

Casimir And Non-Newtonian force EXperiment

A parallel plate approach to physics

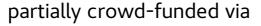
Vienna May 17, 2018

René Sedmik

Atominstitut, TU Vienna previously: VU Amsterdam

Stay tuned on our website cannex.vu.nl

er Wissenschaftsfonds



Casimir And Non-Newtonian force EXperiment

A parallel plate approach to vacuum energy

Vienna May 17, 2018

René Sedmik

Atominstitut, TU Vienna previously: VU Amsterdam Stay tuned on our website cannex.vu.nl

Dark energy and the cosmological constant

$$R_{\mu\nu} - \left(\frac{1}{2}\mathcal{R} - \Lambda\right)g_{\mu\nu} = \frac{8\pi}{c^4}T_{\mu\nu}$$

Einstein 1918: Absence of gravitational collapse

Phenomenological cosmological constant Λ

Dark energy and the cosmological constant

$$R_{\mu\nu} - \left(\frac{1}{2}\mathcal{R} - \Lambda\right)g_{\mu\nu} = \frac{8\pi}{c^4}T_{\mu\nu}$$

Einstein 1918: Absence of gravitational collapse

Phenomenological cosmological constant Λ

Hubble 1927: The universe expands

Dark energy and the cosmological constant

 $R_{\mu\nu} - \left(\frac{1}{2}\mathcal{R} - \Lambda\right)g_{\mu\nu} = \frac{8\pi}{c^4}T_{\mu\nu}$

Einstein 1918: Absence of gravitational collapse

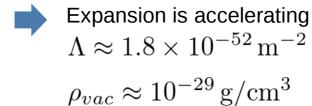
Phenomenological cosmological constant Λ

Hubble 1927: The universe expands

 $\Lambda > 0$

Today:

- Redshift of Type 1a supernovae
- Anisotropy of the cosmic microwave background
- Large scale distribution



Dark energy and the cosmological constant

$$R_{\mu\nu} - \left(\frac{1}{2}\mathcal{R} - \Lambda\right)g_{\mu\nu} = \frac{8\pi}{c^4}T_{\mu\nu}$$

Einstein 1918: Absence of gravitational collapse

Phenomenological cosmological constant Λ

Hubble 1927: The universe expands

- **Today:** Redshift of Type 1a supernovae
 - Anisotropy of the cosmic microwave background
 - Large scale distribution

Expansion is accelerating

$$\Lambda \approx 1.8 \times 10^{-52} \, \mathrm{m}^{-2}$$

$$\rho_{vac} \approx 10^{-29} \,\mathrm{g/cm^3}$$

Quantum mechanics (field theory)

Zero point energies of the EM (and other) fields:

$$\rho_{ZPE} \propto \int_{0}^{\lambda_c} dk \, k^3 = \lambda_c^4 \to \infty$$

Dark energy and the cosmological constant

$$R_{\mu\nu} - \left(\frac{1}{2}\mathcal{R} - \Lambda\right)g_{\mu\nu} = \frac{8\pi}{c^4}T_{\mu\nu}$$

Einstein 1918: Absence of gravitational collapse

Phenomenological cosmological constant Λ

Hubble 1927: The universe expands

- **Today:** Redshift of Type 1a supernovae
 - Anisotropy of the cosmic microwave background
 - Large scale distribution



$$\Lambda \approx 1.8 \times 10^{-52} \, \mathrm{m}^{-2}$$

$$\rho_{vac} \approx 10^{-29} \,\mathrm{g/cm^3}$$

Quantum mechanics (field theory)

Zero point energies of the EM (and other) fields:

$$\rho_{ZPE} \propto \int_{0}^{\lambda_c} dk \, k^3 = \lambda_c^4 \to \infty$$

Cutoff at the Planck length:

$$\lambda_c \to 2\pi/\ell_P$$

$$\rho_{ZPE} \approx 10^{95} \,\mathrm{g/cm^3}$$

Dark energy and the cosmological constant

 $R_{\mu\nu} - \left(\frac{1}{2}\mathcal{R} - \Lambda\right)g_{\mu\nu} = \frac{8\pi}{c^4}T_{\mu\nu}$

Expansion is accelerating

Einstein 1918: Absence of gravitational collapse

Phenomenological cosmological constant Λ

Hubble 1927: The universe expands

 $\Lambda > 0$

- **Today:** Redshift of Type 1a supernovae
 - Anisotropy of the cosmic microwave background
 - Large scale distribution

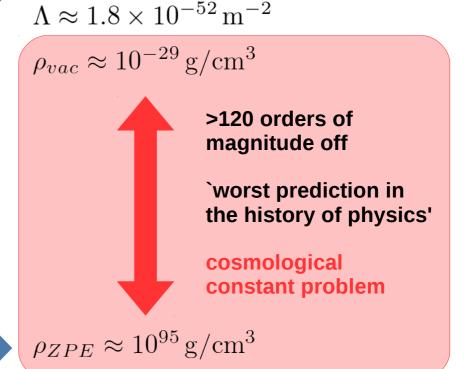
Quantum mechanics (field theory)

Zero point energies of the EM (and other) field:

$$\rho_{ZPE} \propto \int_{0}^{\lambda_c} dk \, k^3 = \lambda_c^4 \to \infty$$

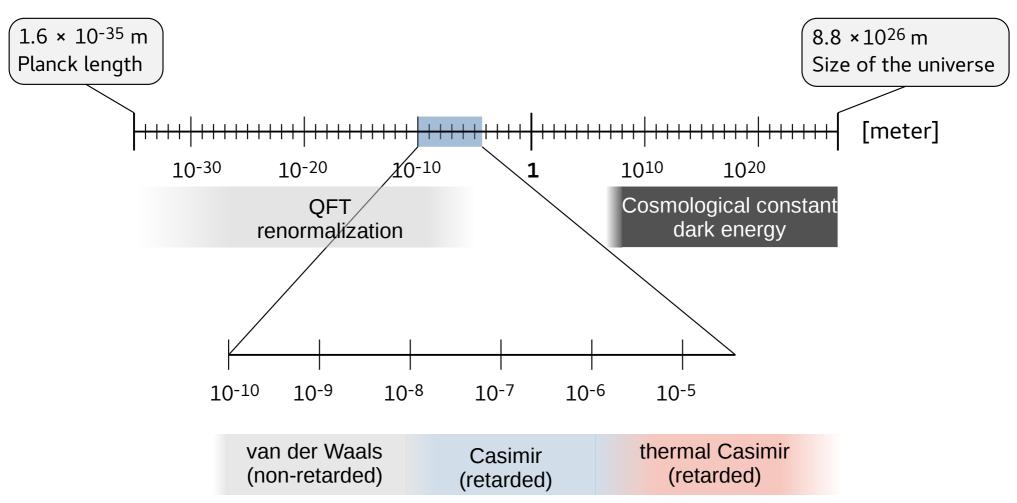
Cutoff at the Planck length:

$$\lambda_c \to 2\pi/\ell_P$$



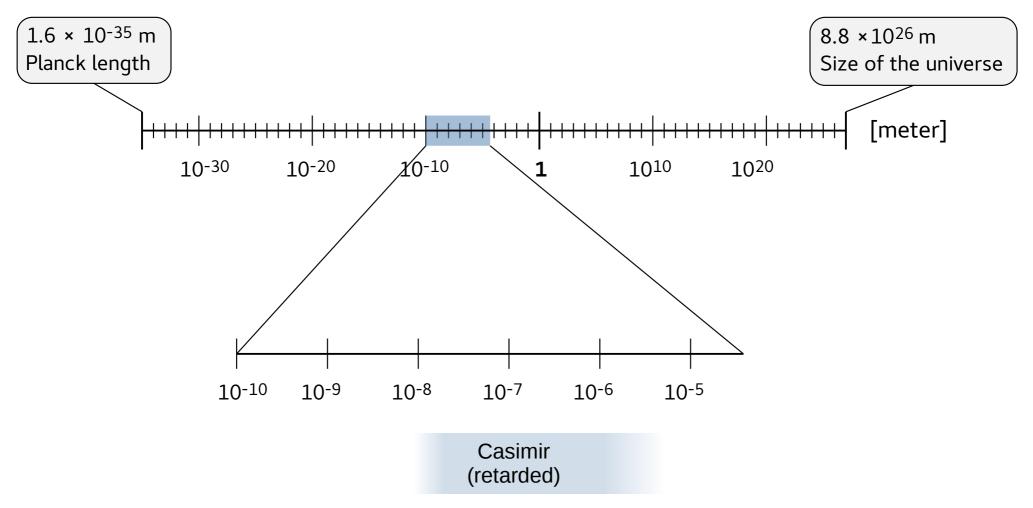
Vacuum energy at different scales

Scale of the universe:



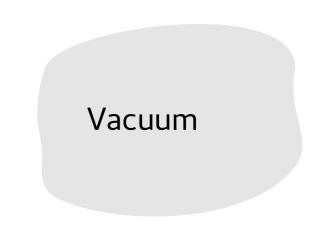
Small surface separations: Casimir effect

Scale of the universe:



The Casimir effect in a nutshell

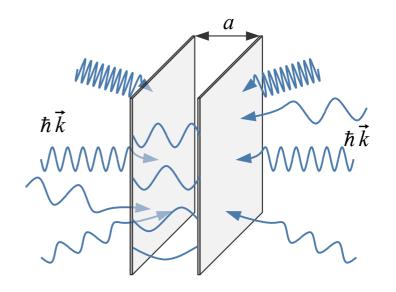
Intuitive:



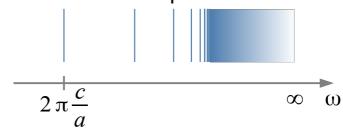
continuous spectrum

Energy: $E_{vac} = \infty$

Difference: $E_{||} - E_{vac} < 0$ finite



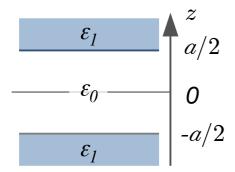
discrete spectrum



$$E_{||} = \infty$$

The Casimir effect in a nutshell

Reality (simplest possible case):



- materials with dielectric functions $\varepsilon_r(\omega)$
- extrapolate to zero frequency

$$\varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega}$$

 need to Wick-rotate by using the Kramers-Kronig relation

$$\varepsilon(i\xi) = 1 + \frac{2}{\pi} \int_0^\infty d\omega \frac{\omega \operatorname{Im} \varepsilon_r(\omega)}{\omega^2 + \xi^2}$$

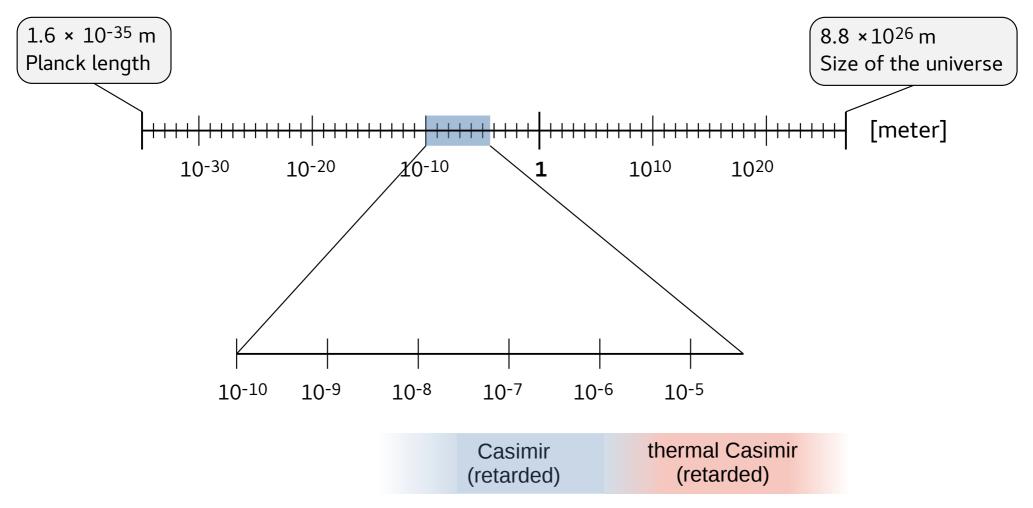
• Compute the energy (force): Lifshitz equation

$$\frac{E_{||}(a)}{A} = \frac{\hbar}{(2\pi)^2 c^2} \int_{1}^{\infty} dp \int_{0}^{\infty} d\xi \, p\xi^2 \left[\ln \frac{\Delta_{\perp}(i\xi, a)}{\Delta_{\perp, \infty}(i\xi)} + \ln \frac{\Delta_{||}(i\xi, a)}{\Delta_{||, \infty}(i\xi)} \right], \quad F(a) = -\frac{\partial E_{||}(a)}{\partial a}$$

$$\frac{\Delta_{\perp}(p, i\xi, a)}{\Delta_{\perp, \infty}(p, i\xi)} = 1 - \left(\frac{K_1 \varepsilon_0(i\xi) - K_0 \varepsilon_1(i\xi)}{K_1 \varepsilon_0(i\xi) + K_0 \varepsilon_1(i\xi)}\right)^2 e^{-2a\frac{\xi}{c}K_0}, \quad K_j(p, i\xi) = \sqrt{p^2 - 1 + \varepsilon_j(i\xi)}$$

Large surface separations: Thermal Casimir effect

Scale of the universe:



More fundamental: The nature of virtual photons

Dissipation at zero frequency or not? Drude vs. plasma debate

$$\begin{array}{ccc} \text{Drude} & \text{plasma} \\ \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + \mathrm{i} \gamma \omega} & \varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2} & \gamma & \text{relaxation frequency} \\ & & & & & & & & & & & \\ \end{array}$$

- Recent data suggests: No dissipation for virtual photons (short distance)!
 Bimonte et al, Phys. Rev. B 93, 184434 (2016)

 - Situation at large distance ($\gtrsim 2 \mu m$) unclear

More fundamental: The nature of virtual photons

Dissipation at zero frequency or not? Drude vs. plasma debate

Drude
$$\varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2 + \mathrm{i} \gamma \omega}$$

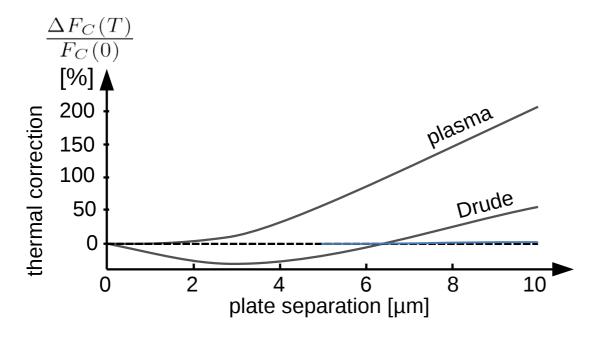
plasma
$$\varepsilon_r(\omega) = \varepsilon_0 - \frac{\omega_p^2}{\omega^2}$$

plasma frequency relaxation frequency (dissipation)

- Recent data suggests: No dissipation for virtual photons (short distance)!
 Bimonte et al, Phys. Rev. B 93, 184434 (2016)

 - Situation at large distance ($\geq 2 \mu m$) unclear

What is different at larger separation?



At *d*>10 μm less than 10⁻⁷ N/m²

Only possible with parallel plates.

M.. Bordag et al "Advances in the Casimir effect", Oxford Science Publications, (2009).

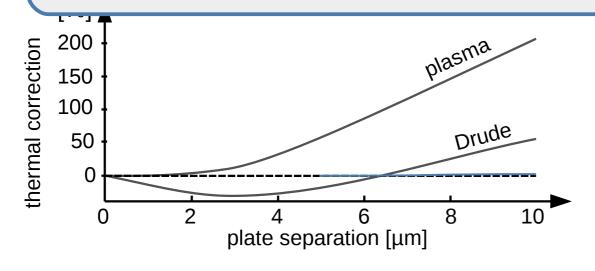
Review: Klimchitskaya et al., Int. J. Mod. Phys. Conf. Ser. 3(2011), 515

More fundamental: The nature of virtual photons

Dissipation at zero frequency or not? Drude vs. plasma debate

CANNEX Task List:

1. Force/Gradient measurements at separation >6 μm, vacuum, accuracy ~1pN/0.1 μN/m



At *d*>10 μm less than 10⁻⁷ N/m²

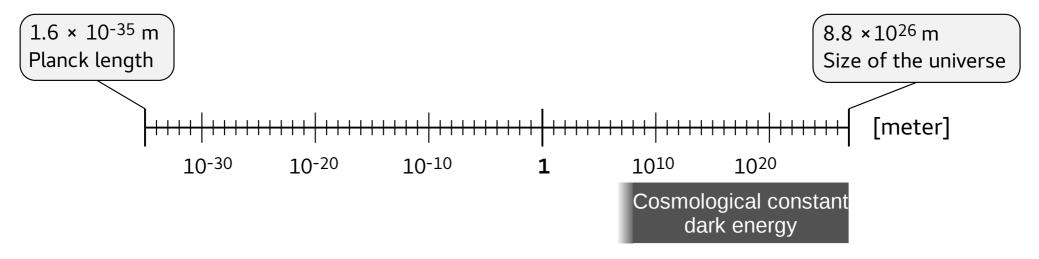
Only possible with parallel plates.

M.. Bordag et al "Advances in the Casimir effect", *Oxford Science Publications*, (2009).

Review: Klimchitskaya *et al*, Int. J. Mod. Phys. Conf. Ser. **3**(2011), 515

Very large scales: 1 AE to the size of the universe

Scale of the universe:



Very large scales: 1 AE to the size of the universe

dark matter

indication: grav. pull theory: unknown contents: unknown

part: 27%

dark energy

indication: acceleration

theory: unknown contents: unknown

part: 68%

visible universe

indication: em radiation, gravity

theory: $\mathcal{L}_{\mathrm{SM}}$

contents: particles of the SM

part: 5%

proposition:

add a new scalar particle with Yukawa coulings

J. Khoury and A.Weltman,

Phys. Rev. Lett. 93 (2004) 171104

New dynamics:

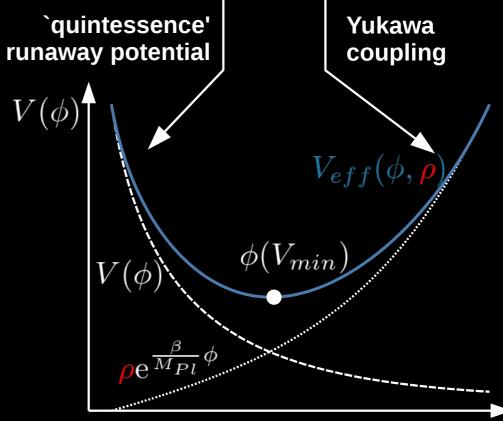
$$\mathcal{L}_{\phi} = \sqrt{-g} \left[\mathcal{R} \frac{M_{Pl}^2}{2} - \frac{(\partial \phi)^2}{2} - V(\phi) \right]$$

Yukawa couplings:

$$\mathcal{L}_{EM} = \frac{-e^{\frac{\beta_{\gamma}}{M_{Pl}}\phi}}{4} F_{\mu\nu} F^{\mu\nu}$$

Result 1: effective potential

$$V_{eff} = V(\phi) + \rho e^{\frac{\beta}{M_{Pl}}\phi}$$



New dynamics:

$$\mathcal{L}_{\phi} = \sqrt{-g} \left[\mathcal{R} \frac{M_{Pl}^2}{2} - \frac{(\partial \phi)^2}{2} - V(\phi) \right]$$

Yukawa couplings:

$$\mathcal{L}_{EM} = \frac{-e^{\frac{\beta_{\gamma}}{M_{Pl}}\phi}}{4} F_{\mu\nu} F^{\mu\nu}$$

Result 1: effective potential

Result 2: `Newtonian' potential:

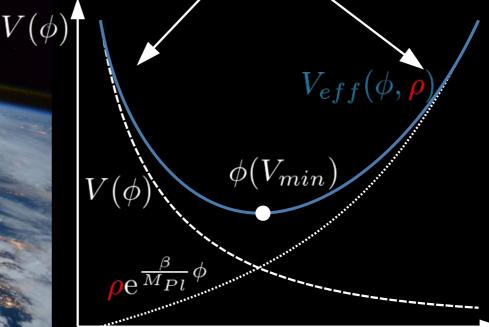
$$V_{eff} = V(\phi) + \rho e^{\frac{\beta}{M_{Pl}}\phi}$$

$$V(r) \propto \beta \frac{M}{M_{Pl}} \frac{\mathrm{e}^{-\sqrt{\partial V_{eff}(\rho)/\partial \phi^2}r}}{r}$$

`quintessence' runaway potential

Yukawa coupling

 $\rho \ll 1 \Rightarrow$ strong interaction



New dynamics:

$$\mathcal{L}_{\phi} = \sqrt{-g} \left[\mathcal{R} \frac{M_{Pl}^2}{2} - \frac{(\partial \phi)^2}{2} - V(\phi) \right]$$

Yukawa couplings:

$$\mathcal{L}_{EM} = \frac{-e^{\frac{\beta_{\gamma}}{M_{Pl}}\phi}}{4} F_{\mu\nu} F^{\mu\nu}$$

Result 1: effective potential

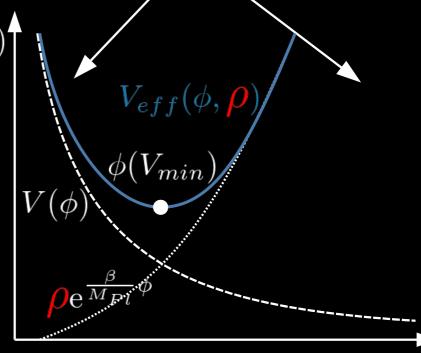
Result 2: `Newtonian' potential:

$$V(r) \propto \beta \frac{M}{M_{Pl}} \frac{\mathrm{e}^{-\sqrt{\partial V_{eff}(
ho)/\partial \phi^2 r}}}{r}$$

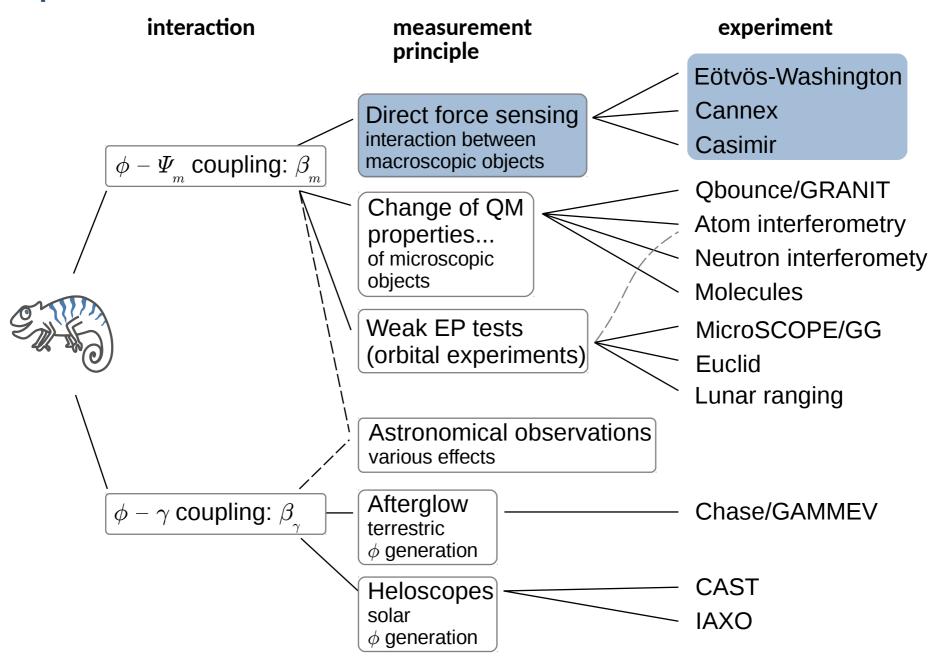
$$V_{eff} = V(\phi) + \rho e^{\frac{\beta}{M_{Pl}}\phi}$$

`quintessence' runaway potential Yukawa coupling

Adaptivity: Chameleon force



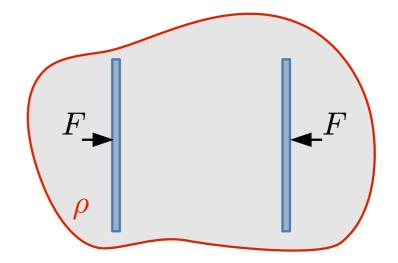
Prospects for chameleon detection



Principle:

Measure at **constant plate separation** the change in the force for **different gas density** ρ Brax, van de Bruck, Davis, Shaw, Iannuzzi, *PRL.* **104,** 241101(2010)

$$F(\rho) = F_{ES} + F_C + F_G$$
$$\Delta F(\rho) = F(\rho) - F(0)$$

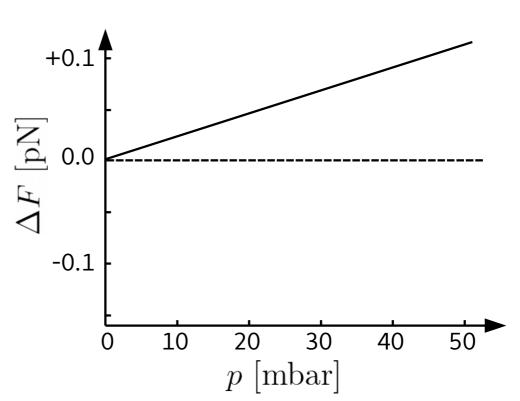


Assumptions:

- Xe gas
- plate area 1 cm²

•
$$V(\phi) = \Lambda^4 \left(1 + \frac{\Lambda^n}{\phi^n} \right)$$

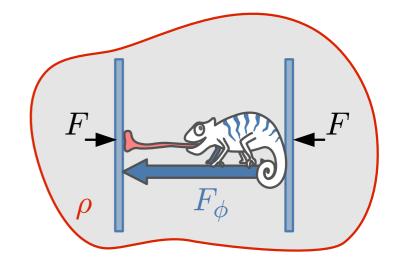
• $\Lambda=$ 2.4 meV



Principle:

Measure at **constant plate separation** the change in the force for different gas density ρ Brax, van de Bruck, Davis, Shaw, Iannuzzi, PRL. 104, 241101(2010)

$$F(\rho) = F_{ES} + F_C + F_G + F_{\phi}$$
$$\Delta F(\rho) = F(\rho) - F(0)$$

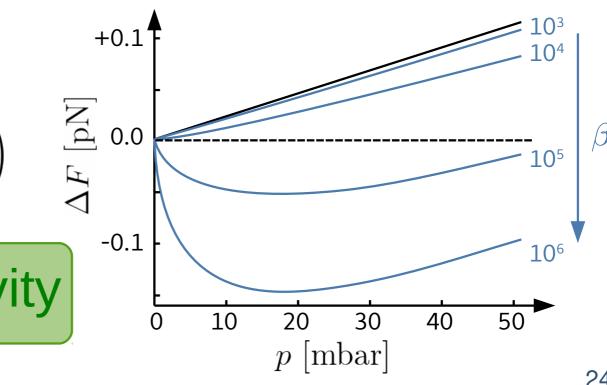


Assumptions:

- Xe gas
- plate area 1 cm²

•
$$V(\phi) = \Lambda^4 \left(1 + \frac{\Lambda^n}{\phi^n} \right)$$

• $\Lambda=$ 2.4 meV

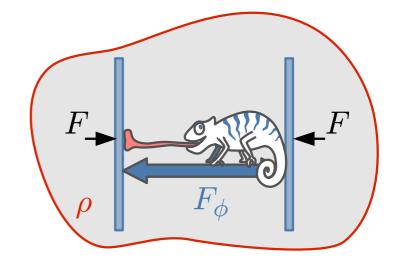


high sensitivity

Principle:

Measure at **constant plate separation** the change in the force for different gas density ρ Brax, van de Bruck, Davis, Shaw, Iannuzzi, PRL. 104, 241101(2010)

$$F(\rho) = F_{ES} + F_C + F_G + F_{\phi}$$
$$\Delta F(\rho) = F(\rho) - F(0)$$

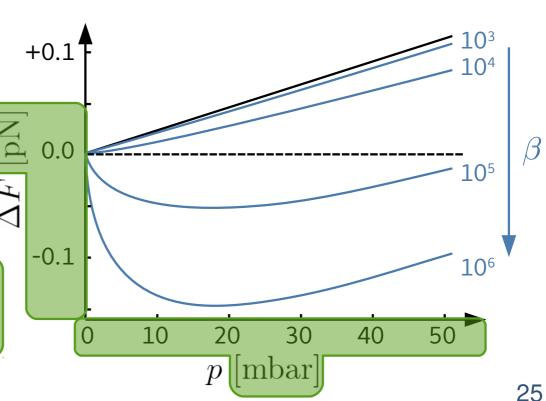


Assumptions:

- Xe gas
- plate area 1 cm²

•
$$V(\phi) = \Lambda^4 \left(1 + \frac{\Lambda^n}{\phi^n} \right)$$

• $\Lambda=$ 2.4 meV



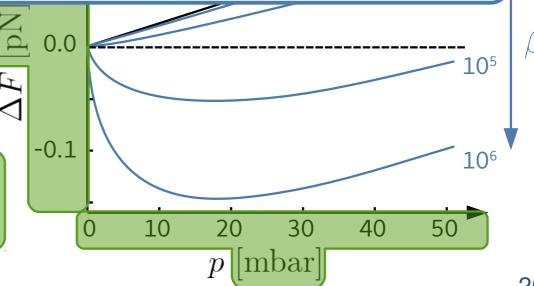
CANNEX Task List:

- 1. Force/Gradient measurements at separation >6 μm, vacuum, accuracy ~1pN/0.1 μN/m
- 2. Force measurements at constant separation, modulated gas density, precision <0.1 pN

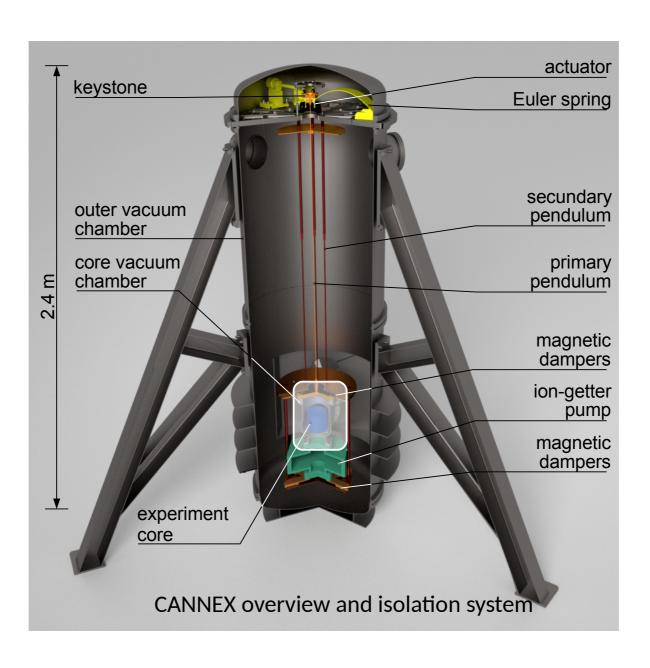
piate area 1 cm²

•
$$V(\phi) = \Lambda^4 \left(1 + \frac{\Lambda^n}{\phi^n} \right)$$

• $\Lambda=$ 2.4 meV



Setup (located at VU Amsterdam)

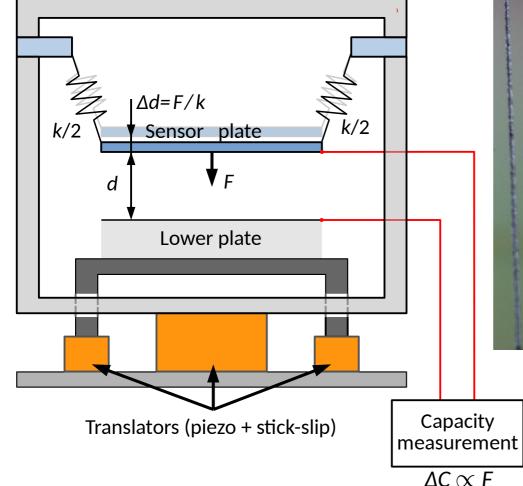


Force detection (one year ago)

Principle:

Implementation: upper plate (sensor)

Measure capacitively the displacement of a spring.



Custom-fabricated Silicon membrane

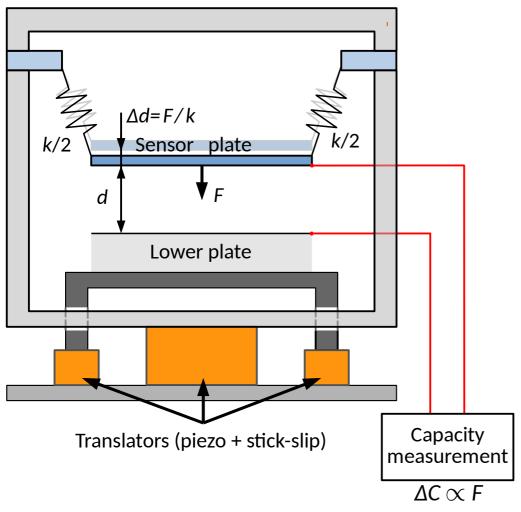
Force constant: 0.22 ± 0.02 N/m Disk area: 1.0834 ± 0.0005 cm²

Waviness(disk) < 15 nm (whole area)

Force detection

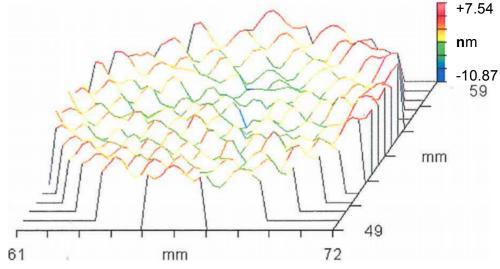
Principle:

Measure optically the displacement of a spring.



Implementation lower plate:





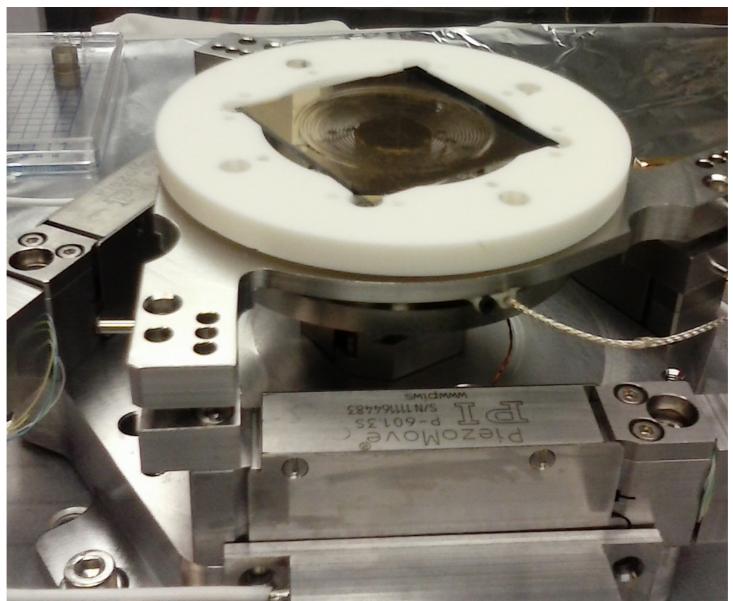
Custom-fabricated SiO₂ disk

Thickness 6 mm
Disk area 1 cm²

Waviness(disk) < 18 nm (whole area)

Force detection

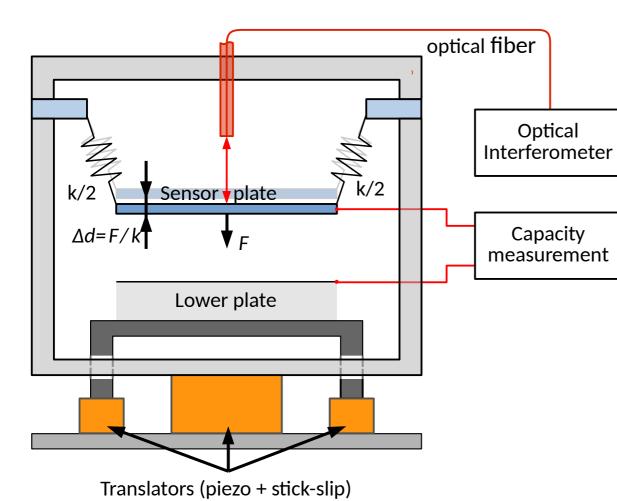
Implementation: core



Force detection

Principle:

optically Measure capacitively the displacement of a spring.



Casimir:

resonance frequency shift

$$\omega_0 = \sqrt{\frac{k}{m} - \frac{1}{m} \frac{\partial F(d)}{\partial d}}$$

Chameleon:

adiabatic pressure modulation

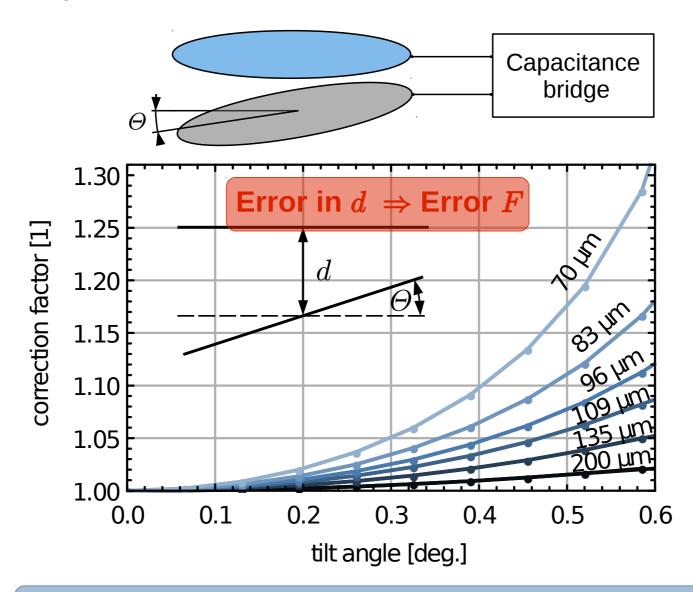
$$\Delta F_{\phi} \approx \frac{\partial F_{\phi}(p)}{\partial p} \Delta p$$

Homodyne detection

→ Able to measure below the thermal noise level

Parallelism: Importance

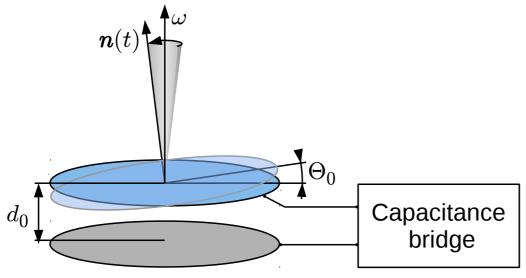
parallel plates with small tilt Θ



Target 0.1 pN: max deviation 0.1 µrad

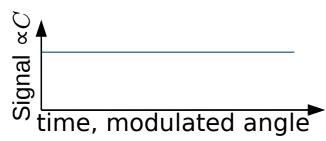
Parallelism control: Principle

assume: parallel plates



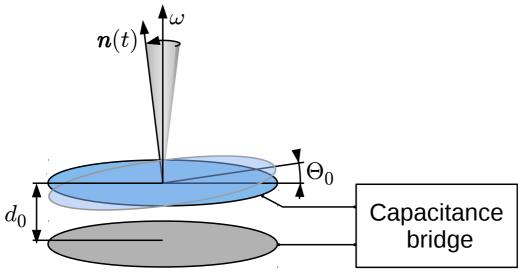
$$\Theta(t) = \Theta_0 = \text{const.}$$

$$C(t) = \varepsilon_0 \frac{R^2 \pi}{d} \left[1 + \left(\frac{R}{2d} \Theta(t) \right)^2 \right] + \mathcal{O}\left(\Theta(t)^4\right)$$

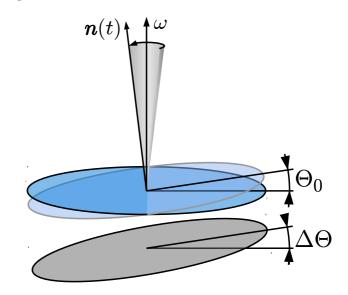


Parallelism control: Principle

assume: parallel plates



plates with relative tilt $\Delta\Theta$



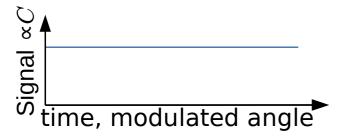
$$\Theta(t) = \Theta_0 = \text{const.}$$

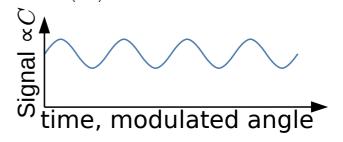
$$C(t) = \varepsilon_0 \frac{R^2 \pi}{d} \left[1 + \left(\frac{R}{2d} \Theta(t) \right)^2 \right] + \mathcal{O}\left(\Theta(t)^4\right)$$

$$\Theta(t) = \Theta_0 = \text{const.}$$

$$\Theta(t) = \Theta_0 + \Delta\Theta \cos \omega t$$

$$C(t) = \varepsilon_0 \frac{R^2 \pi}{d} \left[1 + \left(\frac{R}{2d} \Theta(t) \right)^2 \right] + \mathcal{O}\left(\Theta(t)^4\right) \quad C(t) \approx \varepsilon_0 \frac{R^2 \pi}{d} \left(1 + \left(\frac{R}{2d} \right)^2 \left(\Theta^2 + \Delta\Theta^2 + 2\Theta\Delta\Theta \cos \omega t \right) \right]$$





Idea: Use feedback circuit to compensate $\Delta\Theta$

Parallelism control: Performance

Proof of principle/preliminary results

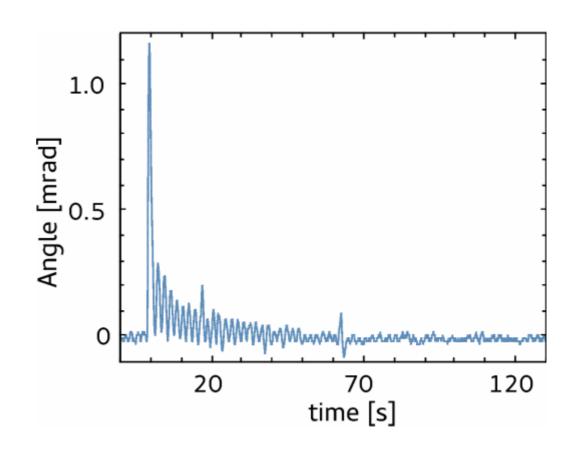
Step response

under very bad conditions

- First test
 - in air
 - without anti-vibration
 - with thick testing plates
- 6 μm single-sided step
- nominal distance 90 µm

Long-term stability

- Same conditions
- 3 µrad(RMS)



Target

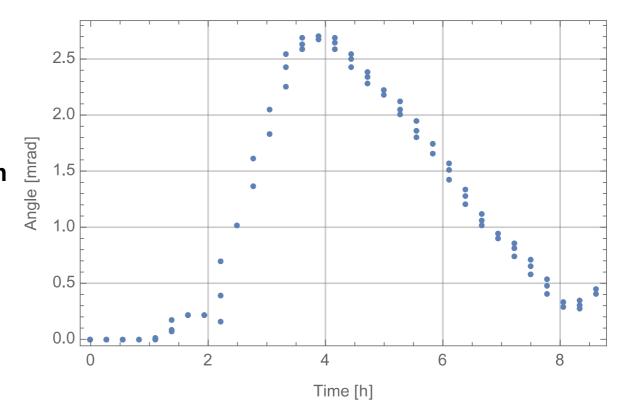
- Assumptions: vacuum, anti-vibration
- 0.1 µrad (~1 nm total tilt)

Parallelism control: Performance

Proof of principle/preliminary results

Practical operation

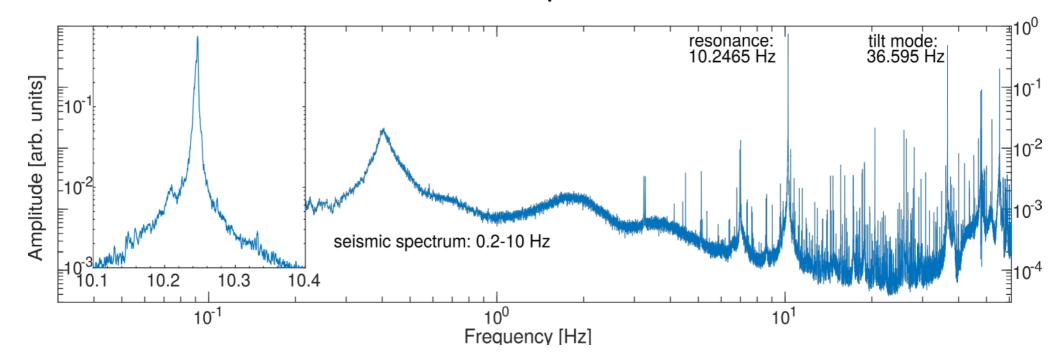
- · Works as expected
- currently
 ~200 μrad long term



Limiting factor: Vibrations, Drift

Force detection

Sensor characterization: noise spectrum



Custom-fabricated Silicon membrane

Force constant: 0.22±0.02 N/m

Eigenfrequency: $10.2465 \text{ Hz} \pm 0.1 \text{ mHz}$

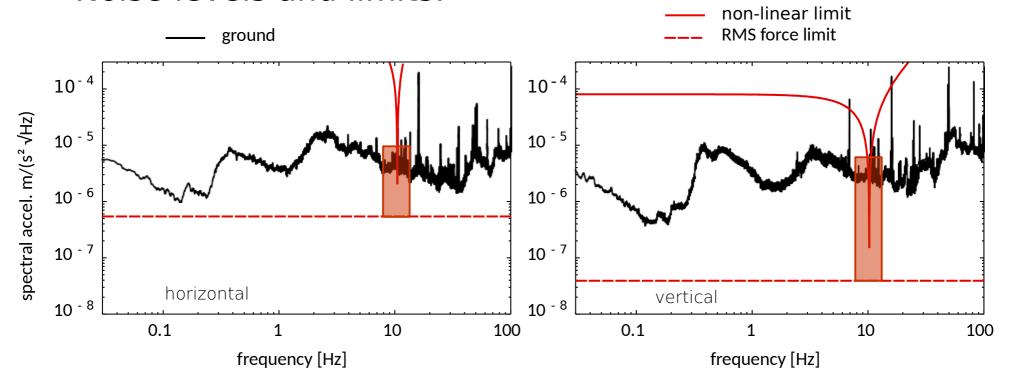
Q-factor: 5 k—15 k

Disk area: 1.0834 ± 0.0005 cm²

Waviness(disk) < 15 nm (whole area)

Vibrations 1: The background

Noise levels and limits:



2 limits:

1: non-linearities:
$$F(d + \delta d) \approx F(d) + \delta d\partial_d F(d) + 1/2 \delta d^2 \partial_d^2 F(d)$$

2: equivalent RMS noise:
$$\delta a_{n,RMS}(F) \gtrsim \int_{f_0 - f_{BW}/2}^{f_0 + f_{BW}/2} \delta a_n \approx \sqrt{f_{BW}} \delta a_n(f_0)$$
 f_{BW} < 0.1 pN @ d=10 µm

f_{BW} ~ 5 mHz

Vibrations 2: The unlucky first system

single

Vertical seismic:

- GAS* filter
- $_{ullet}$ active \mathcal{H}_{∞} feedback

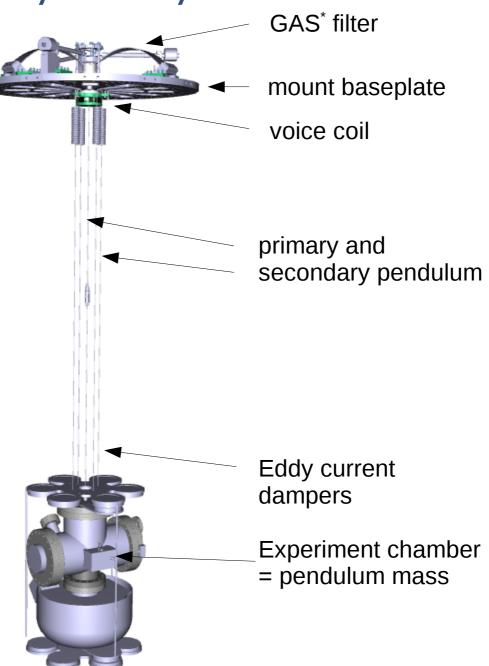
still missing

Horizontal seismic:

- double-pendulum
- Eddy current dampers

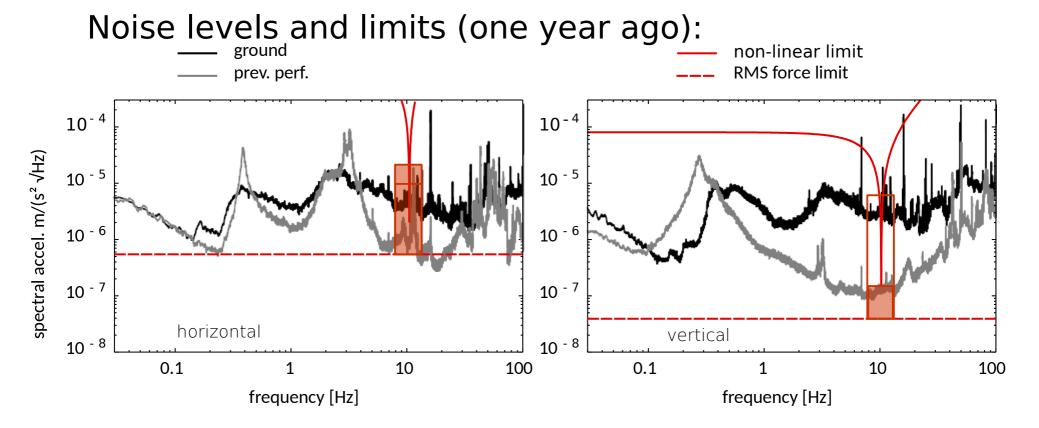
Acoustic:

 rigid all-enclosing vacuum chamber 10⁻⁵ mbar (not shown)



*Geometric anti-spring

Vibrations 2: The unlucky first system



New problem: resonances

⇒ Could not approach

separations $< 50 \mu m$

Vibrations 3: The hopeful update:

Vertical seismic:

- GAS* filter (Euler springs)
- active feedback

Horizontal seismic:

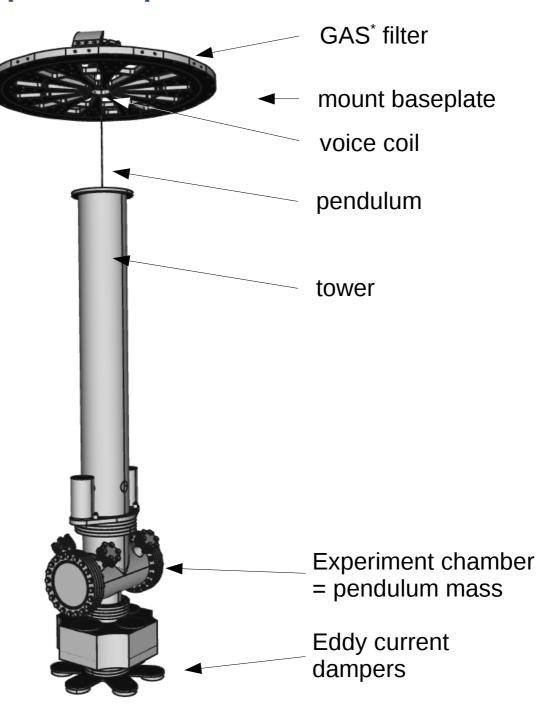
- single-pendulum thinner wire
- Eddy current dampers

Tilt seismic:

- tower on core chamber
- Eddy current dampers

Acoustic:

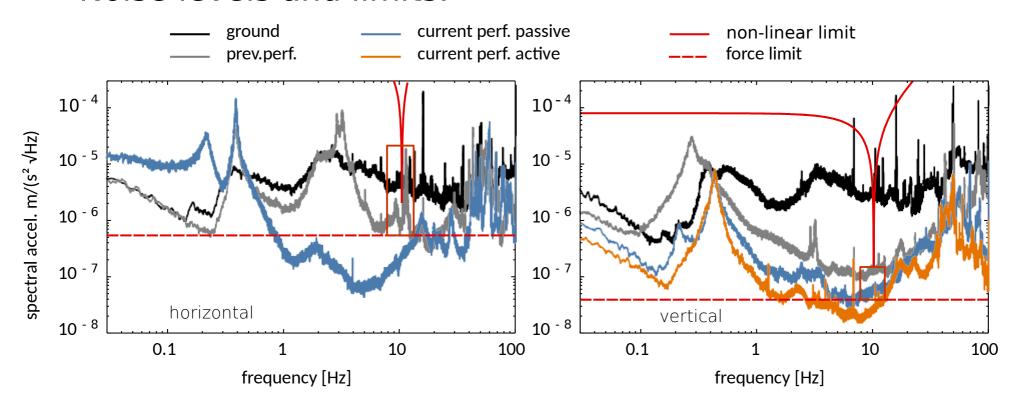
 rigid all-enclosing vacuum chamber 10⁻⁵ mbar (not shown)



^{*}Geometric anti-spring

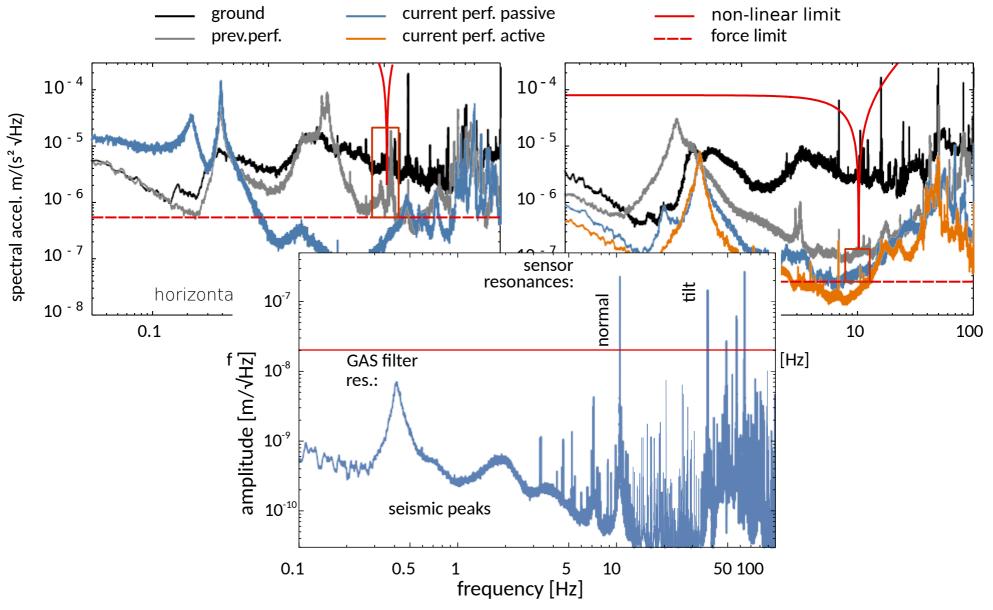
Vibrations 3: The hopeful update

Noise levels and limits:



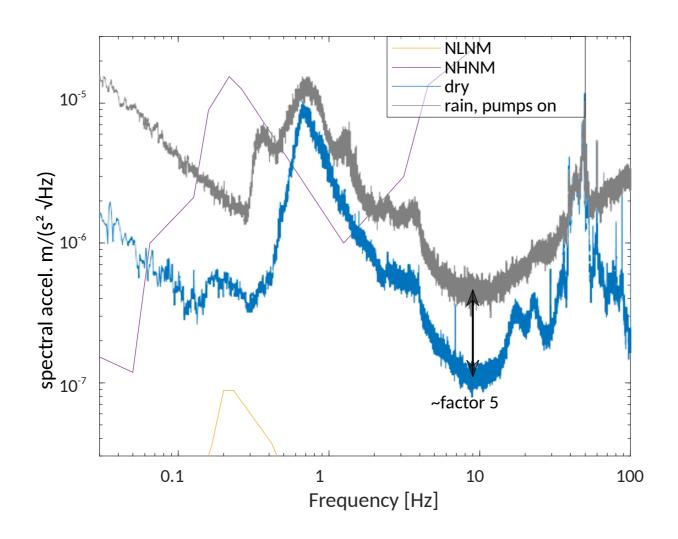
Vibrations 3: The hopeful update

Noise levels and limits:

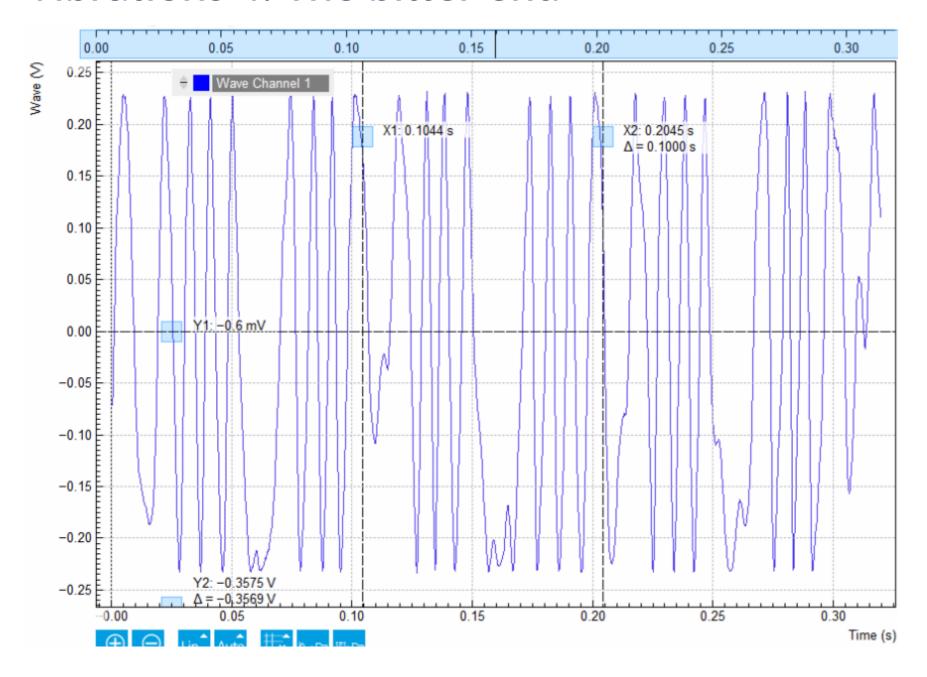


Still an improvement of 30 required (depending on the background)

Vibrations 4: The bitter end



Vibrations 4: The bitter end



Remote operation

Setup completely automized.

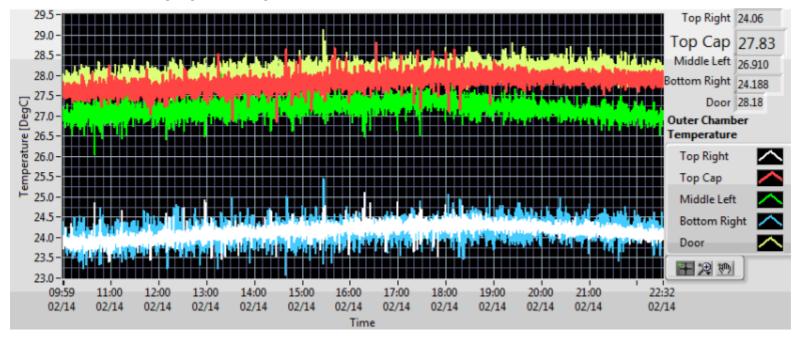
Data acquisition without physical access to the setup. What can go wrong?

Remote operation

Setup completely automized.

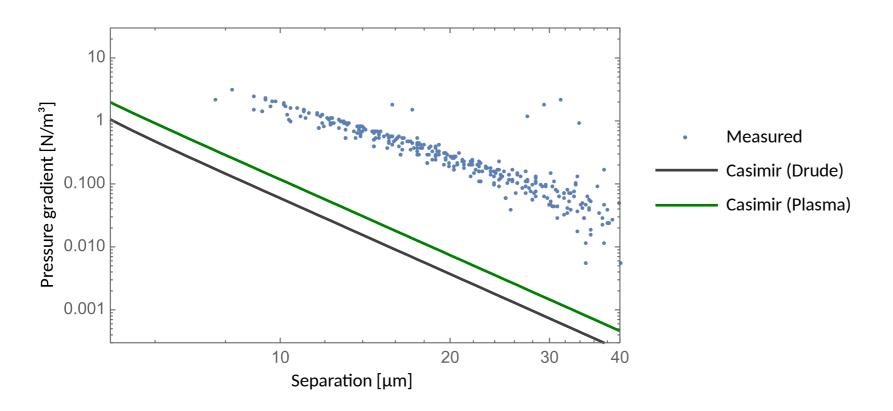
Data acquisition without physical access to the setup. What can go wrong?

Rain water pipe rupture → Lab flooded → Thermal controls broken



Required stability (sensor spring constant) in sensor spring constant: < 10 mKActual stability $\sim 500 \text{ mK}$

However, there is hope



First evaluation. Preliminary!

Calibrated / Measured Parameters

Parallelism (calibrated): < 200 µrad

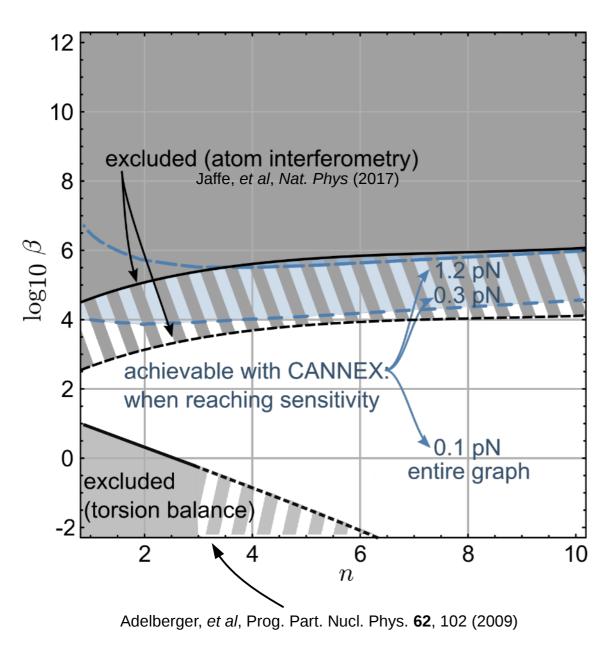
Residual electrostatic potential: $< 8 \mu V$

Drift < 500 nm/h

Total thermal drift error $< 2.5 \mu m/run$

What could we reach?

New limits...



Assumptions:

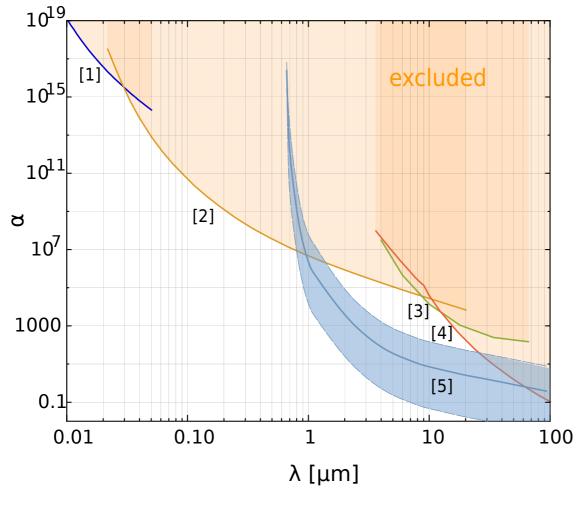
- $V(\phi) = \Lambda^4 \left(1 + \frac{\Lambda^n}{\phi^n} \right)$
- Active vibration insulation
 > 30dB at 1 Hz
- Sensitivity limited only by
 - 1) Brownian sensor noise
 - 2) C-bridge electronic noise

Room for improvements:

- Even better vibration insulation (6 axis, two-staged)
- Optical readout
- Sensor design with larger mass

What could we reach?

New limits possible... $\alpha = 2\beta^2$ $\lambda = m_{\phi}^{-1}$



- [1] Sushkov et al, PRL **107**, 171101 (2011)
- [2] Chen et al, PRL, **116**, 221102 (2016)
- __ [3] Gerarci er al, PRD 78, 022002 (2008)
 - _ [4] Kapner et al, *PRL*, **98**, 021101 (2007)
- [5] Cannex (estimated) d=10 μm, 0.1pN

Assumptions:

•
$$V(\phi) = -G \frac{m_1 m_2}{d} \left(1 + \alpha e^{-d/\lambda} \right)$$

- Sensitivity limited only by
 - 1) Brownian sensor noise
 - 2) C-bridge electronic noise
- PRELIMINARY!

Room for improvements:

- Even better vibration insulation (6 axis, two-staged)
- 3 interferometer optical readout
- Sensor design with larger mass

Outlook & Conclusion

Refurbished Cannex:

Improvements:

6 axis active feedback system to cancel resonances

Fully optical measurements

Pressure modulation system

Measurements:

Frequency shift force measurements 10-30 µm, 1 pN

Pressure modulation measurement at 10 µm, 0.1 pN

Possible Results:

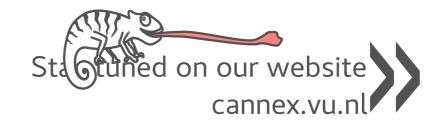
Exclusion of Chameleon forces $n \le 10$, $\beta > 10^{-2}$

Indication if virtual photons behave differently from real ones

Possibly new limits on Yukawa forces

Acknowledgments

Thank you for your attention!



VU:

René Sedmik

Lex v. d. Gracht

Rogier Elsinga

Nikhef:

Alessandro Bertolini

Paris Saclay:

Philippe Brax

and

