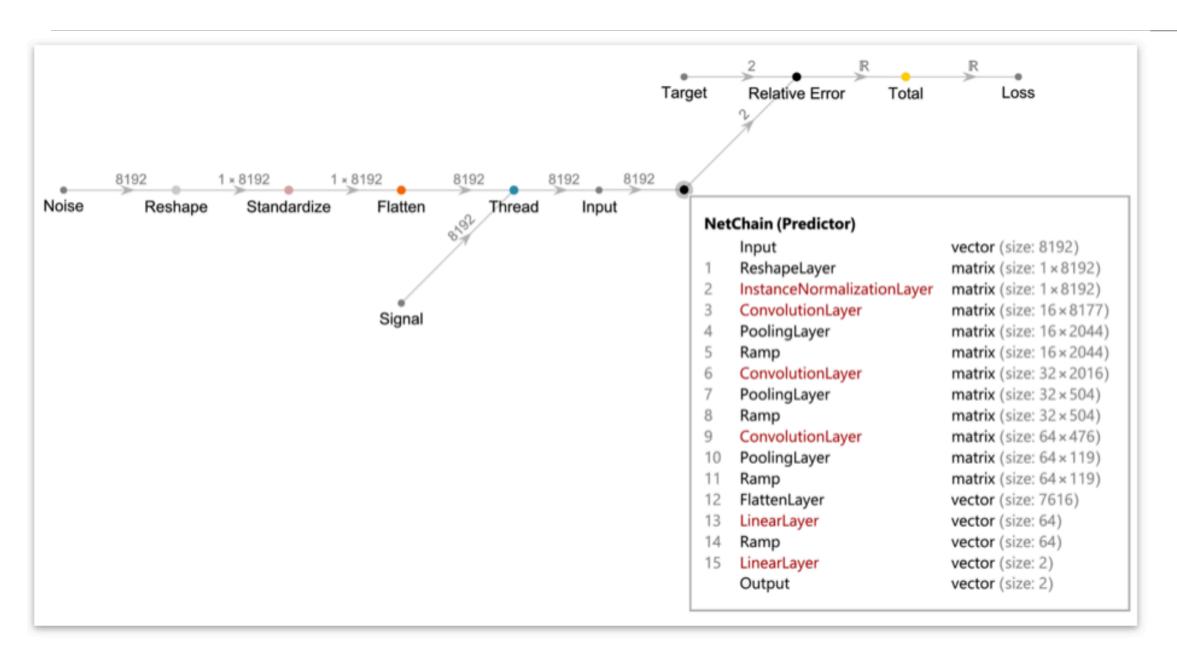

ds = Dataset[MapIndexed[fit[#1, #2[1]] &, wave4[1;; 100]]]


... NonlinearModelFit: The step size in the search has become less than the tolerance prescribed by the PrecisionGoal option, but the

				,
	event	bestFitParameters	adjustedRSquared	plot
	1	$\{A \rightarrow 0.119864, n \rightarrow 2.11306, to \rightarrow 0.592996, toff \rightarrow 6.41963\}$	0.994857	event 1
	2	$\{A \rightarrow 0.0962981, n \rightarrow 3.7208, to \rightarrow 0.401652, toff \rightarrow 11.3142\}$	0.992228	event 2
	3	$\{A \rightarrow 0.11766, n \rightarrow 3.70992, to \rightarrow 0.454327, toff \rightarrow 4.29665\}$	0.994448	event 3
	4	NonlinearModelFit::sszero	_	event 4
	5	$\{A \rightarrow 0.0926168, n \rightarrow 2.05265, to \rightarrow 0.595536, toff \rightarrow 7.40185\}$	0.991077	event 5
	6	$\{A \rightarrow 0.11257, n \rightarrow 2.50197, to \rightarrow 0.506459, toff \rightarrow 17.7226\}$	0.9939	event 6
	7	$\{A \rightarrow 0.0667517, n \rightarrow 4.39367, to \rightarrow 0.377799, toff \rightarrow 27.448\}$	0.986334	event 7
	8	$\{A \rightarrow 0.0815095, n \rightarrow 4.40926, to \rightarrow 0.407061, toff \rightarrow 25.6584\}$	0.993418	event 8
	9	$\{A \rightarrow 0.0902037, n \rightarrow 3.41859, to \rightarrow 0.454174, toff \rightarrow 21.8924\}$	0.992225	event 9

Outreach - LIGO Real Time Signal Detection

 LIGO collaboration used deep neural network in Mathematica for real time signal detection and parameter estimation


- https://gravity.ncsa.illinois.edu/research/deep-learning/real-time-detection-and-parameter-estimation/
- Paper manuscript ready "Deep Filtering: A Deep Neural Network Framework for Real-time Multimessenger Astrophysics"
 - will be published soon

Summary

- Interaction of theorists with experimental side?
 - ✓ Mathematica importer for ROOT files
- How to make use of analytical Mathematica tools within ROOT?
 - ✓ Calling Mathematica from ROOT
- Is there a quick tool to check data quality e.g. at test beam?
 - √ Wolfram cloud deploy
- What about direct analysis of big data sets from experiment?
 - ✓ Wolframscript (on Ixplus?) or cloud computing

Backup

Outreach - LIGO Real Time Signal Detection

