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Outline

• Applications of cold-atom inertial sensors

• The SYRTE cold-atom gyroscope

• Interleaved operation without dead times

• Gyroscope sensitivity and stability
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Applications of cold-atom inertial sensors

• Navigation : 

 onboard accelerometers, gyroscopes, gravimeters, gradiometers

Six-axis inertial sensor

Canuel et al, PRL 97, 010402 (2006)

Navigation with a cold-atom gravimeter:

Bidel et al, Nature Communications 9, 627 (2018)

The duration of navigation is given by the stability of the sensor.
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Applications of cold atom inertial sensors

• Geosciences: monitoring global phenomena (e.g. 𝛺𝐸𝑎𝑟𝑡ℎ(𝑡),  𝑔(𝑡))

Absolute gravimetry

Fang et al, 

arXiv:1601.06082

(SYRTE, Paris)

Freier et al, 

arXiv:1512.05660

(HU Berlin)

Best atomic gravimeters: stability < 10−10 𝑔 and accuracy of ∼ 3 × 10−9 𝑔
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Applications of cold atom inertial sensors

• Fundamental physics

Zhou et al, PRL (2015)

Aguilera et al, CQG (2014)

Rosi et al, Nature Commun. (2017) Bouchendira et al, PRL (2011)

6 × 10−10 relative accuracy on α

Universality of Free Fall Test of QED (measurement of recoil velocity)

Accuracy ∼ few 10−9 on 𝛿𝑎/𝑎
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Applications of cold atom inertial sensors

• Gravitational wave astronomy (∼ 𝟎. 𝟏 − 𝟏𝟎 Hz band)

Hogan et al, PRA (2016) 

Chaibi et al, 2016 PRD (2016)

 Use free falling atoms instead of suspended mirrors to detect changes in laser phase
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Principle of Atom Interferometry

• Analogy with a Mach-Zehnder optical interferometer

• Use laser pulses to coherently split and recombine an atomic wave

Two-wave interference :

𝑃 = 𝑃0 + 𝐴 cos(ΔΦ)
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Stimulated Raman transitions

Momentum transfer
Laser phase difference imprinted on the atoms

𝑘𝑒𝑓𝑓 = 𝑘1 + 𝑘2 ∼ 0.7 𝑐𝑚/𝑠

9.2 GHz

Cesium atom, 𝐷2 line @ 852 nm
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Interferometer phase

Sampling of the atomic trajectory with a laser ruler at 3 different times.
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The SYRTE cold-atom gyroscope

Dutta et al., PRL 116, 183003 (2016)
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4-light pulse atom interferometer

B. Canuel et al., PRL 97, 010402 (2006)
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4-light pulse gyroscope
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800 ms interrogation time  𝟏𝟏 𝒄𝒎𝟐 Sagnac area 

1 𝑟𝑎𝑑. 𝑠−1 rotation signal  5 × 106 𝑟𝑎𝑑 phase shift

(Earth rotation rate  200 rad phase shift)

Scale factor of the gyroscope

Sagnac area : 𝐴 =
1

4

ℏ𝑘𝑒𝑓𝑓𝑇3𝑔

𝑀



MOT

detection

Raman beams

58 cm

• 4 × 107 Cesium atoms @ 1.2 µK 

launched vertically at 5 𝑚. 𝑠−1

• Relative alignement of the beams

< 2 µrad

• passive isolation platform (>0.4 Hz)



15Vibration isolation platform

Vibration noise rejection

Vibration noise ∼ several rad rms
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seismometers

Vibration isolation platform

Measured 
vibrations

Calculated 
phase

AI transfer 
function

Merlet et al., Metrologia 46, 87–94 (2009)

Vibration noise rejection
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High sampling rate gyroscope 

without dead-times

I. Dutta et al., PRL 116, 183003 (2016)

D. Savoie, M. Altorio et al, in preparation



18

Dead times in quantum sensors

• Sequential operation of cold atom interferometers

Cooling AI Detection Cooling AI Detection

Cycle time 𝑇𝑐

Dead time 𝑇𝐷

…

Dead times  (inertial) noise aliasing (Dick effect) + loss of information 

 prevents from reaching the full potential of atom interferometers.
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Continuous (zero dead time) sensor

Joint interrogation scheme: prepare the cold atoms and operate the AI in parallel
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Operation in the linear regime

Linear range
Max. sensitivity

Low sensitivity
Equivalent dead time

Low sensitivity
Equivalent dead time

Vibration phase (rad)
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seismometers

Measured 
vibrations

Calculated 
phase

AI transfer 
function

J. Lautier et al, App. Phys. Letters 105 144102 (2014)

Vibration noise rejection

Feed-forward

AI phase
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Operation in the linear regime

Joint mode + linear range  sensor effectively operating without dead times.
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Higher bandwidth, high sensitivity

In previous works, the bandwidth was increased by reducing the interrogation time

 Important drop of sensitivity as Φ ∝ 𝑇2

Rakholia et al, Phys. Rev. Applied 2, 054012 (2014)
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Higher bandwidth, high sensitivity

In previous works, the bandwidth was increased by reducing the interrogation time

 Important drop of sensitivity as Φ ∝ 𝑇2

We instead interleave several sequences of long-T interferometers

 𝑇𝑐 = 2𝑇/3 = 267 𝑚𝑠 (≃ 4 𝐻𝑧 cycling frequency)



Gyroscope stability



Gyroscope stability

Detection noise

Record short term sensitivity : 3 × 10−8 𝑟𝑎𝑑. 𝑠−1. 𝐻𝑧−1/2

𝜏−1

𝜏−1/2



Gyroscope stability

Record short term sensitivity : 3 × 10−8 𝑟𝑎𝑑. 𝑠−1. 𝐻𝑧−1/2

Efficient averaging of vibration noise due to fast sampling
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Long-term stability and accuracy

• Record long term stability : 2 × 10−10 𝑟𝑎𝑑. 𝑠−1 after ∼ 3 × 104 𝑠 of integration

time (main limitation: imperfect atom’ trajectory)

 For the first time, a cold-atom gyroscope competes with state-of-the-art laser 

gyroscopes in terms of sensitivity and stability.

• Ongoing evaluation of the gyroscope accuracy for the measurement of the Earth

rotation rate at Paris Observatory

 Current limitation : 1° uncertainty in the pointing of geographic North

 Experiment on a turntable.

 Goal: measurement with 1 × 10−9 𝑟𝑎𝑑. 𝑠−1 accuracy.
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Conclusions

• Several applications of cold atom inertial sensors, when accuracy and/or  long-term

stability are required

• Dead times and low sampling frequencies strongly limit the potential impact in field

applications or for monitoring AC (∼ few Hz) signals

• We demonstrated a zero dead-time gyroscope with 4 Hz sampling frequency

• State of the art sensitivity |stability: 3 × 10−8 𝑟𝑎𝑑. 𝑠−1. 𝐻𝑧−1/2 | 2 × 10−10 𝑟𝑎𝑑. 𝑠−1

 Competes with the best fiber-optic gyroscopes

• Interleaving : generic technique for other sensors (gravimeter, gradiometer).
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Rabi oscillation between

|f> and |e>

Pulse duration

1

1/2

“π/2” pulse = beam splitter

“π” pulse = mirror

Transition

Probability f → e

Interferometer building blocks
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Photons versus atoms

C.R. Physique 15, 875-883 (2014) 
arxiv:1412.0711

Sagnac effect
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Shot noise (𝜎𝜙 ≃ 1/ 𝑛): 

• 10−9 𝑟𝑎𝑑/ 𝐻𝑧 for photons

• 10−3 𝑟𝑎𝑑/ 𝐻𝑧 for atoms

Photons versus atoms

-6 orders of magnitude

C.R. Physique 15, 875-883 (2014) , arxiv:1412.0711

+11 - 2 = 9 orders of magnitude

Sagnac effect
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Experimental setup

• 4 × 107 Cesium atoms @ 1.2 µK launched

vertically at 5 𝑚. 𝑠−1

• Relative alignement of the beams < 2 µrad

• Mitigation of vibration noise

passive isolation platform (>0.4 Hz)
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Efficient averaging of vibration noise

1. Rotation noise is canceled from shot to shot by the joint measurements
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Efficient averaging of vibration noise

1. Rotation noise is canceled from shot to shot by the joint measurements

2. Acceleration noise at frequencies <
1

𝑇𝑐
≃ 4 𝐻𝑧 is correlated from shot to shot

Interleaving allows to reduce the effect of vibration noise, which is the most

important noise contribution in cold-atom inertial sensors.
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Long-term stability and accuracy
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iXblue ultimate-performance Fiber-Optic Gyroscope (FOG)

5 × 10−5 °/ℎ𝑜𝑢𝑟 = 2.5 × 10−10 𝑟𝑎𝑑. 𝑠−1
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Details of the sequence
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Perspectives

• Gravitational wave detection (MIGA project, France) 

RG, 
arxiv: 1611.09911LISA

https://arxiv.org/abs/1611.09911
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Perspectives

• Gravitational wave detection (MIGA project, France) 

Huge challenge for cold atom physics !

• 1012 atoms per second, 20 dB squeezing

• 𝑛 = 1000 momentum transfers of ℏ𝑘

• ∼ 1 𝑛𝐾 temperature

 10−20 / 𝐻𝑧 strain noise



Efficient noise averaging

Ω =
θ4 − θ1

2𝑇
f =

Φ2 − Φ1

2π𝑇

Gryoscope Fountain Clock

Inertial Noise in Gyro

=
Local Oscillator Noise in Clock

Classical
Trajectory

4 Pulse 2 Pulse

θ1

Ω

θ4 Φ2Φ1

H1

H2

Co-propagating
pulses

Counter-propagating
pulses

Proof of principle with a 2-light pulse interferometer



47

Rejection of vibration noise

Correlation of the AI with the mechanical accelerometers:

SNR limited by detection noise
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Parasitic interferometers

Stockton et al, PRL 107, 133001 (2011)

Introduce an assymetry to avoid recombination of parasitic interferometers
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Limitation to 1/𝜏 due to the AI non-linearity



State of the art of gyro technologies

24 novembre 2017

Fiber optics gyro 

iXBlue FOG 200, navigation
Short term : 6x10-8 rad.s-1.Hz-1/2

Long term : 2x10-10 rad.s-1 in 8 days 
Gyrolaser

G-Ring 16 m², geoscience
Short term : 3x10-11 rad.s-1.Hz-1/2

Long term : 6x10-13 rad.s-1 en 2 h

Atomic beam gyro

Cold-atom gyroscope

Stanford, [Durfee 2006]
Long terme : 5x10-10 rad.s-1 in 2000s

Gyro I  SYRTE : 1x10-8 rad.s-1 à 
2000 s

SYRTE large area gyroscope
Short term : 3x10-8 rad.s-1.Hz-1/2

Long term : 2x10-10 rad.s-1 in 8 h


