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Why ultra-peripheral collisions (UPCs)?
■ UPCs are electromagnetic interactions of heavy ions/protons.
■ Useful to study nuclear structure, search for new physics, and 

study meson spectroscopy
■ They are the energy frontier for electromagnetic probes

◆ Maximum  CM energy Wgp ~  3 TeV for pp at the LHC
✦ ~ 10 times higher in energy than HERA

◆ Probe parton distributions in proton and heavy-ions down to 
✦ Bjorken-x down to a few 10-6 at moderate Q2

■ Electromagnetic probes have aEM ~ 1/137, so are less affected by 
multiple interactions than hadronic interactions
◆ “Precision” measurements, 
◆ Exclusive interactions

■ Two-photon physics & couplings at the energy frontier
◆ New particle searches (axions), gg->W+W-, etc.
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Ultra-peripheral collisions (UPCs)
■ Heavy nuclei carry strong electric and magnetic fields

◆ Fields are perpendicular -> treat as nearly-real virtual photons
✦ Emax = ghc/b

◆ Photonuclear interactions
◆ Two-photon interactions

■ Visible when b>~2RA, so there are no hadronic interactions;
◆ STAR & ALICE also see photon interactions in peripheral nuclear 

collisions

Energy AuAu
RHIC

pp RHIC PbPb LHC pp LHC

Photon energy 
(target frame)

0.6 TeV ~12 TeV 500 TeV ~5,000 TeV

CM Energy Wgp 24 GeV ~80 GeV 700 GeV ~3,000 GeV
Max gg Energy 6 GeV ~100 GeV 200 GeV ~1,400 GeV

*LHC at full energy √s=14 TeV/5.6 TeV 3
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Photons from nuclei
■ Crossed E and B fields -> photons

◆ Usually, neglect  photon virtuality
■ Photon energy spectrum is the Fourier 

transform of E(M) field, as seen at 
impact parameter b
◆ Equivalent photon approximation –

massless photons
✦ Usually OK

◆ Photon wavelength > width of EM 
‘pancake’

◆ kmax ~ ghc/b
✦ N(k,b) ~ 1/b2

✦ Most energetic photons are near b~RA

■ Photon flux inside nucleus drops off 
rapidly, per Gauss’ law



Photon energy spectrum
■ “kmax” = g hbar c /RA

◆ Lighter nuclei -> higher photon energies
◆ Cutoff is gentle – ‘cutoff’ is an overstatement

■ kdN/dk ~ 1/k
■ Z2 flux enhancement partially cancelled out by higher 

luminosities
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Two photon collisions
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■ Two photon fields collide
◆ 3 transverse positions: 2 nuclei+ interaction point
◆ 𝜎	~∫𝑑𝜙 ∫𝑏,𝑑𝑏,

�
� ∫ 𝑏.𝑑𝑏.

�
�

�
� N g1(b1)Ng2(b2)s(g1g2->F)

■ Copious production of dileptons
■ s ~ 200,000 barns with lead at the LHC

■ Mostly near threshold, with lepton pT ~ me, produced 
at small angles to the beampipe

■ Significant background in vertex detectors
◆ Special case: bound-free pair production

✦ Electron bound to nucleus
■ gg-> Higgs

◆ Small cross-section, but maybe Run 3 or 4
■ gg -> new physics
■ Meson spectroscopy

ion

ion

g
e+

e-

Mµµ=173 GeV dimuon UPC in ATLAS



gg -> Dileptons
■ ALICE, ATLAS & STAR data is in good 

agreement with lowest order QED 
◆ STARlight Monte Carlo
◆ Za ~ 0.6, so perturbation theory might fail

■ STAR sees failure at low pair pT due to 
equivalent photon approximation

■ ATLAS sees acoplanarity tail – higher 
order correction, incoherent photons  or 
background?
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STAR; Phys. Rev. C70, 031902 (2004); M. Dyndal, Quark Matter 2017



gg -> gg
■ Light-by-light scattering

◆ Not possible classically
■ Proceeds via a ‘box’ diagram

◆ Small cross-section
■ The ‘box’ gets contributions from all charged 

particles
◆ Standard model and beyond-SM
◆ Sensitive to new physics

■ ATLAS sees 13 events, vs. a background 
of 2.5 ± 0.7

■ Limited precision, but already  used by 
Ellis et al. to set limits on anomalous 
couplings

ATLAS: arXiv:1702.01625
J. Ellis et al., PRL 118, 261802 (2017)

ion

ion
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UPCs and LHC luminosity
■ s[PbPb(gg) -> (Pbe-) Pb e+] ~ 280 b @ LHC
■ Single-electron lead has charge:mass ratio 

reduced by 1/82
■ The (Pbe-) beam strikes the beampipe 135 

m downstream from the magnet
◆ At L = 1027/cm2/s, the beam deposits                   

23 Watts
■ LHC magnet quench from BFPP       

demonstrated!
◆ Lmax=2.3*1027/cm2/s

■ Luminosity limit for LHC & potentially fcc
◆ Some mitigation possible by orbit bumps.

IP
82+Pb

81+Pb

SK [NIM, 2000], J. Jowett et al., IPAC 2016

Pb

Pb

g
e+

81+Pb
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Vector Meson photoproduction
■ Process has large cross-sections
■ Produced via colorless ‘Pomeron exchange’

◆ Require >=2 gluon exchange for color neutrality
✦ Gluon ladder

■ Light meson production usually treated via vector meson 
dominance model
◆ r, direct p+p-, w, r’ observed at RHIC &/or LHC

■ Heavy meson production treated with pQCD
◆ J/y, y’,U(1S), U(2S), and U(3S) seen at LHC

■ Rapidity maps into photon energy
◆ k = MV/2exp(±y)

✦ Twofold ambiguity – which nucleus emitted the photon?
◆ Cross-section is convolution of bi-directional photon flux with s(gA)

✦ Photon flux is understood to < 10%
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r0 mass spectrum
■ 294,000 exclusive p+p- with pT < 100 MeV/c seen by STAR 
■ Mass spectra fit by r0 + direct pp + w->pp

◆ w required for acceptable fit
◆ Masses, amplitude ratios & phase angle consistent with low-energy 

fixed-target studies
✦ Pomeron exchange @ high energies; meson exchange at lower

]2pion pair invariant mass [GeV/c
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

]2
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D. Horak [ALICE], QM17; SK [STAR] , DIS2016



Higher mass states
■ Expect higher mass r’ states

◆ Radial excitations of the r, etc.
✦ Like 2s,3s in hydrogen
✦ Decays to pp, pppp, etc.

◆ Possible high-spin excitations
✦ Like 2p,3d, etc. in hydrogen

■ Meson spectroscopy in UPCs
◆ Production ~ to sVA (elastic)
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STAR pppp mass
PRC81, 044901 (2010)

ALICE  pppp mass
C. Mayer, 2014 CERN UPC wkshp

STAR high mass  pp SK, presented at DIS2016

Preliminary

Extra resonance required for a good fit
Consistent with r3(1690)



Incoherent production: coherence vs. 
incoherence

■ Coherence in quantum mechanics:
◆ Common picture: Final state == initial state

✦ Then, add amplitudes
■ Slightly looser condition: indistinguishable final states

◆ Example: vector meson production on a nuclear target
✦ Amp = Si Ai exp(ikxi)

• i nucleons at positions xi

◆ Happens whether nucleons are bound or not
✦ E. g.: r0 photoproduction with mutual Coulomb excitation

• STAR showed that nuclear excitation does not destroy coherent 
addition of amplitudes, even though the nuclei break up

– In QED, emission of low-energy photons is independent
– Nucleon positions do not change much during the reaction

◆ Coherence requires only a definite phase relationship
■ Muddies separation of coherent & incoherent production

2g

Au*

Au*

g

P
p+p-



Separating coherent & incoherent
■ r0 + mutual Coulomb excitation
■ ds/dt fit by two exponentials

◆ Cut out very small t (interference) region
◆ Slope 1 b1 = 388 ±	24/GeV2

◆ Slope 2 b2 = 8.8 ±	1.0/GeV2

■ Slope determined by size of target
◆ pT * size ~ hbar c

✦ Details depend on assumed shape
◆ More accurately, radius ~ p/2 hbar c √b

✦ Radius1 ~ 6.1 fm ~ RAu

✦ Radius2 ~ 0.9 fm ~ Rp

■ Hard scattering centers within nucleus
■ The nuclear density distribution is the 

Fourier transform of ds/dt
14
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STAR, PRC77, 034910 (2008)



ALICE r0 pT spectrum

■ Trigger on charged particles 
(neutrons not required)

■ pT spectrum shows coherent 
peak pT< ~ 100 MeV/c and 
incoherent tail due to 
scattering from individual 
protons
◆ Dip at pT=120 MeV/c not 

understood
■ Mass peak consistent with r0, 

with possible hint of               
gg->f2(1270)->pp

gg->f2(1270)->pp?

ALICE, JHEP 1509, 095 (2015) & J. Adam, presented at DIS 2016 15



Extreme coherence: r0 interferometry
■ 2 nuclei -> 2 indistinguishable r0 sources

◆ Add amplitudes
■ Typical separation 20-40 fm

◆ Propagator exp(ikb)
■ Moving from nucleus 1 to nucleus 2 is a parity transform

◆ Vector mesons are negative parity -> subtract amplitudes

◆ A1,A2 are amplitudes
◆ For pbar p, it is a CP transform

✦ Add amplitudes
■ s suppressed for pT <  <|b|>
■ Example of Einstein-Podolsky-Rosen paradox
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STAR data + fit

SK, Joakim Nystrand, PRL 84, 2330 (2000) & Phys. Lett. A308, 323 (2003); 
STAR PRL 102, 112301 (2009)
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310Imaging the nucleus
■ STAR has measured r0 ds/dt

✦ Incoherent determined at large |t|
■ 2 diffraction minima observed

◆ 1st dip at t= 0.018 GeV2

■ Mimima positions depend on locations  
of interaction sites
◆ Nuclear shadowing decreases the # of 

interactions in the nuclear interior,
✦ Larger mean radius
✦ Shadowing explained cross-section
✦ Calculated dip at t=0.012 GeV2

• Data matches ‘no-shadowing’  
position better

◆ Dip partly washed out by photon pT

Blue – raw form factor
Red – w/ shadowing
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t [GeV2]

t [GeV2]

STAR data

STAR, arXiv:1502.03376; Guzey, Strikman & Zhalov, arXiv:1611.05471



“Imaging” the nucleus
■ Target (gluons?) density is the        

Fourier transform of ds/dt
◆ |t|max = 0.06 GeV2

■ 2-d Fourier (Hanckel) tranform
◆ Targets, integrated over z
◆ 2-d avoids 2-fold ambiguity

■ Blue band shows effect of varying 
|t|max from 0.05 - 0.09 GeV2

◆ Variation at small |b| may be due              
to windowing (finite t range)

■ Negative wings at large |b| are           
likely from interference

■ FWHM=2*(6.17±0.12 fm) [stat. error only]

Preliminary
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r0 coherent cross-section
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■ Coherent photoproduction cross-section from 62.4 GeV to 2.9 TeV
◆ s below colored dipole model & generalized VDM model 

✦ With quantum Glauber calculation
◆ s in agreement with classical Glauber model ala STARlight

✦ Theorists are not happy!
■ New model adds nuclear shadowing to quantum Glauber model 

and finds agreement with s data (but not dip position)

D. Horak [ALICE], QM17; L. Frankfurt et al., Phys. Lett. B752, 51 (2017) 



Incoherent VM photoproduction
■ Probes event-by-event fluctuations in the 

nuclear configuration
◆ Quark/gluon transverse positions

■ Walker-Good (QM) formalism:
◆ ds/dttotal ~ <|Amp(K,W)|2>W

✦ W = nuclear configurations
• positions of nucleons (gluons)

✦ K = kinematic factors: x, Q2, t,…
◆ ds/dtCoherent ~ |<Amp(K,W)>W|2

◆ ds/dtIncoherent = ds/dttotal - ds/dtCoherent

■ HERA data on g*p->J/y p indicates       
protons are quite lumpy/stringy
◆ Reproduces most v2 & v3 results in pA

■ High energy limit: lumps dominate  
incoherent production drops
Mäntysaari & Schenke PRD 94, 034042 (2016);  J. Cepila et al., PLB766, 186 (2017)
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■ In 2-gluon model, leading order pQCD

■ With
◆ Vector meson mass provides hard scale

■ Some caveats
◆ pQCD factorization does not strictly hold

✦ Two gluons have different x values (with x’ ≪ x ≪ 1)
• Use generalized (skewed) gluon distributions – smallish correction.
• Can do exactly with Shuvaev transform

◆ Photon is not pure 𝑞𝑞2 dipole
◆ Choice of scale µ
◆ “Absorptive corrections” for pp akin to b>RA+Rb

VM photoproduction in pQCD

Jones, Martin, Ryskin and Teubner (“JMRT”), JHEP 1311, 085 (2013); and others 21



VM photoproduction at NLO
■ NLO ’correction’ larger than LO amplitude & 

opposite sign
◆ “Standard” parton distributions have too few low-

x, low-Q2 gluons, suppressing the LO term
✦ More gluons would increase the LO term

■ High sensitivity to scale
◆ Reduce by picking LO scale µF=mVM/2

✦ Reduces overall scale problem
◆ s( gp->Up) variation with scale                             

is ~ ±15 to ±25%
■ NNLO terms need to be checked

◆ With higher gluon density, probably OK
■ Use in structure function determination?

LO

NLO

Gluon distribution @ 
Q2=1.21 GeV2

JMRT, J. Phys.G. 43, 035002 (2016); Eur. Phys. J.76, 633 (2016)
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gp -> 𝑸𝑸4 with proton targets in pp & pA
■ High statistics data extends HERA gp->J/y p studies to higher 

energies
◆ Access gluon distributions down to 10-6 at Q2 ~ mquark

2

■ Avoiding the two-fold ambiguity: k= MV/2 exp(±y)
◆ Ambiguity disappears at y=0 (solutions are degenerate) or large |y|, 

where the low-k solution dominates.
◆ Estimate lower-k solution and correct
◆ In pA, most of the photons come from the heavy nucleus

✦ Kinematic differences between gp & gA give further discrimination

23

R. McNulty [LHCb] ICHEP 2016
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s(gp-> J/y p)
■ Data up to Wgp= 1.5 TeV -5 times the HERA maximum 
■ ALICE sees good pA agreement with HERA data
■ LHCb 13 TeV-beam data somewhat below 7 TeV data?

◆ LHCb bootstraps from HERA range to avoid 2-fold ambiguity
■ NLO calculation predicts a small down-turn from power law 

prediction at energies above ~ 300 GeV
◆ 13 TeV data agrees well with NLO calculation

J. Adams [ALICE], DIS 2016; R. McNulty [LHCb] ICHEP 2016 24Wgp (GeV)
Wgp (GeV)

<y>= 4.37; x=3*10-6

<y>=2.12; x=3*10-5

x=2*10-5

x=6*10-3



y’ photoproduction on proton targets

Good fit to power law
Data is a bit below the NLO pQCD

As with J/y, LHCb data quality is more precise than 
HERA & extends to higher energy

Y’

R. McNulty [LHCb] ICHEP 2016 25
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gp->Up
Forward dimuons with LHCb

U(1S), U(2S) & U(3S) resolved
Good agreement with NLO calculation  (Q2 ~ 25 GeV2)

Higher Q2-> less sensitivity to some theoretical uncertainties
Same calculations match J/Y & Y data, at different Q2 

No evidence for saturation at low Q2

U(1S)

R. McNulty [LHCb] ICHEP 2016 26
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Heavy quarkonium photoproduction 
on ion targets

■ Best data for nuclear gluon distributions for x<10-3

◆ No HERA data for A>1 nuclei
◆ Q2 = (MVM/2)2

■ Measure/calculate suppression relative to proton targets
◆ Many theoretical uncertainties cancel

■ Impulse approximation calculation sometimes used as reference
◆ Replaces missing proton data at correct 𝑠�

◆ Account for higher order corrections by tie-in to HERA data
■ Shadowing is expected, because a single 𝑞𝑞2 dipole may interact 

with multiple nucleons in a heavy target
◆ “Leading twist” shadowing
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J/y in AuAu at RHIC

Coherent & incoherent J/y Photoproduction
Bjorken-x ~ 0.015

gg->e+e- also observed

W. Schmidke [STAR], DIS 2016
28
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ALICE PbPb-> J/y at √sNN = 5.02 GeV
■ pT spectrum measured out to 2.5 GeV/c

◆ Coherent (Pb), incoherent (single N) & nucleon dissociation seen
■ scoherent is ~ 40% of impulse approximation prediction

◆ 75% of STARlight (Glauber calc; no gluon shadowing)
◆ Consistent with EPS09 model
◆ Consistent with leading twist approximation

■ Also: J/y in pPb @ 8 GeV, J/y→p�̅�, y’-> J/y p+p-

J/y rapidityDimuon pT (GeV) E. Kryshen [ALICE], QM17



PbPb-> J/y in CMS at √sNN= 2.76 GeV
■ µ+µ- at |y| = 2.05
■ Cross-section is ~ 40% of impulse approximation

◆ Moderate nuclear shadowing
◆ Consistent with leading twist calculation

D. Tapai Takaki [CMS], QM17 30J/y rapidity

Mµµ (GeV)



■ Compare ALICE & CMS data with PDF shadowing models
◆ Use impulse approximation for proton reference

✦ Normalize to HERA data to correct for higher order terms
✦ 6 different parton distributions

■ Consistent  w/ 2012 leading twist approximation calculation
◆ Except for MNRT07 parameterization

■ More shadowing than HKN07 parameterization
■ EPS09 parameterization fits data well

◆ Error bars should shrink
✦ Also true w/ EPPS’16

■ No need for exotica e. g.
◆ Colored glass condensate
◆ Hard saturation cutoff

Nuclear Shadowing
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Back to coherence….
■ Photon energy k=MV/2 exp(±y)

◆ k > MV/2 -> J/y follows photon direction
◆ k< MV/2 -> J/y opposes photon direction

■ In incoherent production, target fragmentation 
neutrons go in opposite direction from photon

■ Neutrons from Coulomb excitation in coherent or 
incoherent production are evenly distributed

■ Neutron flux vs. hemisphere probes energy 
dependence of sincoherent/scoherent

■ CMS observes more neutrons in opposite 
hemisphere
◆ Incoherent production is suppressed (compare to 

coherent) at high photon energies
✦ Probes gluons with low Bjorken-x in target
✦ Possible sign of saturation

32D. Tapai Takaki, QM17



Photoproduction of dijets
■ Single gluon exchange

◆ theoretically clean
◆ One rapidity gap

■ x depends on dijet mass & rapidity
◆ 10-2 < x < 1

■ Jet masses give Q2

◆ 1600 GeV2 < Q2 < 40,000 GeV2

■ Data vs. STARlight/PYTHIA hybrid
◆ Some differences

✦ Detector?
✦ Nuclear modifications to pdfs?

■ Unfolding in progress, to probe gluon dist.
■ Room to expand kinematic reach

HT ~ 2Q

xA. Angerami [ATLAS], QM17



■ ALICE & STAR see an excess of lepton pairs with pT < 100 MeV/c
◆ Excess is significant - “RAA ~ 7”
◆ STAR – continuum + J/y at midrapidity
◆ ALICE – forward J/y only

■ “Big Mystery…”

Photonic reactions  in peripheral 
collisions

34Z. Zhou [ALICE]; W. Zha [STAR], QM17;  S. Yang [STAR], QM17



■ Photonic reactions do not disappear when b < 2RA

■ Continuum gg -> l+l- + photoproduced J/y
■ Two-photon production is usually outside nucleus

◆ Calculate rate, etc. in STARlight with constraints on |b|
◆ Preliminary: kinematics, seem consistent with STAR excess

✦ Rate comparison in progress
◆ Fit pT

2 spectrum: dN/dpT
2 ~exp(-bpT

2)
✦ b’s are consistent with STAR data in 3 mass ranges

gg -> ee in peripheral collisions

35S. Yang [STAR], QM17; SK, paper in progress

3 mass ranges
Black circles are 
STARlight for AuAu



The low pT drop
■ The STAR pTee spectrum drops for pTee < 40 MeV/c

◆ Looks similar to interference dip in vector meson photoproduction, 
but cause is different

◆ Equivalent (real) photon approximation fails at low g pT

◆ Q2 ~< (hbar/RA)2

■ A full QED calculation reproduces the pT spectrum in UPCs
◆ Dip width should scale with photon energy, i. e. with Mee

✦ Scaling STAR UPC result by minimum Mee (from 140 MeV/c2 to 400 
MeV/c2) -> pT peak @ 75 MeV/c – pretty close 



Photoproduced J/y in PCs
■ Calculations for different assumptions of photon emitter & target 

coherence: entire nucleus, or spectator region
◆ Photons are emitted before collision, at a typical time t=k/g

✦ Think retarded time, ala Jackson
◆ Re. target (participant nucleons) the photon flux is lower (Gauss’ 

law), there is destructive interference, and the nucleons may lose 
energy via hadronic interactions before the photonic interaction
✦ Small contribution to cross-section 

■ Cross-sections consistent with photoproduction expectations

W. Zha et al. (SK), arXiv:1705.01460 



pT spectrum for gA->J/y in PCs
■ pT spectrum is consistent with UPC J/y photoproduction data

◆ Drop at low pT due to interference between two directions
✦ System is smaller (|b| is smaller), so interference extends to higher 

pT than for UPCs
■ Spectator-only target  has a different matter distribution than full 

nucleus target.
◆ Different pT spectrum + some azimuthal anisotropy

✦ Sensitive to event plane?

38Z. Zhou [ALICE], QM17



Looking ahead
■ More vector meson photoproduction data

◆ Incorporation into gluon distributions
■ More open jets and charm

◆ Experimentally harder, but theoretically cleaner
■ J/y tomography
■ g on polarized protons at RHIC

◆ g + p↑	-> J/y + p↑ probes                                         generalized 
parton distribution-E
✦ pp and pA collisions                                  collisions
✦ Roman pots detect scattered                                                        

protons to measure 𝑡 directly.
■ UPCs at the fcc can reach                                                 

down to Bjorken-x ~10-7

■ Connects to precision data                                                      
from EIC

D. D’Enterria, QM17; A. J. Baltz et al., Phys. Rept. 458 (2008) 1 39
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Conclusions
■ Ultra-peripheral collisions are the energy frontier for electromagnetic 

& electroweak interactions.
■ Electromagnetic dilepton production can be used to test strong field 

QED, search for new physics, and quench LHC magnets.
■ Light vector meson photoproduction has been used to observe 

diffraction patterns from gold nuclei.
◆ Determine the hadronic size and shape of the gold nucleus. 

■ The high-quality quarkonium photoproduction data is consistent with 
next to leading order QCD.
◆ Proton-target data meshes smoothly with lower-energy HERA results.
◆ Lead-target data demonstrates moderate shadowing, consistent with 

leading order twist.
✦ There is no need for a colored glass condensate to explain the data.

■ Expect an explosion of UPC data using more diverse probes, 
including dijet production and open charm.

40



Backup 
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