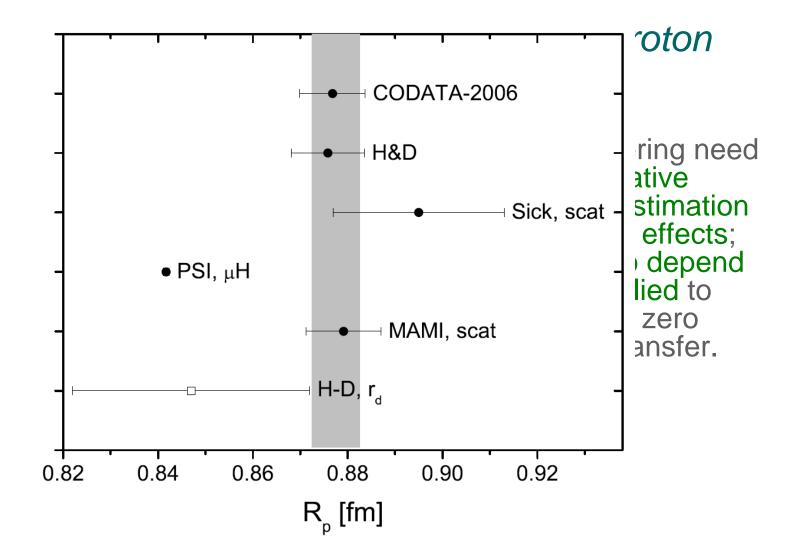
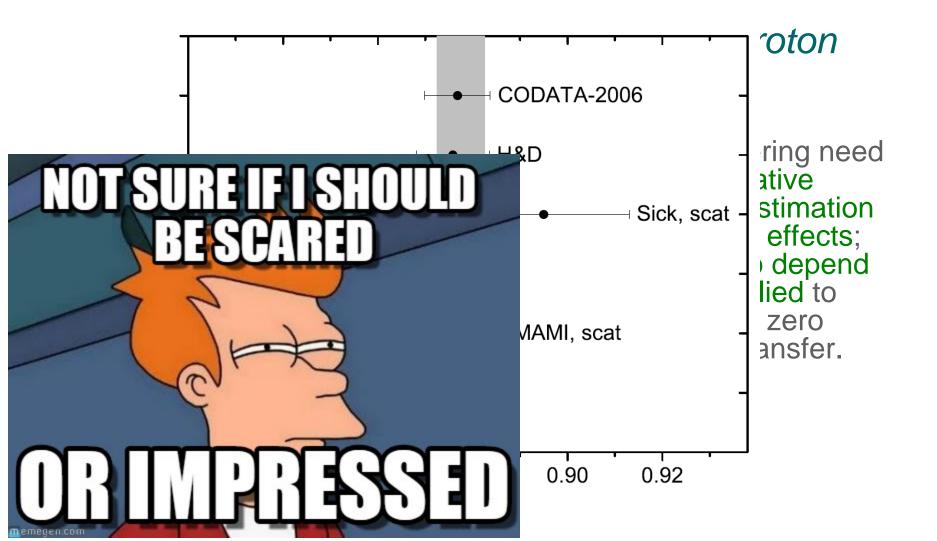
Radiative finite-size corections to the Lamb shift in muonic atoms


Savely Karshenboim

Ludwig-Maximilians-Universität München Pulkovo Observatory (FAO PAH) (St. Petersburg) Max-Planck-Institut für Quantenoptik (Garching)



Different methods to determine the proton charge radius (2010)

Different methods to determine the proton charge radius

• • • The Lamb shift in muonic hydrogen: experiment

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhawan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶[†], Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato², Lucile Julien², Cheng-Yang Kao⁷, Paul Knowles⁸, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸[†], Tobias Nebel¹, Paul Rabinowitz⁹, Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqqu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

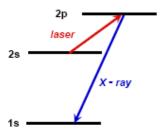
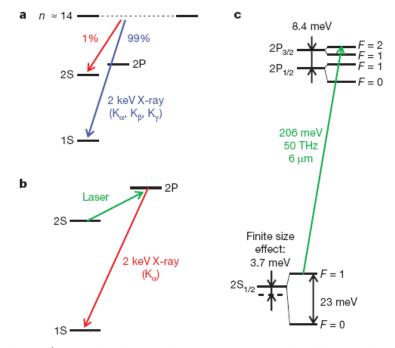
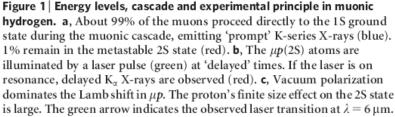
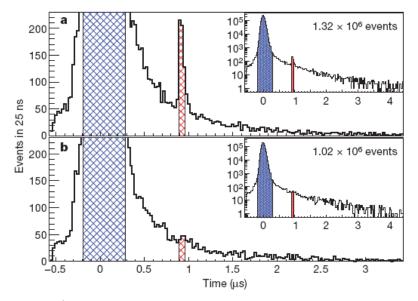





Fig. 16. Level scheme of the PSI experiment on the Lamb shift in a muonic hydrogen [88] (not to scale). The hyperfine structure is not shown.

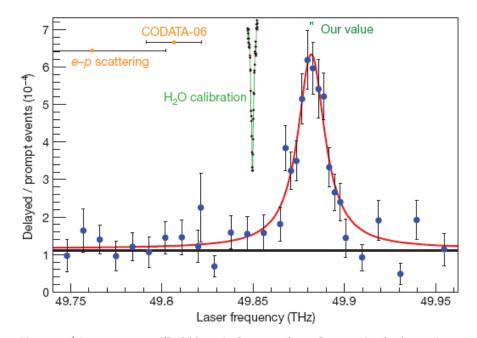


Figure 4 | **Summed X-ray time spectra**. Spectra were recorded on resonance (**a**) and off resonance (**b**). The laser light illuminates the muonic atoms in the laser time window $t \in [0.887, 0.962] \mu s$ indicated in red. The 'prompt' X-rays are marked in blue (see text and Fig. 1). Inset, plots showing complete data; total number of events are shown.

Figure 5 | **Resonance.** Filled blue circles, number of events in the laser time window normalized to the number of 'prompt' events as a function of the laser frequency. The fit (red) is a Lorentzian on top of a flat background, and gives a χ^2 /d.f. of 28.1/28. The predictions for the line position using the proton radius from CODATA³ or electron scattering^{1,2} are indicated (yellow data points, top left). Our result is also shown ('our value'). All error bars are the ±1 s.d. regions. One of the calibration measurements using water absorption is also shown (black filled circles, green line).

••• Theory of H and μ H:

- o Rigorous
- o Ab initio
- o Complicated
- o Very accurate
- Partly not cross checked
- Needs no higherorder proton structure

- o Rigorous
- o Ab initio
- o Transparent
- o Very accurate
- o Cross checked
- Needs higherorder proton structure (much below the discrepancy)

• • • Theory of H and μ H:

o Rigorous o Rigorous o Ab initio o Ab initio Complicated Transportent The *th* uncertainty is much below the level of the discrepancy o very accurate o very accurate o Cross checked o Partly not cross checked o Needs highero Needs no higherorder proton structure (much order proton below the structure discrepancy)

• • • Spectroscopy of H and μH:

- Many transitions in different labs.
- One lab dominates.
- o Correlated.
- Metrology involved.
- The discrepancy is much below the line width.
- Sensitive to various systematic effects.

- o One experiment
- A correlated
 measurement on μD
- No real metrology
- Discrepancy is of few line widths.
- Not sensitive to many perturbations.

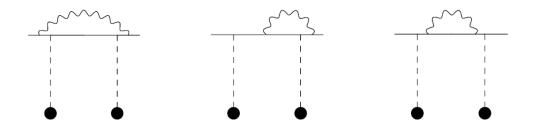
••• Hvs μH:

- o μ H: much more sensitive to the R_p term:
 - less accuracy in theory and experiment is required;
 - easier for estimation of systematic effects etc.
- o H experiment: easy to see a signal, hard to interpret.
- o μH experiment: hard to see a signal, easy to interpret.

Proton radius puzzle

Big puzzle: What value is better? Plausible answer: from μ H

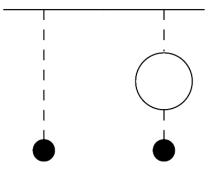
Small puzzle:


• How to get an acurate value of

Rp?

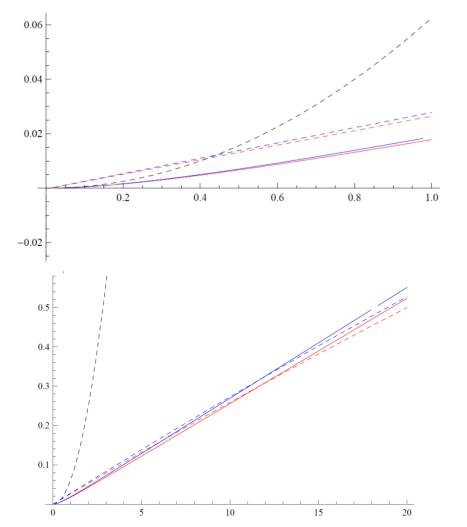
- The higher-order finite-size terms are needed.
- They involve scattering data or models.

• • • Example: radiative finite-size corrections


 $\Delta E_{\text{fns:lead}}(nl) = \frac{2}{3} \frac{(Z\alpha)^4 m_r}{n^3} (m_r R_N)^2 \delta_{l0}$

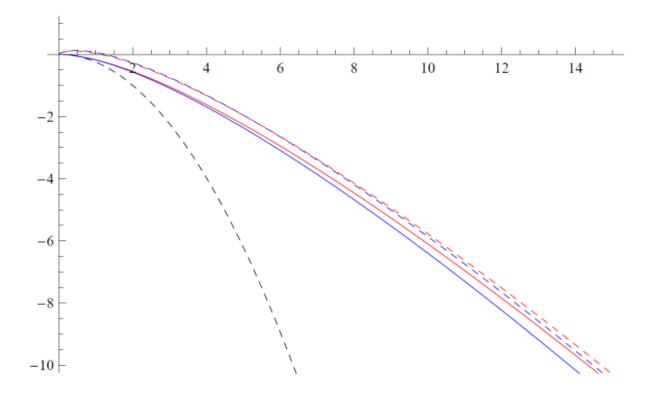
$$\Delta E_{\text{fns:SE}}(ns) = \left(4\ln 2 - \frac{23}{4}\right)\alpha(Z\alpha)\Delta E_{\text{fns:lead}}$$

A.I. Milstein, O.P. Sushkov, and I.S. Terekhov, Phys. Rev. Lett. **89**, 283003 (2002); Phys. Rev. A **67**, 062103 (2003).


• • • Example: radiative finite-size corrections

$$\Delta E_{\text{fns:VP}}(ns) = \frac{3}{4} \alpha(Z\alpha) \Delta E_{\text{fns:lead}}$$

K. Pachucki, Phys. Rev. A 48, 120 (1993).
M.I. Eides and H. Grotch, Phys. Rev. A 56, R2507 (1997).


Medium Z muonic atoms: μVP

Limit of electronic atoms: mR_N<<1

Muonic H: $mR_N = 0.4$

Muonic hydrogen: method

We use fits: o momentum space o over all area of q o realistic low q o realistic high q o as different as possible Borkowskillet all [15] Berger et al н Janssens et al

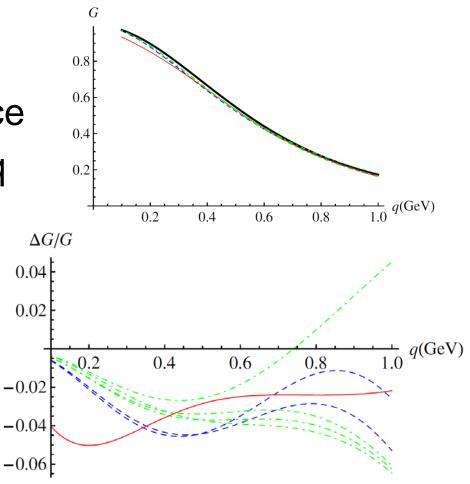
Murphy et al. [16]

0.6

0.4

0.8

1.05


0.9 0.85

0.8

lanson et al

0.2

G_E/G_{std. dipole} 0.95

• • • Muonic hydrogen: results

fit	R_E	$\Delta E_{\rm vp}$	$\Delta E_{ m se}$
	[fm]	$[\alpha(Z\alpha)^5m_r^3/m^2]$	$[\alpha(Z\alpha)^5 m_r^3/m^2]$
(44)	0.81	0.00542	-0.0382
(50)	0.90	0.00622	-0.0460
(49)	0.90	0.00618	-0.0455
(45)	0.86	0.00588	-0.0426
(46)	0.88	0.00601	-0.0439
(47)	0.87	0.00592	-0.0429
(48)	0.88	0.00600	-0.0438

PHYSICAL REVIEW A 97, 012514 (2018)

Editors' Suggestion

Lamb shift and fine structure at n = 2 in a hydrogenlike muonic atom with the nuclear spin I = 0

Evgeny Yu. Korzinin and Valery A. Shelyuto D. I. Mendeleev Institute for Metrology, St. Petersburg 190005, Russia and Pulkovo Observatory, St. Petersburg 196140, Russia

> Vladimir G. Ivanov Pulkovo Observatory, St. Petersburg 196140, Russia

> > Savely G. Karshenboim

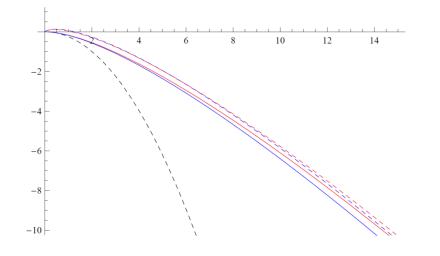
Contents lists available at ScienceDirect

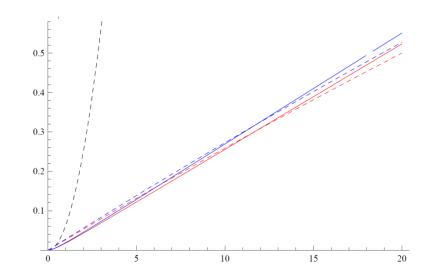
Physics Letters B 775 (2017) 79-83

Physics Letters B

www.elsevier.com/locate/physletb

Radiative nonrecoil nuclear finite size corrections of order $\alpha(Z\alpha)^5$ to the Lamb shift in light muonic atoms


R.N. Faustov^a, A.P. Martynenko^{b,*}, F.A. Martynenko^b, V.V. Sorokin^b


^a Institute of Informatics in Education, FRC CSC RAS, Vavilov Str. 40, 119333, Moscow, Russia ^b Samara University, Moskovskove Shosse 34, 443086, Samara, Russia

• • • Asymptotics at $mR_N >> 1$

Self energy

Muonic vacuum polarization

Collaboration:

Vladimir Ivanov Pulkovo observatory

Evgeny Korzinin Valery Shelyuto Mendeleev Institute for Metrology

SGK (LMU, MPQ, Pulkovo Observatory)

Supported by DFG, RSF