Histogram Unfolding in Python

An Investigation into implementations of unfolding outside of the ROOT environment.

PynFold

－Used for first investigations：
－ROOT－＞pyROOT－＞numpy
－examples
e pynfold
－workingdir
目 README．md
国 README．md
－Use cases：
－Any ROOT independent analysis setup
－Independent of RooUnfold
－Possible to use without any knowledge of ROOT
－Decoupled from upstream algorithm implementations and fixes
－Useful for comparisons with existing non－hep implementations：
－Other implementations do not use histograms．
－1：1 comparison not always possible
－Useful for cross checks．

pynFold－Unfolding with python

pynFold（pronounced penfold）is a pythonic implementation of the RooUnfold ROOT Unfolding Framework aiming to compare unfolding methods with those provided outisde of high energy Framework aiming to compare unfolding methods with those provided outisde of high energy
physics and to increase robustness by eliminating dependencies on the ROOT libraries basing algorithms only on numpy．

Unfolding relates to the problem of estimating probability distributions in cases where no parametric form is available，and where the data are subiect to additional random fluctuations due to limited resolution．The same mathematics can be found under the general heading of inverse problems，and is also called deconvolution or unsmearing．

Fully Bayesian Unfolding

- Available on pypy
- Depends on:
- Numpy
- Matplotlib
- PyMC
- Implements new algorithm:
- https://arxiv.org/abs/1201.4612
- Arready used for several ATLAS top quark measurements.

PACKAGE INDEX

Browse packages
List trove classifiers
RSS (latest 40 updates)
RSS (newest 40 packages)
Terms of Service
PyPI Tutorial
PyPI Security
PyPI Support
PyPI Bug Reports
PyPI Discussion
PyPI Developer Info
ABOUT
NEWS
DOCUMENTATION
DOWNLOAD
COMMUNITY
FOUNDATION
CORE DEVELOPMENT
fbu 0.0.2
build passing
PyFBU
Implementation of the Fully Bayesian Unfolding algorithm described in physics.data-an/1201.4612. The software is based on the Markov Chain Monte Carlo sampling toolkit PyMC.

Dependencies
PyFBU is tested on Python 2.6/2.7 and depends on NumPy, Matplotlib and PyMC.
Installation
The use of an isolated Python environment is recommended:
virtualenv ENvFBu
virtualenv
cd ENvFbu
source bin/activate
Install NumPy-1.7.0 (this may take a while).
pip install "numpy>=1.7.0"

Pip installation

The latest stable version of PyFBU can be installed using pip.
pip install fbu

This will also automatically install other missing dependencies (this might take another while, up to several minutes.. Alternative approach - git clone

Alternatively one can check out the development version of the code from the GitHub repository:

> git clone https://github.com/gerbaudo/fbu.git
and follow the quickstart instructions.
Usage
A simple tutorial to help you get started.

Inverse Problem

- Edwin

https://pypi.python.org/pypi/edwin/0.1.0

$$
x=A^{-1} b
$$

- Infer information about x from measurement A using response b

Or solve

$$
\beta=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)
$$

- Most problems are large ill-conditioned linear systems
- Lots of solutions exist
- Package for bayesian inversion for numerical computatio of the inverse problem
- pinvprob

https://github.com/HaimeKawahara/pinvprob

- Python codes for the linear inverse problem including the generalized inverse matrix trucated SVD Tikonov regularization, L-curve criterion
- Inverseproblem
https://pypi.python.org/pypi/InverseProblem/1.0
- Iterative approach to using Tikhonov regularisation for inverting a matrix

Summary

- Several codes exist for unfolding outside of ROOT for both HEP and non-HEP uses.
- Up to date?
- Variety
- Verified correct

