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1. Introduction

HYDROGENIC systems such as H, He+ or µH are being
considered for low-energy tests of the Standard model

and for determination of fundamental constants. Compari-
son of accurate experimental values for transition frequen-
cies with theoretical predictions gives us information about
the extent to which energy levels can by predicted by the
Standard Model. Any discrepancy could be signal of new
physics or incorrect values of physical constants. One can
reverse the problem and use the comparison of experi-
mental values with theoretical predictions to extract values
of fundamental constants. Example of this is comparison
of the Lamb shift in muonic hydrogen with electronic one.
This provides us with significantly different values of proton
charge radius √

〈r2p〉eH = 0.8770(45) fm√
〈r2p〉µH = 0.8409(4) fm

Present electronic and muonic hydrogen theory allows ac-
curate determination of the proton charge radius from mea-
sured transition frequencies, and the comparison between
electronic and muonic results stands as a low-energy test
of the Standard Model. Purpose of our calculations is to
bring the high accuracy achieved for hydrogenic levels also
to few-electron atomic and molecular systems and in par-
ticular for helium and helium-like ions.

2. Method

Our calculation is based on the Nonrelativistic QED
(NRQED) expansion. The basic assumption of the NRQED
is that E can be expanded in a power series of the fine-
structure constant α,
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where m/M is the electron-to-nucleus mass ratio and the
expansion coefficients E(n) may contain finite powers of
lnα. The coefficients E(i)(m/M) are further expanded in
powers of m/M ,
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The expansion coefficients in Eqs. (1) and (2) can be ex-
pressed as expectation values of some effective Hamiltoni-
ans with the nonrelativistic wave function.
The first term of the NRQED expansion of the bound-state
energy, E(2,0) ≡ E, is the nonrelativistic eigenvalue of the
Schrödinger-Coulomb Hamiltonian in the infinite nuclear
mass limit, which for helium-like atoms reads
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where r ≡ r12. The finite nuclear mass corrections to E(2,0)

can be obtained perturbatively. The next term of the ex-
pansion, E(4), is the leading relativistic correction induced
by the Breit Hamiltonian H(4) and the corresponding recoil
addition δMH

(4). In the next-order contribution, E(5), the
QED corrections start to appear. Finally, the next expan-
sion term E(6) is the higher-order QED correction, whose
general form is

E(6) = 〈H(6)〉 +
〈
H(4) 1

(E −H)′
H(4)

〉
. (4)

The recoil correction δMH
(6) was calculated by us in

Refs. [1, 2].

3. Transition frequencies and isotope shift in helium

We calculated [1, 2] the binding energies to order α6m2/M ,
including also the higher-order recoil corrections E(2,3) and
E(4,2) [3]. The uncertainty of the total energies is exclusively
defined by the α7m contribution, whose complete form is
unknown at present. The results for various transitions in
4He are presented in the Table 1.

Table 1: Comparison of the theoretical predictions for var-
ious transitions in 4He with the experimental results, in
MHz.

Theory Experiment
11S 5 945 204 173 (36) 5 945 204 212 (6)
21S 960 332 038.0(1.9) 960 332 041.01(15)
11S–21S 4 984 872 135 (36) 4 984 872 315 (48)
23S–33D1 786 823 848.4 (1.3) 786 823 850.002 (56)
21S–21P1 145 622 891.5(2.3) 145 622 892.886 (183)
21P1–31D2 448 791 397.4(0.4) 448 791 399.113 (268)
23P0–33D1 510 059 754.0 (0.7) 510 059 755.352 (28)
23P–23S 276 736 495.4 (2.0) 276 736 495.649 (2)
23S–21P1 338 133 594.9 (1.4) 338 133 594.4 (5)
21S–23S 192 510 703.4 (0.8) 192 510 702.148 72(20)

The isotope shift is defined, for the spinless nuclei, as the
difference of the transition frequencies of different isotopes
of the same element. In order to separate out the effects
of the nuclear spin in 3He, the isotope shift of the 2S and
2P levels is defined as the shift of the centroid energies,
which are the average over all fine and hyperfine energy
sublevels,

E(22S+1L) =

∑
J,F (2F + 1)E(22S+1LJ,F )

(2 I + 1) (2S + 1) (2L + 1)
, (5)

where 2S+1LJ,F denotes the state with electron angular mo-
mentum L, spin S, and total momentum J , whereas F is the
total momentum of the atom. Comparing theoretical calcu-
lations with experimental data we can obtain 3He–4He nu-
clear charge radii difference δr2 from the isotope shift of the
23S–23P and 23S–21S transitions. Results are presented in
Table 2.

Table 2: Determinations of the nuclear charge difference
of 3He and 4He, δr2 ≡ r2(3He) − r2(4He) from different
measurements. δE = Eexp − Etheo is the part of the iso-
tope shift induced by the finite nuclear size, represented as
δE = C δr2, with C being the coefficient calculated from
theory.

Rengelink et al. [5]
δE (21S − 23S) -223.5(1.5) kHz
C -214.66 (2) kHz/fm2 [4]
δr2 1.041 (7) fm2 [2, 5]
Cancio Pastor et al. [6, 7]
δE (23P − 23S) -1 295.4 (3.3) kHz
C -1212.2 (1) kHz/fm2 [4]
δr2 1.069 (3) fm2 [1]
Shiner et al. [8]
δE (23P − 23S) -1286.7 (3.5) kHz

C -1212.2 (1) kHz/fm2 [4]
δr2 1.061 (3) fm2 [1]

4. Higher-order nuclear structure corrections

The nuclear structure corrections are usually divided into
the elastic and the inelastic parts. The elastic part (also re-
ferred to as the finite nuclear size correction) is induced by a
static distribution of the nuclear charge and can be obtained
by solving the Dirac equation. The inelastic nuclear correc-
tion is much more complicated; it encompass the nuclear
dipole polarizability and higher-order contributions. To deal
with the nuclear corrections, one performs an expansion of
the binding energy in powers of the fine structure constant
α and examines the expansion terms one after another.
The leading nuclear effect is of order α4 and of a pure elas-
tic origin,

E
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3
Z α 〈r2〉φ2(0) . (6)

The first-order O(α) nuclear-structure correction has both
elastic and inelastic parts and was extensively studied both
for the electronic and the muonic atoms.
The next-order O(α2) nuclear structure correction comes
from the three-photon exchange between the bound lepton
and the nucleus. Only the elastic part of this correction has
been addressed in the literature so far. Here we show that
the inelastic O(α2) contribution is significant and partially
cancels its elastic counterpart [10]. Results of our calcula-
tions are presented in Table 3.

Table 3: Numerical results for the three-photon exchange
nuclear structure corrections. Numerical values include
the leading recoil effect by the multiplicative reduced-mass
prefactor (µ/m)3. Elastic contributions are obtained with
the exponential parametrization of the nuclear charge dis-
tribution. The first two results are in Hz, while the remaining
are in meV.

Transition Elastic Elastic + inelastic

E(6)(2S−1S, eH) −584 −928 (344)

E(6)(2S−1S, eD−eH) −2 846 −2 029 (41)

E(6)(2P1/2−2S, µH) −0.001 27 −0.001 27 (27)

E(6)(2P1/2−2S, µD) −0.006 56 0.002 19 (88)(27)

E(6)(2P1/2−2S, µ3He+) −0.384 7

E(6)(2P1/2−2S, µ4He+) −0.304 8

Our results for the three-photon exchange nuclear struc-
ture corrections affect determinations of the hydrogen-
deuterium nuclear charge radii differences derived from the
spectroscopic observations of the isotope shifts in elec-
tronic and muonic hydrogen and deuterium.
For the electronic H-D isotope shift of the 1S–2S transition,
our result shifts the total theoretical prediction by 0.8 kHz
Our review of the present status of theory of the H-D isotope
shift leads us to the updated result for the nuclear charge
radius difference determined from the measurement of the
H-D isotope shift of the 1S–2S transition [9],

δr2[electronic] ≡ r2d − r
2
p = 3.820 70 (31) fm2 , (7)

For muonic hydrogen and deuterium, our result for the in-
elastic three-photon exchange nuclear structure contribu-
tion to the 2P1/2–2S transition energy of 0.008 75 (88) meV
shifts the deuteron-proton charge radius difference deter-
mined in Ref. [11] by 0.0014 fm2, with the result

δr2[muonic] ≡ r2d − r
2
p = 3.8126 (34) fm2 . (8)

The results derived from the electronic and muonic atoms
disagree by about 2σ, which confirms the discrepancy pre-
viously observed in Ref. [11]
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