

A theory for TMCI in the presence of Harmonic Cavities + RW

M. Venturini

LBNL

January 15, 2017

Outline

- The ALS-U Project status, main parameters
 - The importance of RW
- TMCI simulations with Harmonic Cavities (HCs) + RW that motivated this study
- Refresher on TMCI mode-analysis theory (no HCs)
- How to extend mode-analysis theory to TMCI w/ HCs
 - & how to handle numerical difficulties.
- Theory, simulations benchmark
- Conclusions & outlook

ALSu: a DOE Project in the conceptual-design stage

schedule still uncertain

Present ALS:

Energy: 1.9 GeV Current: 500mA Emittance: 2nm

Beam Size @ID8 $\sigma_x/\sigma_y \sim 250/9 \mu m$

TBA lattice Circumf. = 196.8m

ALSu target beam/lattice specs

- $-\varepsilon_x \simeq \varepsilon_y \lesssim 75 \ pm$ (full coupling)
- $-\beta_x \sim \beta_y \lesssim 3 \text{ m}$ in straight sections
 - $\sigma_x \sim \sigma_y \sim 10 \ \mu m$ @IDs
- 2 GeV
- 500 mA

Features

- 9BA lattice
- Maintain 12 period layout
- 4 new IDs/beamlines
- SuperBends
- Swap-out on-axis injection (2nm beam, Accumulator)

Project includes 4 new beamlines and supporting

IDs (tentative)

Narrow ID gap/vacuum chamber aperture

- Delta-type IDs (r=2mm chamber)?
 - **Exploiting small round beam**
- Cu + NEG $(1\mu m?)$ coating
- Most of existing ALS IDs to be inherited. Vacuum chambers?

Concept of Delta ID

 $\lambda_u = 26.7$ mm Magnetic bore diameter =7.5mm

Stay-clear beam diameter=4mm

Most of the sector-arc (round) vacuum chambers to have r=6.5mm radius

- Swap-out of low-emittance beam allows for narrowaperture chamber
 - High-gradient magnets using conventional technology
- Preliminary concept of vacuum chamber in the sector-arcs
 - Combination of r=6.5mm and r=10mm round chambers
 - Narrower chambers to be NEG coated

Expect large RW contribution to the impedance budget

- Multi-bunch, single-bunch
- Longitudinal and especially transverse
 - $-1/r^3$ scaling of RW transverse impedance
- NEG coating

TMCI in the ALSu*

RW-Z Cu-monolayer; no Harmonic Cavities; zero chroms (elegant simulations)

Simulations with Harmonic Cavities showed unexpected result: is Landau not doing his job ???

$\begin{array}{c} \text{Including NEG} \\ \text{lowers threshold by factor} \sim & 2 \\ \text{(still no HCs)} \end{array}$

- "Ideal" setting for HCs (maximum flattening of RF voltage, profile)
- Motion always unstable or very small instability threshold?

Growth rate with HCs

Surprisingly, not much literature on theory of transverse instabilities with HCs. & Somewhat contradictory claims

Cullinan et al.:

- PRAB 2016
- Multi-bunch + chromaticities. Careful macro-particle simulations + mode analysis for linear RF voltage (no HCs)
- TMCI regime excluded
- Conclusion: HCs help

• S. Krinksy:

- Unpublished 2005 (early NSLS-II studies) + NSLS-II conference papers with collaborators
- Macroparticle simulations using home-made Matlab code
- Single-bunch instability. Zero chromaticities. No radiation damping.
- Conclusion: in the presence of RW, HCs lower instability threshold
 - For broad-band resonator Z , HCs may not have much effect, depending on parameters

Y. Chin et al.:

- Part. Accel. 1985 (!)
- Mode analysis of Sacherer's integral equation
- Effect of HCs on single-particle dynamics as a small perturbation + 'hand waving' extrapolation to case of cubic RF voltage
- Conclusion: HCs cause instability at any current (broad-band resonator model of impedance)

TMCI theory (no Harmonic Cavities) on a cheat-sheet.

(localized RW Impedance)

Unpertubed (long.) dynamics: harmonic oscillator

Amplitude(action)angle variables $z = r(I_z)\cos\varphi_z$

$$r = \left(\frac{2J_z\alpha c}{\omega_{s0}}\right)^{1/2}$$

Linearized Vlasov equation Beam equilibrium as a Gaussian

$$\exp(-\frac{z^2}{2\sigma_{z_0}^2} - \frac{\delta^2}{2\sigma_{\delta_0}^2})$$

Mode expansion of perturbation to equilibrium

$$g_1(J_z, \varphi_z; \Omega) = \sum_{m=-\infty}^{\infty} R_m(J_z; \Omega) e^{im\varphi_z}$$

Sacherer's equation for radial component R_m of m-mode

$$(\Delta\hat{\Omega} - m)R_m(\rho) + \hat{I_0}\theta^{-\rho^2/2} \sum_{m'=-\infty}^{\infty} \int_0^{\infty} R_{m'}(\rho'\mathcal{G}_{m,m'}(\rho,\rho')\rho'd\rho' = 0, \qquad \rho = r/\sigma_{z0}$$

Note: Bessel functions come from integrals over z-trajectories $J_m \sim \int_0^{\pi} d\varphi_z e^{-i(m\varphi_z + r\kappa\cos\varphi_z)}$ Kernel (DC σ_c model of Impendance)

$$\mathcal{G}_{m,m'}(\rho,\rho') = i^{(m-m')} \int_{-\infty}^{\infty} d\kappa \frac{\operatorname{sign}(\kappa) - i}{\sqrt{|\kappa|}} J_m(\kappa \rho) J_{m'}(\kappa \rho').$$

Kernel expressed in terms of Hypergeometric functions

$$\int_0^\infty \frac{d\kappa}{\sqrt{\kappa}} J_{\mu}(\kappa \rho_{>}) J_{\nu}(\kappa \rho_{<}) = \frac{\Gamma(a)}{\Gamma(1-b)\Gamma(1+\nu)} \frac{1}{\sqrt{2\rho_{>}}} \frac{\rho_{<}^{\nu}}{\rho_{>}^{\nu}} {}_{2}F_{1}\left(b,a,1+\nu,\frac{\rho_{<}^{2}}{\rho_{>}^{2}}\right)$$

How to solve Sacherer's integral equation

- Approximate finite-dimension representation of integral equation
 - Expand beam density perturbation in terms of orthogonal polynomials (conventional approach)
 - Radial function $R_m(J)$ on grid (done here)

Problem reduced to determination of eigenvalues of matrix M $\det \left(\mathbf{1}\Delta\hat{\Omega} - \mathbf{M} \right) = 0.$

$$M_{m,m',n,n'} = m\delta_{m,m'}\delta_{n,n'} - i\hat{I}e^{-\rho_n^2/2}\mathcal{G}_{m,m'}(\rho_n,\rho_{n'})\rho_{n'}\Delta\rho.$$

Extrapolate to case with HCs?

$$\hat{I}_0 = \frac{Nr_c c}{(2\pi)^{3/2} \gamma \nu_{s0} b^3 \sqrt{c\sigma_c \sigma_{z0}}} \frac{\beta_y L_u}{2\pi} \simeq 0.2$$

Text-book picture: Instability emerges from crossing of m=0 and m=-1 modes

Unpertubed (long.) dynamics: unharmonic oscillator

Main RF cavity Harmonic RF cavity

$$V_{\rm rf}(z) = V_1 \sin(k_1 z + \phi_1) + V_n \sin(k_n z + \phi_n)$$

$$V_{\rm rf}(z) \simeq z^3 [(n^2-1)/6] k_1^3 V_1 \cos \phi_1$$
. Cubic approx.

$$\mathcal{H}=lpha c rac{\delta^2}{2}+lpha c q rac{z^4}{4}$$
 Hamiltonian w/ quartic potential for motion in RF bucket

$$q = \frac{n^2 - 1}{6} \frac{eV_1 k_1^3}{\alpha c E_0 T_0} \cos \phi_1 \simeq \frac{4}{3} \frac{\omega_{s0}^2 k_1^2}{(\alpha c)^2}$$

 3^{rd} -HCs

Negligible radiation loss

Unpertubed (long.) dynamics: unharmonic oscillator

Amplitude(action)angle variables $z \simeq r(I_z)\cos\varphi_z$

Exact solution: Jacobi elliptic function

$$z = r \operatorname{cn}(2\hat{K}\varphi_z/\pi; 1/2)$$

- Formally the same as in the linear (no HC) case
- Bessel functions still appear in the kernel of integral

Error for dropping higher harmonics of φ_z is <6%

- equation: $J_m \sim \int_0^{2\pi} d\varphi_z e^{-i(m\varphi_z + r\kappa\cos\varphi_z)}$
- No conceptual difficulty in doing an exact calculation in terms of generalized 'Bessel' functions (just more

numerical work)
$$\hat{J}_m \sim \int_0^{2\pi} d\varphi_z e^{-i[m\varphi_z + r\kappa \operatorname{cn}(\frac{2\hat{R}\varphi_z}{\pi};\frac{1}{2})]}$$

 $\omega_s(r) = \frac{2\pi}{T_s} = \frac{\pi}{2\hat{K}} \sqrt{q\alpha} cr$

 $z \simeq r(J_z) \cos \varphi_z$

Synchrotron tune is linear with amplitude

Unpertubed (long.) dynamics: unharmonic oscillator

Amplitude(action)angle variables $z \simeq r(J_z)\cos\varphi_z$

Beam equilibrium

$$g_0(r) = \frac{2^{3/4}}{\Gamma(1/4)^2 \sigma_z \sigma_\delta} \exp\left(-h_1 \frac{r^4}{\sigma_z^4}\right)$$

Unpertubed (long.) dynamics: unharmonic oscillator

Amplitude(action)angle variables $z \simeq r(J_z)\cos\varphi_z$

Linearized Vlasov equation

Beam equilibrium

$$g_0(r) = \frac{2^{3/4}}{\Gamma(1/4)^2 \sigma_z \sigma_\delta} \exp\left(-h_1 \frac{r^4}{\sigma_z^4}\right)$$

Mode expansion of perturbation to equilibrium

$$g_1(J_z, \varphi_z; \Omega) = \sum_{m=-\infty}^{\infty} R_m(J_z; \Omega) e^{im\varphi_z}$$

Sacherer's equation for radial R_m component of m-mode

$$(\Delta \hat{\Omega} - m\rho) R_m(\rho) + i \hat{I} e^{-h_1 \rho^4} \sum_{m'=-\infty}^{\infty} \int_0^{\infty} R_{m'}(\rho') \mathcal{G}_{m,m'}(\rho, \rho') \rho'^2 d\rho' = 0.$$

Main difference is singularity of the integral equation (factor multiplying R_m vanishes for some ρ)

Same kernel as in linear case

Modified equilibrium ($h_1 \simeq 0.114$ is a number)

Similar current parameter

$$\hat{I} = \frac{Nr_c c}{\pi^{5/2} \gamma (\nu_s) b^3 \sqrt{c\sigma_d \sigma_z}} \frac{\beta_y L_u}{2\pi}$$

A digression into plasma physics, longitudinal microwave instability: why is the singularity problematic?

Equation for 1D plasma-waves, microwave instability, has a similar singular nature: $(p-\Omega)f(p)+i\hat{I}p\;\frac{e^{-p^2/2}}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(p\;')dp\;'=0$

Eigen-functions can be highly singular (Dirac distributions). "Van-Kampen modes":

$$f(p) = -i\hat{I}\mathcal{P} \frac{1}{\sqrt{2\pi}} \frac{p \ e^{-p^2/2}}{p - \Omega} + \lambda(\Omega)\delta(p - \Omega).$$

Discretize equation \equiv represent a δ -function by ordinary functions.

Orthogonal polynomials? *Bad idea...*Eigenfunctions on a grid? *Better, but still have convergence problems*

Preferred approach: divide by $(p - \Omega)$ and integrate to derive the dispersion equation:

$$1 = -i\hat{I}\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{p \ e^{-p^2/2}}{p - \Omega} dp.$$

BERKELEY LAB

This is the equation one would want to discretize to do things numerically

The "Onion": stability analysis for the μwave-instability dispersion equation

Preferred numerical approach: regularize Sacherer's integral equation before solving it

 Sweeping the singularity under the integral rug by making a change of the unknown radial function:

New unknown
$$S_m(\rho) = (\Delta \hat{\Omega} - m\rho) R_m(\rho) e^{h_1 \rho^4}$$

Regularized Sacherer's equation

$$S_{m}(\rho) + i\hat{I} \sum_{m'=-\infty}^{\infty} \int_{0}^{\infty} \frac{S_{m'}(\rho')e^{-h_{1}\rho'^{4}}}{\Delta\hat{\Omega} - m'\rho'} \mathcal{G}_{m,m'}(\rho,\rho')\rho'^{2}d\rho' = 0.$$

- Finite-dim. approx. now expected to converge
- Secular equation is now trascendental vs. polynomial: but Newton method worked well here
- (Note: dispersion equation is defined for $Im \ \Delta \ \widehat{\Omega} > 0$)

Numerical search of most unstable mode

Mode frequency vs current

- A root of the dispersion Eq. with Im $\Omega > 0$ exists for any value of the current.
- Motion is always unstable (no radiation here)
- Consistent with growth rate $\propto \hat{I}^6$ for small \hat{I} (this is the current range of more practical interest)

$$\operatorname{Im} \, \Delta \hat{\Omega} = (2^{5/3} \hat{I})^6$$

Conjecture that this may be the exact asymptotic form in the low \hat{I} limit

Im
$$\Delta \hat{\Omega} = \frac{(2^{5/3}\hat{I})^6}{1 + 0.55 \times (4\hat{I})^5 [1 + \tanh(\hat{I}/2)]}.$$

Restating result in practical form

- Enter radiation: threshold appears when instability growth time equals damping time au_{v}
- Case where $\operatorname{Im} \Delta \hat{\Omega} = (2^{5/3} \hat{I})^6$

Natural bunch length

*The fine print: formula valid for small radiation losses; 3rd harmonic cavities. Ideal HC setting

Macroparticle simulations (elegant) confirm the $\propto \hat{I}^6$ power law for growth rate

Theory vs. simulation

TABLE I: Beam/machine parameters loosely based on ALS-U

F		
Ring circumference	C	196.5 m
Beam energy	E_0	2 GeV
Design bunch current	I_b	$1.76 \mathrm{mA}$
Vertical tune	ν_y	20.368
Momentum compaction	α	2.79×10^{-4}
Natural energy spread	σ_{δ}	0.835×10^{-3}
Energy loss per turn	U_0	182 keV
Vertical damping time	$ \tau_y $	$14.4 \mathrm{\ ms}$
Main rf cavity voltage	V_1	$0.76~\mathrm{MV}$
Main rf cavity frequency		500 MHz
Harmonic rf cavity frequency		1.5 GHz
Rms bunch length (no HCs)	σ_{z0}	3.2 mm
Linear synchr. tune (no HCs)	ν_{s0}	2.3×10^{-3}
Rms bunch length with HCs	σ_z	13 mm
Avg. synchr. tune with HCs	$\langle \nu_s \rangle$	0.44×10^{-3}
Total ID length	L_u	40 m
ID vacuum chamber radius	b	3 mm
Avg. beta function along IDs	$\beta_{m{y}}$	3 m
0	1 9	

- Toy model for ALS-U RW transverse impedance with ten 10m long IDs chambers (b=3mm radius; Cu)
- No radiation damping in simulation

Taking a peek at the unstable mode

 Unstable mode is a mixture of mostly m=0 and m=-1

Density plot of unstable perturbation (normalized long. phase space)

Conclusions & Outlook

- HCs → Sacherer's singular integral equation
 - Numerical difficulties of naïve discretization
- Robust numerical method to solve the Sacherer's in the presence of singularity
- RW-dominated impedance (monolayer pipe, DC conductivity) → is always unstable (no radiation)
 - Growth rate consistent with $\operatorname{Im} \Delta \ \widehat{\Omega} = \left(2^{\frac{5}{3}}\widehat{I}\right)^6$ at low-currents.
 - Exact asymptotic solution? Rigorous proof?
- With ALS-U like parameters HC could reduce the TMCI current-threshold to less than half (RW only, including radiation damping)
 - Finite chromaticities come to the rescue (see back-up slide; Cullinan et al. work)
- Expand theory to include
 - Chromaticities
 - Exact account of unperturbed motion (use numerical canonical transformation)
 - Arbitrary settings of the HCs
 - Multi-bunches
 - Effect of feed-back systems?

Acknowledgements

R. Warnock (SLAC), and ALS AP group

Additional slides

Solving the singular integral equation w/o regularization shows slow, (questionable?) convergence

Re and Im parts of eigenvalues for increasingly finer radial grid

Finite chromaticities generally help more when HCs are present

Single-bunch instability threshold vs. ξ_y

 ξ_y

- ALSu instability study with current RW Z model
 - Include account of NEG coating
- Design bunch charge Q = 1.15 nC

ALS-U RW Impedance model

Complete expression for current threshold

- More accurate than expression on slide 18 (arbitrary radiation energy loss)
- Still assumeing regime where ${
 m Im} \ \Delta \hat{\Omega} = (2^{5/3} \hat{I})^6$

$$N_c = N_{c0} \times \frac{\pi}{4 \times 2^{2/3} \hat{I}_{c0}} \left(\frac{1}{\tau_y h_2 \langle \omega_s \rangle} \right)^{1/6} \frac{\langle \nu_s \rangle}{\nu_{s0}} \left(\frac{\sigma_z}{\sigma_{z0}} \right)^{1/2}$$

$$\hat{I}_{c0} \simeq 0.197$$

$$h_2 = 2^{3/4} \pi^{3/2} / \Gamma(1/4)^2 \simeq 0.712$$

