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Dark energy and the cosmological constant

Vacuum energy: The cosmological constant problem
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Dark energy and the cosmological constant

Vacuum energy: The cosmological constant problem

Einstein 1918: Absence of gravitational collapse          Phenomenological cosmological constant ¤ 

Hubble 1927: The universe expands                          ¤>0 

Today: ● Redshift of Type 1a supernovae
● Anisotropy of the cosmic microwave 

background
● Large scale distribution
...

Expansion is accelerating

Quantum mechanics (field theory)
Zero point energies of the EM (and other) field:

Cutoff at the Planck length:

`worst prediction in 
the history of physics'

>120 orders of 
magnitude off

cosmological 
constant problem
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1.6 × 10-35 m
Planck length

10-30 110-20 10-10 1010 1020

8.8 ×1026 m
Size of the universe

Scale of the universe:

[meter]

Vacuum energy at different scales

10-10 10-810-9 10-7 10-6 10-5

Cosmological constant
dark energy

van der Waals
(non-retarded)

Casimir
(retarded)

thermal Casimir
(retarded)

QFT
renormalization
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1.6 × 10-35 m
Planck length

10-30 110-20 10-10 1010 1020
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Size of the universe
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Intuitive:

The Casimir effect in a nutshell

ℏk
ℏk

a

2 π
c
a



discrete spectrum

Vacuum

0

continuous spectrum

Energy:

Difference: finite
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Reality (simplest possible case):

The Casimir effect in a nutshell

● materials with dielectric functions       
● extrapolate to zero frequency

● need to Wick-rotate by using the Kramers-
Kronig relation

● Compute the energy (force): Lifshitz equation

z

00

1

1

0

a/2

-a/2
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1.6 × 10-35 m
Planck length

10-30 110-20 10-10 1010 1020

8.8 ×1026 m
Size of the universe

Scale of the universe:

[meter]

10-10 10-810-9 10-7 10-6 10-5

Large surface separations: Thermal Casimir effect

Casimir
(retarded)

thermal Casimir
(retarded)
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Drude plasma
plasma frequency

relaxation frequency
(dissipation)

Dissipation at zero frequency or not?  Drude vs. plasma debate

Recent data suggests:  No dissipation for virtual photons (short distance)!

 Situation at large distance (   2 µm) unclear
Bimonte et al, Phys. Rev. B 93, 184434 (2016)

?

More fundamental: The nature of virtual photons
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Only possible with
parallel plates.

Review: Klimchitskaya et al, Int. J. Mod. 
Phys. Conf. Ser. 3(2011), 515
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Dissipation at zero frequency or not?  Drude vs. plasma debate

What is different at larger separation?

At d>10 µm
less than 10-7 N/m²

More fundamental: The nature of virtual photons

Recent data suggests:  No dissipation for virtual photons (short distance)!

 Situation at large distance (   2 µm) unclear
Bimonte et al, Phys. Rev. B 93, 184434 (2016)

?
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Publications, (2009).plate separation [µm]

Dissipation at zero frequency or not?  Drude vs. plasma debate

Recent data suggests:  No dissipation for virtual photons (short distance)!

 Situation at large distance (   2 µm) unclear
R. Decca APS March Meeting (2015)

?
What is different at larger separation?

At d>10 µm
less than 10-7 N/m²

More fundamental: The nature of virtual photons

CANNEX Task List:
1. Force/Gradient measurements 
      at separaton >6 µm,vacuum, 
      accuracy ~1pN/0.1 µN/m
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1.6 × 10-35 m
Planck length

10-30 110-20 10-10 1010 1020

8.8 ×1026 m
Size of the universe

Scale of the universe:

[meter]

Very large scales: 1 AE to the size of the universe

Cosmological constant
dark energy



  

visible universe
indication: em radiation, gravity
theory:
contents: particles of the SM

part: 5%

dark matter
indication: grav. pull
theory: unknown
contents: unknown

part: 27%
dark energy
indication: acceleration
theory: unknown
contents: unknown

part: 68%

proposition:
add a new scalar

particle with Yukawa coulings
J. Khoury and A.Weltman,

Phys. Rev. Lett. 93 (2004) 171104

Very large scales: 1 AE to the size of the universe



  

Result 1 : effective potential

`quintessence'
runaway potential

Yukawa
coupling

Yukawa couplings:New dynamics:
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Result 1 : effective potential

`quintessence'
runaway potential

Yukawa
coupling

Result 2: `Newtonian' potential:

Yukawa couplings:New dynamics:

screened interaction

Adaptvity: Chameleon force
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Prospects for chameleon detecton

Á { ° coupling: ¯
°

Direct force sensing
interaction between
macroscopic objectsÁ { ª

m
 coupling: ¯

m

Change of QM
properties...
of microscopic
objects

Eötvös-Washington

Casimir 

Lunar ranging

Qbounce/GRANIT

Atom interferometry

Neutron interferomety

Afterglow
terrestric
Á generation

Heloscopes
solar
Á generation

Chase/GAMMEV

CAST

IAXO

Weak EP tests
(orbital experiments)

Astronomical observations
various effects

MicroSCOPE/GG

Euclid

interacton measurement
principle

experiment

Cannex

Molecules



23

Our approach

Principle: 
Measure at constant plate separation
the change in the force for different gas density ½

FF

½

+0.1

-0.1

0.0

0 10 20 30 40 50

Assumptions: 
● Xe gas
● plate area 1 cm²

●

●  ¤ = 2.4 meV

Brax, van de Bruck, Davis, Shaw, Iannuzzi, 
PRL. 104, 241101(2010)
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Our approach

Principle #3: 
Measure at constant plate separation
the change in the force for different gas density ½

FF

½

106

105

104
103

+0.1

-0.1

0.0

0 10 20 30 40 50

¯

Assumptions: 
● Xe gas
● plate area 1 cm²

●

●  ¤ = 2.4 meV

FÁ

✓high sensitivity

Brax, van de Bruck, Davis, Shaw, Iannuzzi, 
PRL. 104, 241101(2010)

CANNEX Task List:
1. Force/Gradient measurements 
      at separaton >6 µm,vacuum, 
      accuracy ~1pN/0.1 µN/m

2. Force measurements at constant separaton,
modulated gas density, precision <0.1 pN
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Setup (located at VU Amsterdam)

keystone

outer vacuum 
chamber

core vacuum 
chamber

Euler spring

secundary
pendulum

primary
pendulum

magnetic
dampers

ion-getter
pump

magnetic
dampers

CANNEX overview and isolaton system

experiment
core 

actuator

2.
4 

m
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Force detecton (one year ago)
Principle:

Measure capacitively the 
displacement of a spring.

F

Lower plate

Sensor   plate

∆d= F/ k

k/2 k/2

Capacity
measurement

Translators (piezo + stckkslip)

d

∆C /   F

Implementation: upper plate (sensor)

(patents pending)

Custom-fabricated Silicon membrane
Force constant: 0.22±0.02 N/m
Disk area: 1.0834±0.0005 cm²
Waviness(disk) < 15 nm (whole area)
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Force detecton

Principle:

Measure optically the 
displacement of a spring.

Implementation lower plate:

Custom-fabricated SiO
2
 disk

Thickness 6 mm
Disk area 1 cm²
Waviness(disk) < 18 nm (whole area)

+7.54

nm

-10.87
F

Lower plate

Sensor   plate

∆d= F/ k

k/2 k/2

Capacity
measurement

Translators (piezo + stckkslip)

d

∆C /   F
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Force detecton

Implementation: core
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Force detecton

Principle:

Measure capacitively the 
displacement of a spring.

optically

F

Lower plate

Sensor   plate

∆d= F/ k

k/2 k/2

optcal fber

Optcal
Interferometer

Capacity
measurement

Translators (piezo + stckkslip)

Homodyne detection

→Able to measure below the
      thermal noise level

Casimir: 
resonance frequency shift

Chameleon: 
adiabatic pressure modulation



32

Parallelism: Importance
parallel plates with small tilt £

Capacitance
 bridge

£

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● 
● 

● 
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●

● ●
● 

● 

● 

● 

● 
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● 

●

70
µm

83
µm

96 µm

109 µm

135 µm

200 µm

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1.00
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1.10
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1.20

1.25

1.30

tilt angle [deg. .]
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n
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[1
]

d
£

Target 0.1 pN:  max deviation 0.1 µrad

Error in d  ) Error F
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Parallelism control: Principle

S
ig

n
al

 ∝
C

time, modulated angle

£0

n(t)
!

d0

assume: parallel plates

Capacitance
 bridge
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Parallelism control: Principle

£0

¢£

!n(t)

S
ig

n
al

 ∝
C

time, modulated angle S
ig

n
a

l ∝
C

time, modulated angle

£0

n(t)
!

d0

assume: parallel plates plates with relative tilt ¢£

Idea: Use feedback circuit to compensate ¢£

Capacitance
 bridge
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Parallelism control: Performance

Proof of principle/preliminary results

Step response
under very bad conditions
● First test

- in air
- without anti-vibration
- with thick testing plates

● 6 µm single-sided step
● nominal distance 90  µm

Long-term stability
● Same conditions
● 3 µrad(RMS)

Target
● Assumptions: vacuum, anti-vibration
● 0.1 µrad (~1 nm total tilt)
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Parallelism control: Performance

Proof of principle/preliminary results

Practical operation

● Works as expected
● currently 

~200 µrad long term

Limiting factor: Vibrations, Drift
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Force detecton

Sensor characterization: noise spectrum

Custom-fabricated Silicon membrane
Force constant: 0.22±0.02 N/m
Eigenfrequency: 10.2465 Hz ± 0.1 mHz
Q-factor: 5 k—15 k
Disk area: 1.0834±0.0005 cm²
Waviness(disk) < 15 nm (whole area)
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Vibratons 1: The background
Noise levels and limits:

2 limits:

1:  non-linearities:

< 1 pN @ d=10 µm

2:  equivalent RMS noise: fBW ~ 5 mHz

required improvement: factor 10 horizontal, 100 vertical around 10 Hz

< 0.1 pN @ d=10 µm

non-linear limit
RMS force limit

0.1 1 10 100
10 - 8

10 - 7

10 - 6

10 - 5

10 - 4

frequency [Hz]

sp
ec

tr
al

 a
cc

el
. m

/(
s²

 √
H

z)

horizontal vertical

0.1 1 10 100
10 - 8

10 - 7

10 - 6

10 - 5

10 k 4

frequency [Hz]

ground
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GAS* filter

voice coil

primary and
secondary pendulum

Eddy current
dampers

Experiment chamber
= pendulum mass

Vertical seismic:
 GAS* filter
 active H1 feedback

*Geometric anti-spring

Horizontal seismic:
 double-pendulum
 Eddy current dampers

Acoustic:
 rigid all-enclosing

vacuum chamber 
10-5 mbar
(not shown)

mount baseplate

single

still missing

Vibratons 2: The unlucky frst system
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Vibratons 2: The unlucky frst system
Noise levels and limits (one year ago):

required improvement: factor 30 horizontal, 3 vertical around 10 Hz

New problem: resonances

)  Could not approach 

separations < 50 µm

non-linear limit
RMS force limit

0.1 1 10 100
10 - 8

10 - 7

10 - 6

10 - 5

10 - 4

frequency [Hz]

sp
ec

tr
al

 a
cc

el
. m

/(
s²

 √
H

z)

horizontal vertical

0.1 1 10 100
10 - 8

10 - 7

10 - 6

10 - 5

10 k 4

frequency [Hz]

ground
prev. perf.
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Vibratons 3: The hopeful update:
GAS* filter

voice coil

pendulum

Experiment chamber
= pendulum mass

Eddy current
dampers

Vertical seismic:
 GAS* filter (Euler springs)
 active feedback

*Geometric anti-spring

Horizontal seismic:
 single-pendulum

thinner wire
 Eddy current dampers

Acoustic:
 rigid all-enclosing

vacuum chamber 
10-5 mbar
(not shown)

mount baseplate

Tilt seismic:
 tower on core chamber
 Eddy current dampers

tower
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Vibratons 3: The hopeful update
Noise levels and limits:

non-linear limit
force limit

0.1 1 10 100
10 - 8

10 - 7

10 - 6
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horizontal vertical
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10 k 4

frequency [Hz]

ground
prev.perf.

current perf. passive
current perf. actve
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Vibratons 3: The hopeful update
Noise levels and limits:

Still an improvement of 30 required (depending on the background)

non-linear limit
force limit

0.1 1 10 100
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10 - 5

10 - 4
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Vibratons 4: The biter end

0.1 1 10 100

Frequency [Hz]

10k7sp
ec
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al

 a
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el
. m

/(
s²
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H

z)
NLNM
NHNM
dry
rain, pumps on

~factor 5

10k6

10k5



45

Vibratons 4: The biter end
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Remote operaton
Setup completely automized. 
Data acquisition without physical access to the setup.
What can go wrong? 
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Remote operaton

Rain water pipe rupture  → Lab flooded  → Thermal controls broken

Required stability (sensor spring constant) in sensor spring constant: < 10 mK
Actual stability ~ 500 mK 

Setup completely automized. 
Data acquisition without physical access to the setup.
What can go wrong? 
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However, there is hope

Calibrated / Measured Parameters
Parallelism (calibrated): < 200 µrad
Residual electrostatic potential: < 8 µV
Drift < 500 nm/h
Total thermal drift error < 2.5 µm/run 

First evaluation. 
Preliminary!

Measured

Casimir (Drude)

Casimir (Plasma)

Separaton [µm]

P
re

ss
u

re
 g

ra
d

ie
n

t 
[N

/m
³]
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What could we reach?

New limits...

●

● Active vibration insulation
> 30dB at 1 Hz

● Sensitivity limited only by

1) Brownian sensor noise

2) C-bridge electronic noise

Assumptions:

● Even better vibration 
insulation 
(6 axis, two-staged)

● Optical readout

● Sensor design with 
larger mass

Room for
improvements:

Jaffe, et al, Nat. Phys (2017)

Adelberger, et al, Prog. Part. Nucl. Phys. 62, 102 (2009)



50

What could we reach?

New limits possible...
●

● Sensitivity limited only by

1) Brownian sensor noise

2) C-bridge electronic noise
● PRELIMINARY!

Assumptions:

● Even better vibration 
insulation 
(6 axis, two-staged)

● 3 interferometer
optical readout

● Sensor design with 
larger mass

Room for
improvements:

[1] Sushkov et al, PRL 107, 171101 (2011)
[2] Chen et al, PRL, 116, 221102 (2016)
[3] Gerarci er al, PRD 78, 022002 (2008)
[4] Kapner et al, PRL, 98, 021101 (2007)

[1]

[2]

[3]

[5] Cannex (estimated) d=10 µm, 0.1pN

0.01 0.10 1 10 100

0.1

1000

107

1011

1015

1019

λ [µm]

α

[4]

[5]

excluded
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Outlook & Conclusion

Refurbished Cannex:

Improvements:

6 axis active feedback system to cancel resonances

Fully optical measurements

Pressure modulation system

Measurements:

Frequency shift force measurements 10-30 µm, 1 pN

Pressure modulation measurement at 10 µm, 0.1 pN

Possible Results:

Exclusion of Chameleon forces n ≤ 10, β > 10-2

Indication if virtual photons behave differently from real ones

Possibly new limits on Yukawa forces
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