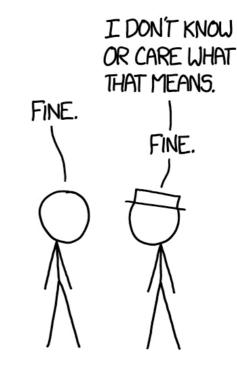
Constraints on exotic spin-dependent interactions between matter and antimatter from antiprotonic helium spectroscopy

Filip Ficek Jagiellonian University

In collaboration with: P. Fadeev, V. V. Flambaum, D. F. Jackson Kimball, M. G. Kozlov, Y. V. Stadnik, and D. Budker


Plan

- Exotic potentials
- Antiprotonic helium
- Construction of wavefunctions
- Results
- Summary

- Dark matter
- Dark energy
- Strong CP problem
- Hierarchy problem

- Dark matter
- Dark energy
- Strong CP problem
- Hierarchy problem

- Axions
- Familons
- Majorons
- Gravitons

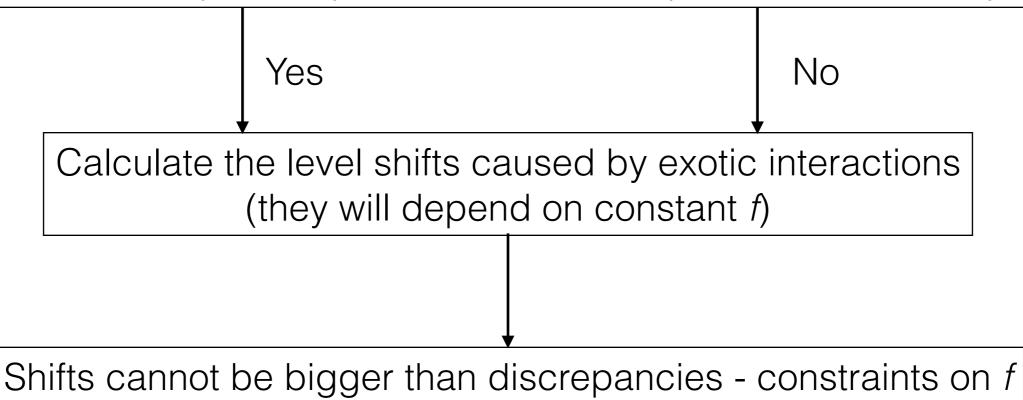
- Kaluza-Klein zero modes
- Paraphotons
- Z' bosons

- Dark matter
- Dark energy
- Strong CP problem
- Hierarchy problem

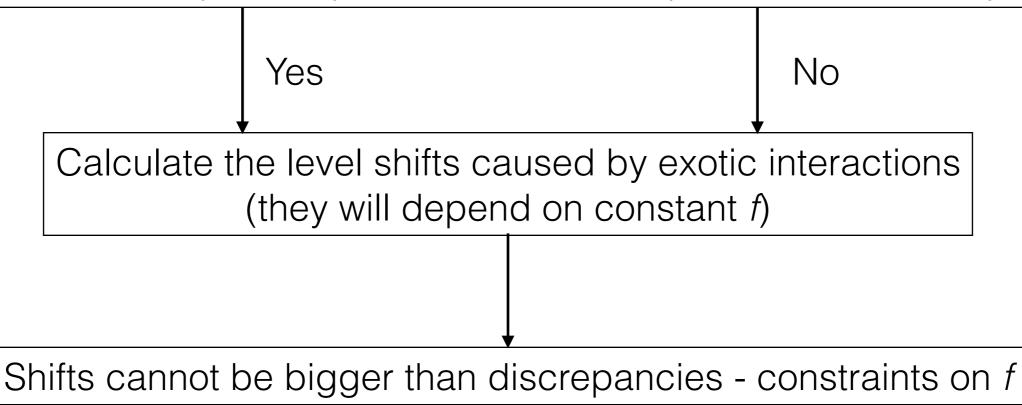
- Axions
- Familons
- Majorons
- Gravitons
- I DON'T KNOU OR CARE WHAT THAT MEANS. FINE.
- Kaluza-Klein zero modes
- Paraphotons
- Z' bosons

- 1984 J. E. Moody & F. Wilczek introduced
- 2006 B. A. Dobrescu & I. Mocioui extended
- 2018 P. Fadeev et.al. reviewed

- 1984 J. E. Moody & F. Wilczek introduced
- 2006 B. A. Dobrescu & I. Mocioui extended
- 2018 P. Fadeev et.al. reviewed


$$V_{2} = f_{2}^{e\overline{p}} \frac{\hbar c}{\pi} (\mathbf{s}_{\overline{p}} \cdot \mathbf{s}_{e}) \frac{e^{-r/\lambda}}{r},$$

$$V_{3} = f_{3}^{e\overline{p}} \frac{\hbar^{3}}{\pi m_{e}^{2} c} \left[\mathbf{s}_{\overline{p}} \cdot \mathbf{s}_{e} \left(\frac{1}{\lambda r^{2}} + \frac{1}{r^{3}} + \frac{4\pi}{3} \delta^{3}(r) \right) - (\mathbf{s}_{\overline{p}} \cdot \mathbf{r}) (\mathbf{s}_{e} \cdot \mathbf{r}) \left(\frac{1}{\lambda^{2} r^{3}} + \frac{3}{\lambda r^{4}} + \frac{3}{r^{5}} \right) \right] e^{-r/\lambda},$$

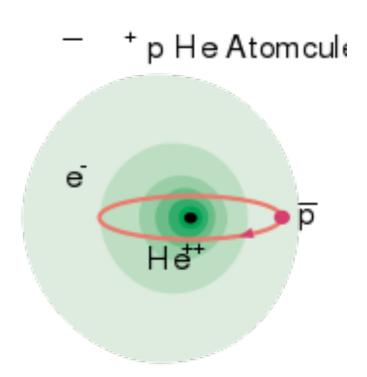

$$V_{4+5} = f_{4+5}^{e\overline{p}} \frac{i\hbar^{3}}{4m_{e}^{2} c} \mathbf{s}_{e} \cdot \left[\left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{e} \right) \times \mathbf{r}, \left(\frac{1}{r^{3}} + \frac{1}{\lambda r^{2}} \right) e^{-r/\lambda} \right]_{+}, \qquad \lambda = \frac{\hbar}{m_{0} c}$$

$$V_{8} = -f_{8}^{e\overline{p}} \frac{\hbar^{3}}{4\pi m_{e}^{2} c} \left[\mathbf{s}_{e} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{e} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{e} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{e} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{e} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{e} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{e} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} - \frac{m_{\overline{p}}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline{p}} \right), \left[\mathbf{s}_{\overline{p}} \cdot \left(\frac{m_{e}}{m_{\overline{p}} + m_{e}} \nabla_{\overline$$

Are there any discrepancies between experiment and theory?

Are there any discrepancies between experiment and theory?

PHYSICAL REVIEW A 95, 032505 (2017)


Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy

Filip Ficek,^{1,*} Derek F. Jackson Kimball,² Mikhail G. Kozlov,^{3,4} Nathan Leefer,⁵ Szymon Pustelny,¹ and Dmitry Budker^{5,6,7}

Antiprotonic helium

Short history

- 1991 first observations of long living states (microseconds)
- 2009 measurement of magnetic moment
- 2011 resolving hyperfine structure
- 2016 precise measurement of antiproton-to-electron mass ratio (inspiration for us)

Antiprotonic He levels

Transition

 $r_n = \frac{n^2 \hbar^2}{Zke^2 m}$

(n, l) → (n', l')	$(n, l) \rightarrow (n', l')$ (MHz)		(ppb)	(ppb)
\overline{p}^{4} He ⁺				
(40, 35) → (39, 34)	445608573(5)(4)(1)	445608572.3(4)	1.9	3.1
(38, 35) → (39, 34)	356155990.1(2.1)(2.0)(0.8)	356155990.5(4)	2.7	4.1
(39, 35) → (38, 34)	501948753.4(2.1)(1.9)(0.8)	501948755.1(2)	1.8	3.0
(37, 35) → (38, 34)	412885133.1(1.0)(0.8)(0.6)	412885132.4(2)	2.6	4.0
(37, 34) → (36, 33)	636878154.3(2.2)(1.9)(1.1)	636878152.09(5)	1.6	2.8
(34, 33) → (35, 32)	655062100(10)(10)(1)	655062101.92(7)	2.1	3.4
(35, 33) → (34, 32)	804633058.2(2.1)(1.8)(1.2)	804633058.46(6)	1.5	2.6
[32, 31) → (31, 30)	1132609226.7(2.8)(2.5)(1.4)	1132609224.01(8)	1.3	2.4
ō ³ He ⁺				
(38, 34) → (37, 33)	505222282(4)(4)(1)	505222281.0(3)	1.8	3.1
(36, 34) → (37, 33)	414147510.4(2.6)(2.3)(1.2)	414147508.9(3)	2.6	4.0
(36, 33) → (35, 32)	646180416(5)(4)(1)	646180412.58(5)	1.6	2.8
(34, 32) → (33, 31)	822809167(5)(5)(1)	822809172.30(7)	1.5	2.6
(32, 31) → (31, 30)	1043128581(5)(4)(1)	1043128580.64(8)	1.3	2.5

Experiment frequency

Theor. frequency

км

ĸQ

M. Hori et.al., *Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio*, Science **354**, 610 (2016)

(37,35) state

In general, variational method is used to obtain ground states. In this case it would be (1,0)

We may postulate test wavefunctions with fixed angular momentum I=35

For these test wavefunctions, (36,35) is a ground state

We still need to find a way to get (37,35) state

(37,35) state

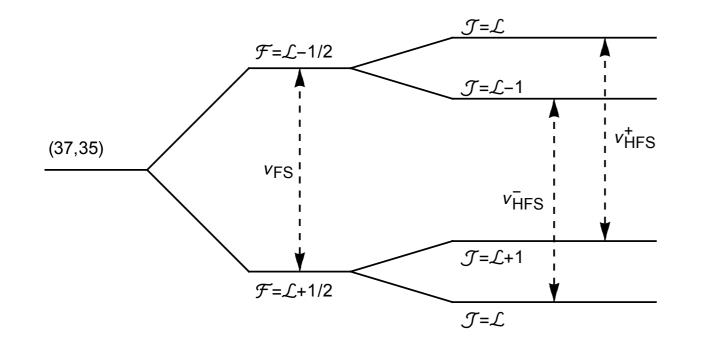
We use the variational principle in space of I=35 test wavefunctions

We get an approximated wavefunction for (36,35) state

We build a space of I=35 test wavefunctions orthogonal to the (36,35) state

We use the variational principle in the new space to find the lowest state - it will be (37,35)

(37,35) state

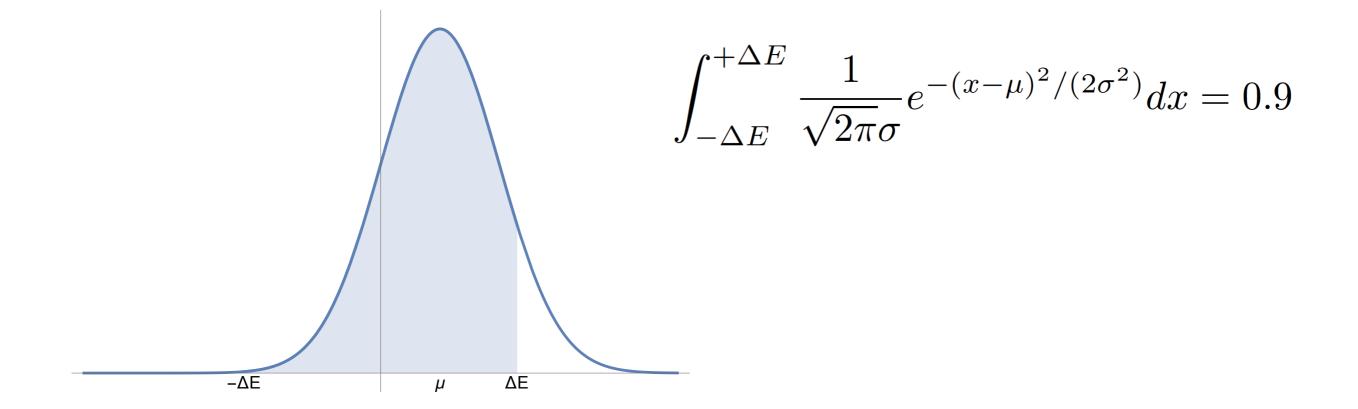

Variational principle works flawlessly for the first excited state only, if we know the precise wave function for the ground state.

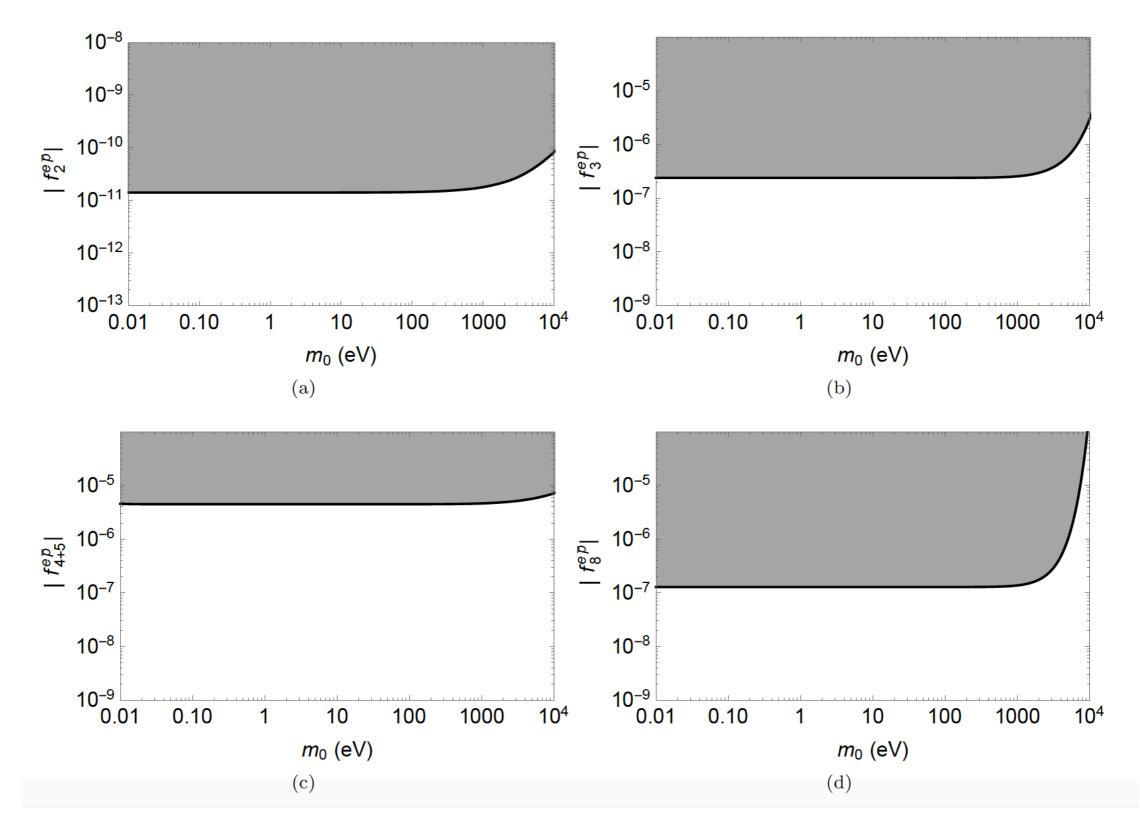
(n,l)	This paper	Ref. [12]
(36, 35)	-2.979	-2.984
(37, 35)	-2.883	-2.899

[12] T. Yamazaki et.al., Antiprotonic helium, Physics Reports 366 (2002) 183-329

We also check: if our wavefunction was a little bit wrong, how much would it change our final results?

Hyperfine structure


 $\mathcal{J} = (\mathcal{L} + s_e) + s_{\overline{p}}$


	$v_{\rm HF}^+$ (GHz)	$\nu_{\rm HF}^{-}$ (GHz)
This work	12.896 641(63)	12.924 461(63)
2002 [12]	12.895 96(34)	12.924 67(29)
Korobov [15]	12.8963(13)	12.9242(13)
Kino [17]	12.8960(13)	12.9239(13)

T. Pask, et.al., *Antiproton magnetic moment determined from the HFS of* pHe⁺, Phys. Lett. B 678, 55 (2009)

	Experiment [2]	Theory [51]	Difference	ΔE (at 90% C.L.)
$ u_{ m HFS}^+ $	12.896 641(63) GHz	12.8963(13) GHz	0.3(1.3) MHz	2.2 MHz
$ u_{ m HFS}^- $	$12.924 \ 461(63) \ \mathrm{GHz}$	12.9242(13) GHz	0.3(1.3) MHz	$2.2 \mathrm{~MHz}$

	Experiment [2]	Theory [51]	Difference	ΔE (at 90% C.L.)
$ u^+_{ m HFS}$	12.896 641(63) GHz	12.8963(13) GHz	0.3(1.3) MHz	2.2 MHz
$\bar{\nu_{ m HFS}}$	12.924 461(63) GHz	12.9242(13) GHz	0.3(1.3) MHz	2.2 MHz

	$ f_2 $	$ f_3 $	$ f_{4+5} $	$ f_8 $
Estimates	3×10^{-12}	3×10^{-8}	2×10^{-6}	3×10^{-8}
Numerics	1.4×10^{-11}	2.5×10^{-7}	4.4×10^{-6}	1.3×10^{-7}

Summary

- First constraints on semileptonic spin-dependent interactions between matter and antimatter
- First constraints on non-static spin-dependent interactions between matter and antimatter
- Proof that we can easily obtain constraints on exotic interactions using various atomic systems

Thank you for your attention

- F. Ficek, et.al., Constraints on exotic spin-dependent interactions between matter and antimatter from antiprotonic helium spectroscopy, Phys. Rev. Lett. **120**, 183002 (2018)
- M. Hori et.al., *Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio*, Science **354**, 610 (2016)
- T. Pask, et.al., Antiproton magnetic moment determined from the HFS of pHe⁺, Phys. Lett. B 678, 55 (2009)
- T. Yamazaki et.al., Antiprotonic helium, Physics Reports 366 (2002), 183–329