Ultra-peripheral collisions and hadronic structure

Spencer Klein, LBNL

Introduction: Why UPCs? QED: dilepton production The structure of heavy nuclei Toward nucleon parton distributions at low x Gluon shadowing w/ nuclear targets Conclusions

Some experimental emphasis; experiment-agnostic

Why ultra-peripheral collisions (UPCs)?

- UPCs are electromagnetic interactions of heavy ions/protons.
- Useful to study nuclear structure, search for new physics, and study meson spectroscopy
- They are the energy frontier for electromagnetic probes
 - Maximum CM energy $W_{\gamma p} \sim 3 \text{ TeV}$ for pp at the LHC
 - ~ 10 times higher in energy than HERA
 - Probe parton distributions in proton and heavy-ions down to
 - Bjorken-x down to a few 10⁻⁶ at moderate Q²
- Electromagnetic probes have α_{EM} ~ 1/137, so are less affected by multiple interactions than hadronic interactions
 - "Precision" measurements,
 - Exclusive interactions
- Two-photon physics & couplings at the energy frontier
 - New particle searches (axions), $\gamma\gamma$ ->W⁺W⁻, etc.

Ultra-peripheral collisions (UPCs)

- Heavy nuclei carry strong electric and magnetic fields
 - Fields are perpendicular -> treat as nearly-real virtual photons
 - $E_{max} = \gamma hc/b$
 - Photonuclear interactions
 - Two-photon interactions
- Visible when $b > 2R_A$, so there are no hadronic interactions;
 - STAR & ALICE also see photon interactions in peripheral nuclear collisions

Energy	AuAu RHIC	pp RHIC	PbPb LHC	pp LHC
Photon energy (target frame)	0.6 TeV	~12 TeV	500 TeV	~5,000 TeV
CM Energy $W_{\gamma p}$	24 GeV	~80 GeV	700 GeV	~3,000 GeV
Max yy Energy	6 GeV	~100 GeV	200 GeV	~1,400 GeV

^{*}LHC at full energy √s=14 TeV/5.6 TeV

Photons from nuclei

- Crossed E and B fields -> photons
 - Usually, neglect photon virtuality
- Photon energy spectrum is the Fourier transform of E(M) field, as seen at impact parameter b
 - Equivalent photon approximation massless photons
 - Usually OK
 - Photon wavelength > width of EM 'pancake'
 - k_{max} ~ γhc/b
 - ∧ N(k,b) ~ 1/b²
 - Most energetic photons are near b~R_A
- Photon flux inside nucleus drops off rapidly, per Gauss' law

$$n(k,b) = \frac{d^3N}{dkd^2b} = \frac{Z^2\alpha}{\pi^2 kb^2} x^2 K_1^2(x)$$

$$x = bk/\gamma$$

Photon energy spectrum

- " k_{max} " = γ hbar c / R_A
 - Lighter nuclei -> higher photon energies
 - Cutoff is gentle 'cutoff' is an overstatement
- kdN/dk ~ 1/k
- Z² flux enhancement partially cancelled out by higher luminosities

Two photon collisions

- Two photon fields collide
 - 3 transverse positions: 2 nuclei+ interaction point
 - $\sigma \sim \int d\phi \int b_1 db_1 \int b_2 db_2 \, \mathsf{N}_{\gamma 1}(b_1) \mathsf{N}_{\gamma 2}(b_2) \sigma(\gamma_1 \gamma_2 \mathsf{F})$
- Copious production of dileptons
 - $\sigma \sim 200,000$ barns with lead at the LHC
 - Mostly near threshold, with lepton p_T ~ m_e, produced at small angles to the beampipe
 - Significant background in vertex detectors
 - Special case: bound-free pair production
 - Electron bound to nucleus
- γγ-> Higgs
 - Small cross-section, but maybe Run 3 or 4
- γγ -> new physics
- Meson spectroscopy

 $M_{\mu\mu}\text{=}173~\text{GeV}$ dimuon UPC in ATLA§

γγ -> Dileptons

- ALICE, ATLAS & STAR data is in good agreement with lowest order QED
 - STARlight Monte Carlo
 - $Z\alpha \sim 0.6$, so perturbation theory might fail
- STAR sees failure at low pair p_T due to equivalent photon approximation
- ATLAS sees acoplanarity tail higher order correction, incoherent photons or background?

STAR; Phys. Rev. C70, 031902 (2004); M. Dyndal, Quark Matter 2017

γγ -> γγ

- Light-by-light scattering
 - Not possible classically
- Proceeds via a 'box' diagram
 - Small cross-section
- The 'box' gets contributions from all charged particles
 - Standard model and beyond-SM
 - Sensitive to new physics
- ATLAS sees 13 events, vs. a background of 2.5 ± 0.7
- Limited precision, but already used by Ellis et al. to set limits on anomalous couplings

ATLAS: arXiv:1702.01625 J. Ellis *et al.,* PRL 118, 261802 (2017)

UPCs and LHC luminosity

- σ[PbPb(γγ) -> (Pbe⁻) Pb e⁺] ~ 280 b @ LHC
- Single-electron lead has charge:mass ratio reduced by 1/82
- The (Pbe⁻) beam strikes the beampipe 135 m downstream from the magnet
 - At L = 10²⁷/cm²/s, the beam deposits
 23 Watts
- LHC magnet quench from BFPP demonstrated!
 - L_{max}=2.3*10²⁷/cm²/s
- Luminosity limit for LHC & potentially fcc
 - Some mitigation possible by orbit bumps.

Vector Meson photoproduction

- Process has large cross-sections
- Produced via colorless 'Pomeron exchange'
 - Require >=2 gluon exchange for color neutrality
 - Gluon ladder

- ρ , direct $\pi^+\pi^-$, ω , ρ' observed at RHIC &/or LHC
- Heavy meson production treated with pQCD
 - J/ψ , ψ ', Y(1S), Y(2S), and Y(3S) seen at LHC
- Rapidity maps into photon energy
 - $k = M_V/2exp(\pm y)$
 - Twofold ambiguity which nucleus emitted the photon?
 - Cross-section is convolution of bi-directional photon flux with $\sigma(\gamma A)$
 - Photon flux is understood to < 10%</p>

ρ⁰ mass spectrum

- 294,000 exclusive $\pi^+\pi^-$ with $p_T < 100$ MeV/c seen by STAR
- Mass spectra fit by ρ^0 + direct $\pi\pi$ + ω -> $\pi\pi$
 - ω required for acceptable fit
 - Masses, amplitude ratios & phase angle consistent with low-energy fixed-target studies
 - Pomeron exchange @ high energies; meson exchange at lower

D. Horak [ALICE], QM17; SK [STAR] , DIS2016

Higher mass states

Expect higher mass ρ' states
Radial excitations of the ρ, etc.
Like 2s,3s in hydrogen
Decays to ππ, ππππ, etc.
Possible high-spin excitations
Like 2p,3d, etc. in hydrogen
Meson spectroscopy in UPCs
Production ~ to σ_{VA} (elastic)

Extra resonance required for a good fit Consistent with $\rho_3(1690)$

C. Mayer, 2014 CERN UPC wkshp

Incoherent production: coherence vs. incoherence

- Coherence in quantum mechanics:
 - Common picture: Final state == initial state
 - Then, add amplitudes

- Slightly looser condition: indistinguishable final states
 - Example: vector meson production on a nuclear target
 - + Amp = $\Sigma_i A_i \exp(ikx_i)$
 - i nucleons at positions x_i
 - Happens whether nucleons are bound or not
 - E. g.: ρ⁰ photoproduction with mutual Coulomb excitation
 - STAR showed that nuclear excitation does not destroy coherent addition of amplitudes, even though the nuclei break up
 - In QED, emission of low-energy photons is independent
 - Nucleon positions do not change much during the reaction

Coherence requires only a definite phase relationship

Muddies separation of coherent & incoherent production

Separating coherent & incoherent

- ρ⁰ + mutual Coulomb excitation
- dσ/dt fit by two exponentials
 - Cut out very small t (interference) region
 - Slope 1 b₁ = 388 ± 24/GeV²
 - Slope 2 b₂ = 8.8 ± 1.0/GeV²
- Slope determined by size of target
 - p_T * size ~ hbar c
 - Details depend on assumed shape
 - More accurately, radius ~ $\pi/2$ hbar c \sqrt{b}
 - Radius₁ ~ 6.1 fm ~ R_{Au}
 - Radius₂ ~ 0.9 fm ~ R_p
- Hard scattering centers within nucleus
- The nuclear density distribution is the Fourier transform of dσ/dt

ALICE $\rho^0 p_T$ spectrum

- Trigger on charged particles (neutrons not required)
- p_T spectrum shows coherent peak p_T< ~ 100 MeV/c and incoherent tail due to scattering from individual protons
 - Dip at p_T=120 MeV/c not understood
- Mass peak consistent with ρ⁰, with possible hint of γγ->f₂(1270)->ππ

ALICE, JHEP 1509, 095 (2015) & J. Adam, presented at DIS 2016

Extreme coherence: ρ⁰ interferometry

- 2 nuclei -> 2 indistinguishable ρ^0 sources
 - Add amplitudes
- Typical separation 20-40 fm
 - Propagator exp(ikb)
 - Moving from nucleus 1 to nucleus 2 is a parity transform
 - Vector mesons are negative parity -> subtract amplitudes

 $\sigma \propto |A_1 - A_2 \exp(i\mathbf{p}_T \cdot \mathbf{b})/\hbar)|^2$

- A₁,A₂ are amplitudes
- For pbar p, it is a CP transform
 - Add amplitudes
- σ suppressed for p_T < <|b|>
- Example of Einstein-Podolsky-Rosen paradox

SK, Joakim Nystrand, PRL 84, 2330 (2000) & Phys. Lett. A308, 323 (2003); STAR PRL 102, 112301 (2009)

Imaging the nucleus

STAR has measured $\rho^0 d\sigma/dt$

 $\frac{d\sigma}{dt} \bigg|_{\substack{\text{Coherent} \\ + \text{ Incoherent determined at large [t]}}} = \frac{d\sigma}{dt} \bigg|_{\substack{\text{Total} \\ + \text{ Incoherent determined at large [t]}}}$

- 2 diffraction minima observed
 - 1st dip at t= 0.018 GeV²
- Mimima positions depend on locations of interaction sites
 - Nuclear shadowing decreases the # c interactions in the nuclear interior,
 - Larger mean radius
 - Shadowing explained cross-section
 - Calculated dip at t=0.012 GeV²
 - Data matches 'no-shadowing' position better
 - Dip partly washed out by photon p_T

STAR, arXiv:1502.03376; Guzey, Strikman & Zhalov, arXiv:1611.05471

Red – w/ shadowing

"Imaging" the nucleus

- Target (gluons?) density is the Fourier transform of dσ/dt
 |t|_{max} = 0.06 GeV²
 2 d Fourier (Hanckel) tranform
- 2-d Fourier (Hanckel) tranform
 - Targets, integrated over z
 - 2-d avoids 2-fold ambiguity
- Blue band shows effect of varying |t|_{max} from 0.05 - 0.09 GeV²
 - Variation at small |b| may be due to windowing (finite t range)
- Negative wings at large |b| are likely from interference
- FWHM=2*(6.17±0.12 fm) [stat. error only]

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

ρ⁰ coherent cross-section

Coherent photoproduction cross-section from 62.4 GeV to 2.9 TeV

- σ below colored dipole model & generalized VDM model
 - With quantum Glauber calculation
- σ in agreement with classical Glauber model ala STARlight
 - Theorists are not happy!
- New model adds nuclear shadowing to quantum Glauber model and finds agreement with σ data (but not dip position)

D. Horak [ALICE], QM17; L. Frankfurt et al., Phys. Lett. B752, 51 (2017)

Incoherent VM photoproduction

- Probes event-by-event fluctuations in the nuclear configuration
 - Quark/gluon transverse positions
- Walker-Good (QM) formalism:
 - $d\sigma/dt_{total} \sim < |Amp(K,\Omega)|^2 >_{\Omega}$
 - Ω = nuclear configurations
 - positions of nucleons (gluons)
 - K = kinematic factors: x, Q², t,...
 - $d\sigma/dt_{Coherent} \sim |\langle Amp(K, \Omega) \rangle_{\Omega}|^2$
 - $d\sigma/dt_{\text{Incoherent}} = d\sigma/dt_{\text{total}} d\sigma/dt_{\text{Coherent}}$
- HERA data on γ*p->J/ψ p indicates protons are quite lumpy/stringy
 - Reproduces most v₂ & v₃ results in pA
- High energy limit: lumps dominate incoherent production drops

Mäntysaari & Schenke PRD 94, 034042 (2016); J. Cepila et al., PLB766, 186 (2017)

VM photoproduction in pQCD

In 2-gluon model, leading order pQCD

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} \left(\gamma^* p \to J/\psi \ p\right)\Big|_{t=0} = \frac{\Gamma_{ee} M_{J/\psi}^3 \pi^3}{48\alpha} \left[\frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x, \bar{Q}^2)\right]^2 \left(1 + \frac{Q^2}{M_{J/\psi}^2}\right)$$

• With $\bar{Q}^2 = (Q^2 + M_{J/\psi}^2)/4$, $x = (Q^2 + M_{J/\psi}^2)/(W^2 + Q^2)$

- Vector meson mass provides hard scale
- Some caveats
 - pQCD factorization does not strictly hold
 - Two gluons have different x values (with x' << x << 1)
 - Use generalized (skewed) gluon distributions smallish correction.
 - Can do exactly with Shuvaev transform
 - Photon is not pure $q\bar{q}$ dipole
 - Choice of scale μ
 - "Absorptive corrections" for pp akin to b>R_A+R_b

VM photoproduction at NLO

- NLO 'correction' larger than LO amplitude & opposite sign
 - "Standard" parton distributions have too few lowx, low-Q² gluons, suppressing the LO term
 - More gluons would increase the LO term
- High sensitivity to scale
 - Reduce by picking LO scale $\mu_F = m_{VM}/2$
 - Reduces overall scale problem
 - σ(γp->Yp) variation with scale
 is ~ ±15 to ±25%
- NNLO terms need to be checked
 - With higher gluon density, probably OK
- Use in structure function determination?

Gluon distribution @ Q²=1.21 GeV² ²²

$\gamma p \rightarrow Q \overline{Q}$ with proton targets in pp & pA

- High statistics data extends HERA γp->J/ψ p studies to higher energies
 - Access gluon distributions down to 10⁻⁶ at Q² ~ m_{quark}²
- Avoiding the two-fold ambiguity: $k = M_V/2 \exp(\pm y)$
 - Ambiguity disappears at y=0 (solutions are degenerate) or large |y|, where the low-k solution dominates.
 - Estimate lower-k solution and correct
 - In pA, most of the photons come from the heavy nucleus
 - Kinematic differences between γp & γA give further discrimination

R. McNulty [LHCb] ICHEP 2016

 $\sigma(\gamma p \rightarrow J/\psi p)$

- **Data up to W**_{γp} = 1.5 TeV -5 times the HERA maximum
- ALICE sees good pA agreement with HERA data
- LHCb 13 TeV-beam data somewhat below 7 TeV data?
 - LHCb bootstraps from HERA range to avoid 2-fold ambiguity
- NLO calculation predicts a small down-turn from power law prediction at energies above ~ 300 GeV
 - 13 TeV data agrees well with NLO calculation

ψ ' photoproduction on proton targets

Good fit to power law Data is a bit below the NLO pQCD

As with J/ψ , LHCb data quality is more precise than HERA & extends to higher energy

γ**p->**Y**p**

Y(1S), Y(2S) & Y(3S) resolved Good agreement with NLO calculation (Q² ~ 25 GeV²) Higher Q²-> less sensitivity to some theoretical uncertainties Same calculations match J/Ψ & Y data, at different Q² No evidence for saturation at low Q²

Heavy quarkonium photoproduction on ion targets

- Best data for nuclear gluon distributions for x<10⁻³
 - No HERA data for A>1 nuclei
 - $Q^2 = (M_{VM}/2)^2$
- Measure/calculate suppression relative to proton targets
 - Many theoretical uncertainties cancel
- Impulse approximation calculation sometimes used as reference
 - Replaces missing proton data at correct \sqrt{s}
 - Account for higher order corrections by tie-in to HERA data
- Shadowing is expected, because a single q q
 dipole may interact with multiple nucleons in a heavy target
 - "Leading twist" shadowing

J/ψ in AuAu at RHIC

Coherent & incoherent J/ ψ Photoproduction Bjorken-x ~ 0.015 $\gamma\gamma$ ->e⁺e⁻ also observed

W. Schmidke [STAR], DIS 2016

ALICE PbPb-> J/ ψ at $\sqrt{s_{NN}}$ = 5.02 GeV

- p_T spectrum measured out to 2.5 GeV/c
 - Coherent (Pb), incoherent (single N) & nucleon dissociation seen
- σ_{coherent} is ~ 40% of impulse approximation prediction
 - 75% of STARlight (Glauber calc; no gluon shadowing)
 - Consistent with EPS09 model
 - Consistent with leading twist approximation
- Also: J/ ψ in pPb @ 8 GeV, J/ $\psi \rightarrow p\bar{p}$, $\psi' \rightarrow J/\psi \pi^+\pi^-$

PbPb-> J/ ψ in CMS at $\sqrt{s_{NN}}$ = 2.76 GeV

- µ⁺µ⁻ at |y| = 2.05
- Cross-section is ~ 40% of impulse approximation
 - Moderate nuclear shadowing
 - Consistent with leading twist calculation

D. Tapai Takaki [CMS], QM17

Nuclear Shadowing

Compare ALICE & CMS data with PDF shadowing models

- Use impulse approximation for proton reference
 - Normalize to HERA data to correct for higher order terms
 - 6 different parton distributions
- Consistent w/ 2012 leading twist approximation calculation
 - Except for MNRT07 parameterization
- More shadowing than HKN07 parameterization
- EPS09 parameterization fits data well
 - Error bars should shrink
 - Also true w/ EPPS'16
- No need for exotica e.g.
 - Colored glass condensate
 - Hard saturation cutoff

V. Guzey & M. Zhalov, JHEP 1310, 207 (2013) Frankfurt Guzey & Strikman, Phys. Rept. 512, 255 (2012) updated by V. Guzey & M. Strikman.

Back to coherence....

- Photon energy $k=M_V/2 \exp(\pm y)$
 - $k > M_V/2 \rightarrow J/\psi$ follows photon direction
 - $k < M_V/2 \rightarrow J/\psi$ opposes photon direction
- In incoherent production, target fragmentation neutrons go in opposite direction from photon
- Neutrons from Coulomb excitation in coherent or incoherent production are evenly distributed
- Neutron flux vs. hemisphere probes energy dependence of $\sigma_{incoherent}/\sigma_{coherent}$
- CMS observes more neutrons in opposite hemisphere
 - Incoherent production is suppressed (compare coherent) at high photon energies
 - Probes gluons with low Bjorken-x in target
 - Possible sign of saturation

Photoproduction of dijets

- Single gluon exchange
 - theoretically clean
 - One rapidity gap
- x depends on dijet mass & rapidity
 - ♦ 10⁻² < x < 1</p>
- Jet masses give Q²
 - ♦ 1600 GeV² < Q² < 40,000 GeV²
- Data vs. STARlight/PYTHIA hybrid
 - Some differences
 - Detector?
 - Nuclear modifications to pdfs?
- Unfolding in progress, to probe gluon dist.
- Room to expand kinematic reach

A. Angerami [ATLAS], QM17

Photonic reactions in peripheral collisions

• ALICE & STAR see an excess of lepton pairs with $p_T < 100$ MeV/c

- ♦ Excess is significant "R_{AA} ~ 7"
- STAR continuum + J/ ψ at midrapidity
- ALICE forward J/ ψ only

Z. Zhou [ALICE]; W. Zha [STAR], QM17; S. Yang [STAR], QM17

γγ -> ee in peripheral collisions

- Photonic reactions do not disappear when b < 2R_A
- Continuum γγ -> /+/- + photoproduced J/ψ
- Two-photon production is usually outside nucleus
 - Calculate rate, etc. in STARlight with constraints on |b|
 - Preliminary: kinematics, seem consistent with STAR excess
 - Rate comparison in progress
 - Fit p_T² spectrum: dN/dp_T² ~exp(-bp_T²)
 - b's are consistent with STAR data in 3 mass ranges

The low p_T drop

The STAR p_{Tee} spectrum drops for p_{Tee} < 40 MeV/c

- Looks similar to interference dip in vector meson photoproduction, but cause is different
- Equivalent (real) photon approximation fails at low γ p_T
- ♦ Q² ~< (hbar/R_A)²
- A full QED calculation reproduces the p_T spectrum in UPCs
 - Dip width should scale with photon energy, i. e. with M_{ee}
 - ◆ Scaling STAR UPC result by minimum M_{ee} (from 140 MeV/c² to 400 MeV/c²) -> p_T peak @ 75 MeV/c pretty close

Photoproduced J/ ψ in PCs

- Calculations for different assumptions of photon emitter & target coherence: entire nucleus, or spectator region
 - Photons are emitted before collision, at a typical time t=k/γ
 - Think retarded time, ala Jackson
 - Re. target (participant nucleons) the photon flux is lower (Gauss' law), there is destructive interference, and the nucleons may lose energy via hadronic interactions before the photonic interaction
 - Small contribution to cross-section

Cross-sections consistent with photoproduction expectations

p_T spectrum for γA ->J/ ψ in PCs

p_T spectrum is consistent with UPC J/ ψ photoproduction data

- Drop at low p_T due to interference between two directions
 - System is smaller (|b| is smaller), so interference extends to higher p_T than for UPCs
- Spectator-only target has a different matter distribution than full nucleus target.
 - Different p_T spectrum + some azimuthal anisotropy
 - Sensitive to event plane?

Looking ahead

- More vector meson photoproduction data
 - Incorporation into gluon distributions
- More open jets and charm
 - Experimentally harder, but theoretically cleaner
- J/ψ tomography
- γ on polarized protons at RHIC
 - γ + p1 -> J/ψ + p1 probes
 parton distribution-E
 - pp and pA collisions
 - + Roman pots detect scattered protons to measure \vec{t} directly.
- UPCs at the fcc can reach down to Bjorken-x ~10⁻⁷
- Connects to precision data from EIC

D. D'Enterria, QM17; A. J. Baltz et al., Phys. Rept. 458 (2008) 1

Conclusions

- Ultra-peripheral collisions are the energy frontier for electromagnetic & electroweak interactions.
- Electromagnetic dilepton production can be used to test strong field QED, search for new physics, and quench LHC magnets.
- Light vector meson photoproduction has been used to observe diffraction patterns from gold nuclei.
 - Determine the hadronic size and shape of the gold nucleus.
- The high-quality quarkonium photoproduction data is consistent with next to leading order QCD.
 - Proton-target data meshes smoothly with lower-energy HERA results.
 - Lead-target data demonstrates moderate shadowing, consistent with leading order twist.
 - There is no need for a colored glass condensate to explain the data.
- Expect an explosion of UPC data using more diverse probes, including dijet production and open charm.

