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Outline

• The ALS-U Project status,  main parameters
– The importance of RW

• TMCI  simulations with Harmonic Cavities (HCs) + RW  
that motivated this study

• Refresher on TMCI mode-analysis theory  (no HCs) 

• How to extend mode-analysis theory  to TMCI  w/ HCs
– & how to handle numerical difficulties. 

• Theory, simulations benchmark 

• Conclusions & outlook
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ALSu:  a DOE Project in the conceptual-design stage 
schedule still uncertain 
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• ALSu target beam/lattice specs 
– 𝜀𝑥 ≃ 𝜀𝑦 ≲ 75 𝑝𝑚 (full coupling)

– 𝛽𝑥~𝛽𝑦 ≲ 3m in straight sections
• 𝜎𝑥~𝜎𝑦~10 𝜇𝑚 @IDs

– 2 GeV
– 500 mA

• Features
– 9BA lattice

– Maintain 12 period layout

– 4 new IDs/beamlines

– SuperBends

– Swap-out on-axis injection 
(2nm beam, Accumulator)



Project includes 4 new beamlines and supporting 
IDs (tentative)
• Narrow  ID gap/ vacuum 

chamber aperture  

• Delta-type IDs (r=2mm 
chamber)?
– Exploiting small round beam 

• Cu +  NEG  (1𝝁𝒎? ) coating 

• Most of existing ALS IDs to be 
inherited.  Vacuum 
chambers?
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Concept of Delta ID
𝜆𝑢 = 26.7mm
Magnetic bore diameter =7.5mm
Stay-clear beam diameter=4mm 
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Most of the sector-arc (round) vacuum 
chambers to have r=6.5mm radius

• Swap-out of low-emittance beam allows for narrow-
aperture chamber
– High-gradient magnets using conventional technology 

• Preliminary concept of vacuum chamber in the 
sector-arcs
– Combination of r=6.5mm  and r=10mm round chambers
– Narrower chambers to be NEG coated  

3D view of
sector-arc 
vacuum 
chamber



Expect large RW contribution to the 
impedance budget

• Multi-bunch, single-bunch
• Longitudinal and especially transverse

– 1/𝑟3 scaling of  RW transverse impedance

• NEG coating

TMCI in the ALSu*
RW-Z Cu-monolayer; no Harmonic Cavities; zero chroms (elegant simulations) 

𝒎 = −𝟏 mode 

*Outdated Z-machine model

thresholddesign



Simulations with Harmonic Cavities showed unexpected 
result:    is Landau not doing his job ??? 
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Including NEG
lowers threshold by factor ~𝟐

(still no HCs)

threshold

Growth rate with HCs 

threshold

Radiation damping

• “Ideal” setting for HCs (maximum 
flattening of RF voltage, profile)

• Motion always unstable or very 
small instability threshold?



Surprisingly, not much literature on theory of transverse 
instabilities with HCs. & Somewhat contradictory claims
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• Cullinan et al.:
– PRAB 2016
– Multi-bunch + chromaticities. Careful macro-particle simulations +         

mode analysis for linear RF voltage (no HCs)
– TMCI regime excluded

– Conclusion: HCs help

• S. Krinksy:
– Unpublished  2005 (early NSLS-II studies) +  NSLS-II conference papers with 

collaborators
– Macroparticle simulations using home-made  Matlab code
– Single-bunch instability.  Zero chromaticities. No radiation damping.

– Conclusion: in the presence of RW, HCs lower instability threshold 
• For broad-band resonator Z , HCs may not have much effect, depending on 

parameters

• Y. Chin et al.:
– Part. Accel. 1985 (!)
– Mode analysis of Sacherer’s integral equation
– Effect of HCs on single-particle dynamics  as a small perturbation + ‘hand 

waving’ extrapolation  to case of cubic RF voltage

– Conclusion: HCs cause instability at any current (broad-band  
resonator model of impedance)



TMCI  theory (no Harmonic Cavities) on a cheat-sheet. 
(localized RW Impedance)
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Unpertubed

(long.) dynamics: 

harmonic

oscillator

Amplitude(action)-

angle variables

𝑧 = 𝑟(𝐽𝑧 )cos𝜑𝑧

Beam equilibrium as a 

Gaussian 

exp(−
𝑧2

2𝜎𝑧0
2 −

𝛿2

2𝜎𝛿02
)

Mode expansion of perturbation to

equilibrium

Linearized 

Vlasov equation

Sacherer’s equation for radial component 𝑅𝑚 of m-mode

Kernel  expressed in terms of Hypergeometric functions

Note : Bessel functions come from integrals over       

z-trajectories   𝐽𝑚~0׬
2𝜋
𝑑𝜑𝑧𝑒

−𝑖(𝑚𝜑𝑧+𝑟𝜅 cos 𝜑𝑧)

Dimensionless
current- parameter

𝑟 =
2𝐽𝑧𝛼𝑐

𝜔𝑠0

1/2

Kernel (DC 𝜎𝑐 model of Impendance)

𝜌 = 𝑟/𝜎𝑧0



How to solve Sacherer’s
integral equation
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• Approximate finite-dimension representation of 
integral equation 
– Expand beam density perturbation in terms of orthogonal 

polynomials (conventional approach)
– Radial function  𝑅𝑚 𝐽 on grid (done here)

Problem reduced to determination of eigenvalues
of matrix M

Who wins?

Text-book picture:
Instability emerges from 

crossing of  m=0 and m=-1 modes 

𝒎 = 𝟏

𝒎 = 𝟎

𝒎 = −𝟏

Extrapolate to case with HCs? 

≃ 0.2



Toward a mode-analysis theory that includes HCs

11

Unpertubed

(long.) dynamics: 

unharmonic

oscillator

Hamiltonian w/ quartic 
potential for motion in RF bucket

3𝑟𝑑-HCs
Negligible radiation loss 

Main RF cavity Harmonic  RF cavity

Cubic approx.



Toward a mode-analysis theory that includes HCs
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𝑧 ≃ 𝑟(𝐽𝑧) cos 𝜑𝑧

• Error for dropping higher harmonics of 𝜑𝑧 is  <6%
• Formally the same as in the linear (no HC) case
• Bessel functions  still appear in the kernel of integral 

equation:  𝐽𝑚~0׬
2𝜋
𝑑𝜑𝑧𝑒

−𝑖(𝑚𝜑𝑧+𝑟𝜅 cos 𝜑𝑧)

• No conceptual difficulty in doing an exact calculation 
in terms of generalized ‘Bessel’ functions  (just more  

numerical work) መ𝐽𝑚~0׬
2𝜋
𝑑𝜑𝑧𝑒

−𝑖[𝑚𝜑𝑧+𝑟𝜅 cn(
2෡𝐾𝜑𝑧
𝜋

;
1

2
)]

Exact solution: 
Jacobi elliptic function  

Synchrotron tune is linear with amplitude  

Amplitude(action)-

angle variables

𝑧 ≃ 𝑟(𝐽𝑧 )cos𝜑𝑧

Unpertubed

(long.) dynamics: 

unharmonic

oscillator



Toward a mode-analysis theory that includes HCs
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Beam equilibrium

Amplitude(action)-

angle variables

𝑧 ≃ 𝑟(𝐽𝑧 )cos𝜑𝑧

Unpertubed

(long.) dynamics: 

unharmonic

oscillator



Toward a mode-analysis theory that includes HCs
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Mode expansion of perturbation to

equilibrium

Linearized 

Vlasov equation

Sacherer’s equation for radial 𝑅𝑚 component of m-mode 

Amplitude(action)-

angle variables

𝑧 ≃ 𝑟(𝐽𝑧 )cos𝜑𝑧

Unpertubed

(long.) dynamics: 

unharmonic

oscillator

Modified equilibrium  (ℎ1 ≃ 0.114 is a number) 

Same kernel as in linear case Main difference is singularity
of the  integral equation
(factor multiplying 𝑅𝑚
vanishes for some 𝜌)  

Similar current parameter 

Beam equilibrium



A digression into plasma physics, longitudinal  microwave 
instability: why is the singularity problematic?
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Discretize equation ≡ represent a 𝛿-function by ordinary 

functions.

Orthogonal polynomials? Bad idea…

Eigenfunctions on a grid? Better, but still have 

convergence problems

The “Onion”: stability analysis 
for the 𝝁wave-instability 

dispersion equation

Equation for 1D plasma-waves, microwave instability, has a similar               
singular nature:  

Eigen-functions can be highly singular 
(Dirac distributions).  “Van-Kampen modes”: 

Preferred approach: divide by 𝑝 − Ω and 
integrate to derive the dispersion equation: 

This is the equation one would 
want to discretize to do things
numerically



Preferred numerical approach: regularize Sacherer’s
integral equation before solving it
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• Sweeping  the singularity under the integral rug by making a change 
of the unknown radial function:  

• Finite-dim. approx. now expected to converge 
• Secular equation is now trascendental vs. polynomial:  but Newton method worked 

well here

• (Note: dispersion equation is defined for  𝐼𝑚 Δ ෡Ω > 0)

Regularized Sacherer’s equation

New unknown



Numerical search of most unstable mode 
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Numerical
solution

𝑅𝑒 Ω

𝐼𝑚 Ω

𝐼𝑚 Ω
(log scale)

Numerical
solution

• A root of the dispersion Eq. with 
I𝑚 Ω > 0 exists for any value of the 
current.

• Motion is always unstable (no radiation 
here)

• Consistent with growth rate  ∝ መ𝐼6 for 
small መ𝐼 (this is the current range of 
more practical interest)

40 radial points; 3 azimuthal modes

Mode frequency vs current 

Conjecture that this may be the exact 
asymptotic form in the low መ𝐼 limit

Empirical fit to numerical solution



Restating result in practical form
• Enter radiation: threshold appears when  instability growth time equals 

damping time 𝜏𝑦

• Case where 
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Threshold 
w/ HCs 

Threshold 
w/o HCs 

*The fine print: formula valid for small 
radiation losses;  3rd harmonic cavities. 
Ideal HC setting 

~0.52 for ALSu ~0.62 for ALSu

Natural bunch length

Lengthened 
bunch length



Macroparticle simulations  (elegant)                       
confirm the ∝ ෠𝑰𝟔 power law for growth rate   
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• HC Radiation damping

• Toy model for ALS-U RW transverse impedance with ten  10𝑚 long IDs 
chambers (𝑏 = 3𝑚𝑚 radius; Cu)

• No radiation damping in simulation

Theory vs. simulation



Taking a peek at the unstable mode
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• Unstable mode is a mixture 
of mostly m=0 and m=-1 𝒎 = −𝟏 component peaked

at radius where coherent tuneshift
equals synchrotron tune

𝑅𝑒 Ω

𝐼𝑚 Ω

Density plot of unstable perturbation
(normalized long. phase space)



Conclusions  & Outlook 
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• HCs  Sacherer’s singular integral equation
– Numerical difficulties of naïve discretization

• Robust numerical method  to solve the  Sacherer’s in the presence of 
singularity

• RW-dominated impedance (monolayer pipe, DC conductivity) 
is always unstable (no radiation)

– Growth rate consistent with  Im Δ ෡Ω = 2
5

3 መ𝐼
6

at low-currents.
– Exact asymptotic solution? Rigorous proof?

• With ALS-U like  parameters  HC could reduce the TMCI current-threshold    
to less than half (RW only, including radiation damping)
– Finite chromaticities come to the rescue (see back-up slide; Cullinan et al. work) 

• Expand theory to include 
– Chromaticities
– Exact account of unperturbed motion (use numerical canonical transformation)
– Arbitrary settings of the HCs
– Multi-bunches
– Effect of feed-back systems? 
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Additional slides
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Solving the singular integral equation w/o  
regularization shows slow, (questionable?) convergence 
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Re and Im parts of eigenvalues for increasingly finer radial grid 



Finite chromaticities generally  help more 
when HCs are present

• ALSu instability study with 
current RW Z model
– Include account of NEG 

coating

• Design bunch charge       
Q = 1.15 nC
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Single-bunch instability threshold vs. 𝝃𝒚

ALS-U RW Impedance model 



Complete expression for current threshold

• More accurate than expression on slide 18 (arbitrary radiation energy loss)

• Still assumeing regime where 
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