

Motivation

- Find new ways to detect and test quantum electrodynamic (QED) effects in atoms, other than energy differences (Lamb shift).
- So-called "tune-out" wavelengths can be measured to very high precision, and compared with theory.
- the tune-out wavelength is determined primarily by the frequency-dependent polarizability. It is the wavelength (or equivalent frequency) where the frequency-dependent polarizability vanishes.

Experiment

Polarizability and tune-out wavelength for the helium 1s2s ³S state

Gordon W.F. Drake and Jacob Manalo

Dept. of Physics, University of Windsor Windsor, Ontario, Canada

Two Theoretical Aproaches

. Present work – nonrelativistic: Begin with the nonrelativistic Schrödinger equation, and include relativistic effects of relative $O(Z\alpha^2)$ by perturbation theory, where $\alpha \simeq 1/137.03599976$ is the fine structure constant.

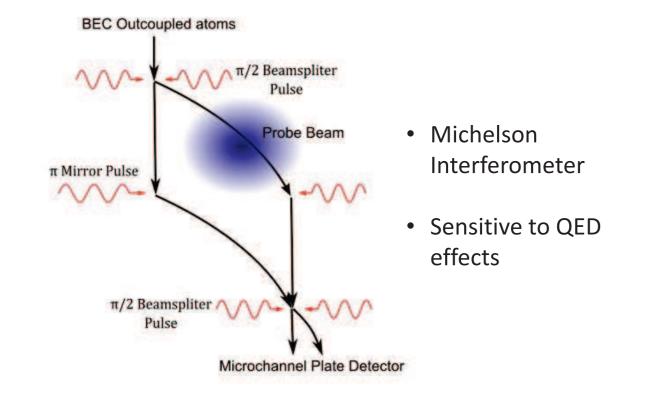
Advantage: Hylleraas coordinates allow accurate calculation of electron correlation effects.

2. Zhang et al. [2] – relativistic: Begin with the relativistic Dirac equation, including the electron-electron

Results

TABLE 3. Nonrelativistic, relativistic, and finite-mass contributions to the static dipole polarizability for the ⁴He 1s2s ³S state, including relativistic recoil of order $\alpha^2 \mu/M$.

Terms included	$\alpha_D (a_0^3)$	Zhang [2]
Nonrelativistic	315.8203499468(2)	315.8204(2)
NR + Rel. ($M = 0$)	315.716003(2)	315.71605(1)
NR + Rel. ($M = \pm 1$)	315.724 297(2)	315.72438(1)
$lpha^3$ QED	0.00688512	0.006 895 171
$lpha^4~QED$	0.000119876^{a}	0.000119876
$lpha^3\delta\ln(k_0)^{b}$	0.00007(1) ^a	0.00007(1)
Nuclear size	0.000 004 58 ^a	0.000 004 58
Total ($M = 0$)	315.72308(1)	315.72314(4)
Total ($M = \pm 1$)	315.73138(1)	315.731 47(4)



in collaboration with Ken Baldwin [1] (experiment, Australian National University), and Li-Yan Tang [2] (relativistic theory, Wuhan Institute of Physics and Mathematics).

Polarizability Theory

Static Field Case

Interaction potential with an external electric field of strength F in the z-direction is V = -eFz. The second-order interaction energy is $\Delta E^{(2)} = -\alpha_D^1 F^2$ where

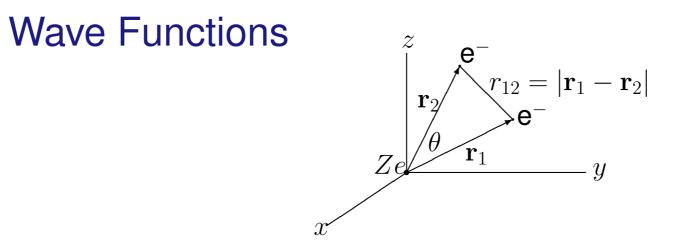
 $\alpha_D = 2e^2 \sum_n \frac{|\langle \psi_0 \mid z \mid \psi_n \rangle|^2}{E_n - E_0}$

summed over all intermediate states n, where α_D is the

interaction, and treat electron correlation by means of configuration interaction.

Advantage: Automatically includes higher-order one-electron relativistic corrections, but correlation effects are more slowly convergent.

Calculations



The Hamiltonian in atomic units is

$$H = -\frac{1}{2}\nabla_1^2 - \frac{1}{2}\nabla_2^2 - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}} - \frac{\mu}{M}\nabla_1 \cdot \nabla_2$$

where the last term is the mass polarization term, and μ is the electron reduced mass. Expand

$$\Psi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{i,j,k} a_{ijk} r_1^i r_2^j r_{12}^k e^{-\alpha r_1 - \beta r_2} \mathcal{Y}_{l_1 l_2 L}^M(\mathbf{\hat{r}_1}, \mathbf{\hat{r}_2}) \pm \mathbf{1} \leftrightarrow \mathbf{2}$$

(Hylleraas, 1929), with $i + j + k \leq \Omega$, $\Omega = 1, 2, 3, \cdots$.

Pseudospectral Representation of Intermediate P-states

 a From Zhang et al. [2] and private communication.

^bAdditional field correction to the Bethe logarithm (estimate).

TABLE 4. Nonrelativistic, relativistic, QED, and finite-mass contributions to the static dipole polarizability for the ⁴He $1s^{2-1}S$ state.

Terms included	$\alpha_D (a_0^3)$	Other
NR infinite mass	1.383 241 008 9569(7)	1.383 241 008 958(1) ^a
NR finite mass	1.383 809 986 4008(7)	$1.383809986408(1)^b$
Rel. Breit corr. ^c	-0.000 080 359 7(3)	$-0.000080358(27)^{a}$
$\alpha^3 {\sf QED}$	0.000 030 473 78(8)	0.000030474(1)
^a Sapirstein and F	Pachucki [3].	
b Puchalski et al.	[4].	
^c For comparison	, does not include relativi	stic recoil.

TABLE 5. Nonrelativi	stic, relativistic, and	finite-mass con-
tributions to the tune	out wavelength for	the ${}^4\text{He}\;1s2s\;{}^3S$
state, including relati	vistic recoil of order	' $lpha^2 \mu/M$.
Terms included	λ_t (nm)	Zhang [2]
Nonrelativistic	413.03830439(4)	413.8204(2)
NR + Rel. $(M = 0)$	413.079958(2)	413.08000(1)
NR + Rel. ($M = \pm 1$)	413.085828(2)	413.08589(1)
$lpha^3$ QED	0.004 1531	0.004 145 555(2)
$lpha^4~QED$	0.000072077^{a}	0.000072077
$lpha^3 \delta \ln(k_0)$	0.000 04(1) ^a	0.00004(1)
Nuclear size	0.00000275^{a}	0.000 002 75

dipole polarizability and $H_0\psi_n = E_n\psi_n$ is the unperturbed eigenvalue problem.

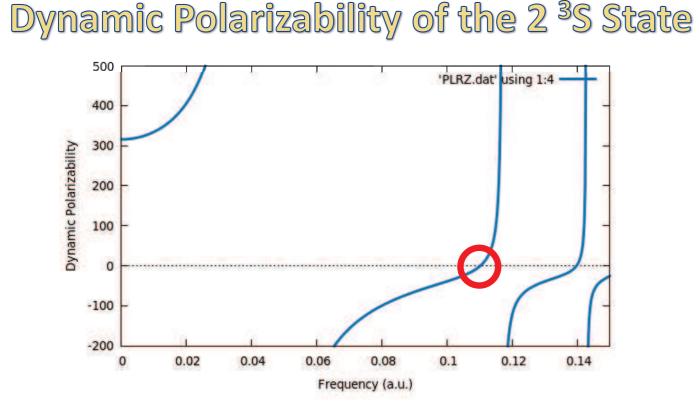
Oscillating Field Case

If the electric field is oscillating with frequency ω , the frequency-dependent (or dynamic) polarizability is

 $\alpha_D(\omega) = 2e^2 \sum_{n} \frac{(E_n - E_0) |\langle \psi_0 | z | \psi_n \rangle|^2}{(E_n - E_0)^2 - (\hbar\omega)^2}$

The Tuneout Wavelength

The tuneout wavelengths correspond to the frequencies where $\alpha(\omega) = 0$.



Nonrelativistic tune-out wavelength with mass polarization

 $\lambda = 413.082574821912(73) \,\mathrm{nm}$

Replace the summation over the complete set of intermediate P-states (including an integration over the continuum) by a discrete summation over the set of Npseudostates obtained by diagonalizing the Hamiltonian in an *N*-dimensional basis set of P-states.

TABLE 2. Convergence study for the nonrelativistic tune-out wavelength λ . N is the number of terms in the basis set.

\overline{N}	λ (nm)	Difference (nm)
140	413.08232873187	
190	413.08258151432	0.000 252 782 45
246	413.08257877726	-0.00000273706
315	413.08257577567	-0.000 003 001 59
393	413.08257480889	-0.00000096678
485	413.08257488763	0.00000007874
587	413.08257483665	-0.00000005098
705	413.08257482576	-0.000 000 010 89
843	413.08257482305	-0.00000000271
981	413.08257482239	-0.000 000 000 66
1140	413.08257482216	-0.00000000023
1319	413.08257482198	-0.000 000 000 18
1906	413.08257482191	-0.00000000007

The Breit Interaction and Relativistic Recoil

Total ($M = 0$)	413.08423(1)	413.08426(4)
Total $(M = \pm 1)$	315.090 10(1)	413.090 15(4)

 a From Zhang et al. [2] and private communication.

Conclusions

- Very high precision has been obtained for the lowestorder nonrelativistic tune-out wavelength, including mass polarization and relativistic corrections.
- Good agreement has been obtained with the less accurate calculations of Zhang et al. [2] obtained by the relativistic CI method, except for the QED corection of $O(\alpha^3)$, where there appears to be a significant discrepancy (see Tables 3 and 5). As a check, we obtain good agreement with the corresponding QED correction to the polarizability [3,4] for the $1s^{2}$ ¹S state, as shown in Table 4.
- The results provide a firm foundation for the interpretation of high precision measurements of the tune-out wavelength currently in progress at ANU.

Acknowledgments

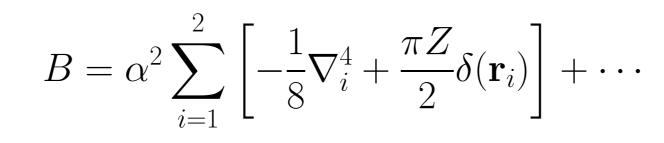
Research support by the Natural Sciences and Engineering Research Council of Canada (NSERC), and by SHARCNET, are gratefully acknowledged.

Resonances correspond to the $1s2s \ ^{3}S - 1s2p \ ^{3}P$, $1s2s \ {}^{3}S - 1s3p \ {}^{3}P$, $1s2s \ {}^{3}S - 1s4p \ {}^{3}P$, \cdots transition frequencies.

TABLE 1. Contributions to the static dipole polarizability and their orders of magnitude (in units of a_0^3 , where a_0 is the Bohr radius).

Magnitude	Physical origin
unity	nonrelativistic Schrödinger equation
$\mu/M \simeq 10^{(-4)}$	1) mass pol. operator $-(\mu/M) abla_1 \cdot abla_2$
$\alpha^2 \simeq 10^{-4}$	Breit interaction
$\alpha^2 \mu/M \simeq 10^{-7}$	Relativistic recoil + Stone term
$\alpha^3 \simeq 10^{-6}$	QED terms (not yet calculated)

The Breit interaction *B* comes from lowest-order relativistic corrections (in atomic units)



The "Stone" term (after A.P. Stone) of order $\alpha^2 \mu/M$ comes from transforming the Breit interaction to c.m. plus relative coordinates.

$$\tilde{\Delta}_2 = \frac{Z\alpha^2}{2} \frac{\mu}{M} \left\{ \frac{1}{r_1} (\nabla_1 + \nabla_2) \cdot \nabla_1 + \frac{1}{r_1^3} \mathbf{r}_1 \cdot [\mathbf{r}_1 \cdot (\nabla_1 + \nabla_2)] \nabla_1 \right\} + 1 \leftrightarrow 2$$

Lowest order QED corrections come from the Lamb shift operator

$$\delta H_{\text{QED}} = \frac{4Z\alpha^3}{3} \left[\frac{19}{30} - \ln(Z\alpha)^2 - \ln k_0 \right] \left[\delta^3(\mathbf{r}_1) + \delta^3(\mathbf{r}_2) \right] - \frac{14\alpha^3}{3} Q$$

where $Q = (4\pi r_{12}^3)_{PV}^{-1}$ and $\ln k_0$ is the Bethe logarithm.

References

- [1] B. M. Henson, R. I. Khakimov, R. G. Dall, K. G. H. Baldwin, L.-Y. Tang, and A. G. Truscott, Phys. Rev. Lett. 115, 043004 (2015).
- [2] Y.-H. Zhang, L.-Y. Tang, X.-Z. Zhang, and T.-Y. Shi, Phys. Rev. A 93, 052516 (2016).
- [3] J. Sapirstein and K. Pachucki, Phys. Rev. A 63, 012504, (2000).
- [4] M. Puchalski, K. Piszczatowski, J. Komasa, B. Jeziorski, and K. Szalewicz, Phys. Rev. A 93, 032515 (2016).