
Results
TABLE 3. Nonrelativistic, relativistic, and finite-mass con-
tributions to the static dipole polarizability for the 4He
1s2s 3S state, including relativistic recoil of order α2µ/M .
Terms included αD (a3

0) Zhang [2]
Nonrelativistic 315.820 349 9468(2) 315.820 4(2)
NR + Rel. (M = 0) 315.716 003(2) 315.716 05(1)
NR + Rel. (M = ±1) 315.724 297(2) 315.724 38(1)
α3 QED 0.006 885 12 0.006 895 171
α4 QED 0.000 119 876 a 0.000 119 876
α3 δ ln(k0)

b 0.000 07(1) a 0.000 07(1)
Nuclear size 0.000 004 58 a 0.000 004 58
Total (M = 0) 315.723 08(1) 315.723 14(4)
Total (M = ±1) 315.731 38(1) 315.731 47(4)
aFrom Zhang et al. [2] and private communication.
bAdditional field correction to the Bethe logarithm (estimate).

TABLE 4. Nonrelativistic, relativistic, QED, and finite-mass contri-
butions to the static dipole polarizability for the 4He 1s2 1S state.

Terms included αD (a3
0) Other

NR infinite mass 1.383 241 008 9569(7) 1.383 241 008 958(1)a

NR finite mass 1.383 809 986 4008(7) 1.383 809 986 408(1)b

Rel. Breit corr.c –0.000 080 359 7(3) –0.000 080 358(27)a

α3 QED 0.000 030 473 78(8) 0.000 030 474(1)
a Sapirstein and Pachucki [3].
b Puchalski et al. [4].
c For comparison, does not include relativistic recoil.

TABLE 5. Nonrelativistic, relativistic, and finite-mass con-
tributions to the tuneout wavelength for the 4He 1s2s 3S
state, including relativistic recoil of order α2µ/M .
Terms included λt (nm) Zhang [2]
Nonrelativistic 413.038 304 39(4) 413.820 4(2)
NR + Rel. (M = 0) 413.079 958(2) 413.080 00(1)
NR + Rel. (M = ±1) 413.085 828(2) 413.085 89(1)
α3 QED 0.004 1531 0.004 145 555(2)
α4 QED 0.000 072 077 a 0.000 072 077
α3 δ ln(k0) 0.000 04(1) a 0.000 04(1)
Nuclear size 0.000 002 75 a 0.000 002 75
Total (M = 0) 413.084 23(1) 413.084 26(4)
Total (M = ±1) 315.090 10(1) 413.090 15(4)
aFrom Zhang et al. [2] and private communication.

Conclusions
•Very high precision has been obtained for the lowest-

order nonrelativistic tune-out wavelength, including mass
polarization and relativistic corrections.
•Good agreement has been obtained with the less ac-

curate calculations of Zhang et al. [2] obtained by the
relativistic CI method, except for the QED corection of
O(α3), where there appears to be a significant discrep-
ancy (see Tables 3 and 5). As a check, we obtain good
agreement with the corresponding QED correction to
the polarizability [3,4] for the 1s2 1S state, as shown in
Table 4.
•The results provide a firm foundation for the interpre-

tation of high precision measurements of the tune-out
wavelength currently in progress at ANU .
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Two Theoretical Aproaches
1. Present work – nonrelativistic: Begin with the

nonrelativistic Schrödinger equation, and include
relativistic effects of relative O(Zα2) by perturbation
theory, where α ' 1/137.03599976 is the fine structure
constant.
Advantage: Hylleraas coordinates allow accurate
calculation of electron correlation effects.

2. Zhang et al. [2] – relativistic: Begin with the relativistic
Dirac equation, including the electron-electron
interaction, and treat electron correlation by means of
configuration interaction.
Advantage: Automatically includes higher-order
one-electron relativistic corrections, but correlation
effects are more slowly convergent.

Calculations
Wave Functions
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The Hamiltonian in atomic units is

H = −1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
− Z

r2
+

1

r12
− µ

M
∇1 · ∇2

where the last term is the mass polarization term, and µ
is the electron reduced mass. Expand

Ψ(r1, r2) =
∑
i,j,k

aijk r
i
1r
j
2r
k
12 e
−αr1−βr2YMl1l2L(r̂1, r̂2)± 1↔ 2

(Hylleraas, 1929), with i + j + k ≤ Ω, Ω = 1, 2, 3, · · ·.

Pseudospectral Representation of Intermediate
P-states

Replace the summation over the complete set of
intermediate P-states (including an integration over the
continuum) by a discrete summation over the set of N
pseudostates obtained by diagonalizing the
Hamiltonian in an N -dimensional basis set of P-states.

TABLE 2. Convergence study for the nonrelativistic
tune-out wavelength λ. N is the number of terms in the
basis set.

N λ (nm) Difference (nm)
140 413.082 328 731 87
190 413.082 581 514 32 0.000 252 782 45
246 413.082 578 777 26 –0.000 002 737 06
315 413.082 575 775 67 –0.000 003 001 59
393 413.082 574 808 89 –0.000 000 966 78
485 413.082 574 887 63 0.000 000 078 74
587 413.082 574 836 65 –0.000 000 050 98
705 413.082 574 825 76 –0.000 000 010 89
843 413.082 574 823 05 –0.000 000 002 71
981 413.082 574 822 39 –0.000 000 000 66

1140 413.082 574 822 16 –0.000 000 000 23
1319 413.082 574 821 98 –0.000 000 000 18
1906 413.082 574 821 91 –0.000 000 000 07

The Breit Interaction and Relativistic Recoil

The Breit interaction B comes from lowest-order
relativistic corrections (in atomic units)

B = α2
2∑
i=1

[
−1

8
∇4
i +

πZ

2
δ(ri)

]
+ · · ·

The ”Stone” term (after A.P. Stone) of order α2µ/M
comes from transforming the Breit interaction to c.m.
plus relative coordinates.

∆̃2 =
Zα2

2

µ

M

{
1

r1
(∇1 +∇2) · ∇1 +

1

r3
1

r1 · [r1 · (∇1 +∇2)]∇1

}
+ 1↔ 2

Lowest order QED corrections come from the Lamb
shift operator

δHQED =
4Zα3

3

[
19

30
− ln(Zα)2 − ln k0

] [
δ3(r1) + δ3(r2)

]
−14α3

3
Q

where Q = (4πr3
12)
−1
PV and ln k0 is the Bethe logarithm.

Motivation
•Find new ways to detect and test quantum

electrodynamic (QED) effects in atoms, other than
energy differences (Lamb shift).
•So-called “tune-out” wavelengths can be measured to

very high precision, and compared with theory.
• the tune-out wavelength is determined primarily by

the frequency-dependent polarizability. It is the
wavelength (or equivalent frequency) where the
frequency-dependent polarizability vanishes.

Experiment 
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• Michelson 

Interferometer 

 

• Sensitive to QED 

effects 

in collaboration with Ken Baldwin [1] (experiment,
Australian National University), and Li-Yan Tang [2]
(relativistic theory, Wuhan Institute of Physics and
Mathematics).

Polarizability Theory
Static Field Case

Interaction potential with an external electric field of
strength F in the z-direction is V = −eFz. The
second-order interaction energy is ∆E(2) = −α1

DF
2

where
αD = 2e2

∑
n

|〈ψ0 | z | ψn〉|2

En − E0

summed over all intermediate states n, where αD is the
dipole polarizability and H0ψn = Enψn is the
unperturbed eigenvalue problem.

Oscillating Field Case

If the electric field is oscillating with frequency ω, the
frequency-dependent (or dynamic) polarizability is

αD(ω) = 2e2
∑
n

(En − E0)|〈ψ0 | z | ψn〉|2

(En − E0)2 − (h̄ω)2

The Tuneout Wavelength

The tuneout wavelengths correspond to the frequencies
where α(ω) = 0.

Nonrelativistic tune-out wavelength with mass polarization 
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Resonances correspond to the 1s2s 3S − 1s2p 3P ,
1s2s 3S − 1s3p 3P , 1s2s 3S − 1s4p 3P , · · · transition
frequencies.

TABLE 1. Contributions to the static dipole polarizability
and their orders of magnitude (in units of a3

0, where a0 is
the Bohr radius).

Magnitude Physical origin
unity nonrelativistic Schrödinger equation
µ/M ' 10( − 4) mass pol. operator −(µ/M)∇1 · ∇2

α2 ' 10−4 Breit interaction
α2µ/M ' 10−7 Relativistic recoil + Stone term
α3 ' 10−6 QED terms (not yet calculated)
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