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Outline

* The ALS-U Project status, main parameters
— The importance of RW

* TMCI simulations with Harmonic Cavities (HCs) + RW
that motivated this study

* Refresher on TMCI mode-analysis theory (no HCs)

* How to extend mode-analysis theory to TMClI w/ HCs
— & how to handle numerical difficulties.

* Theory, simulations benchmark

 Conclusions & outlook
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ALSu: a DOE Project in the conceptual-design stage

schedule still uncertain

ALS:
= 5 GoV * ALSu target beam/lattice specs
ga\f‘;’gy\t 15'Oowuf\ — & =&, S 75 pm (full coupling)
£ yittonc? - Lt = Bx~ﬁy < 3 m in straight sections
. . ~0,~10 um @IDs
S%@@I’Dy Ox~0y U
O, ~ 250/9 ~ 2 GeV
X

— 500 mA

* Features
— 9BA lattice
— Maintain 12 period layout
— 4 new IDs/beamlines
— SuperBends

— Swap-out on-axis injection
(2nm beam, Accumulator)
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Project includes 4 new beamlines and supporting

IDs (tentative)

8.0.1 8.01
7.0.1 ~2 m long N
* Narrow ID ga p/ vacuum ~2m long 260 -1400 eV 8.0.2 =t
260 -2500 eV Polarization Control [ ~3 m | 822
Cha m ber a pertu re Only linear polarization Inclined +/- 90° A1 - Tkz\r;g 8.3.1
Double magnet rows / Linear Polarization 8.3.2
Heat load <= Cosmic 501 8.0.2 - Possibly in-vacuum | 9.0.2
* Delta-type IDs (r=2mm 5322 4 9:3.1
chamber)? 5321 — | Mg Y1001 32
el e 5.3.1 , ~4 m long 0.1
— Exploiting small round beam £ 4 260 -2000 eV i

5.0.2 Polarization Control 32

* Cu+ NEG (1um?) coating o \\a §IN: o2

4.0.3 1131

.. 4.0.2 &, 11.3.2

 Most of existing ALS IDs to be 3.32 AN D 1201
inherited. Vacuum 321 S 1202
chambers? = a e

24 o 12.3.1

20

Concept of Delta ID
Ay = 26.7mm
| ~ Magnetic bore diameter =7.5mm -

R
_ Stay-clear beam diameter=4mm N
=3 ALS-U "‘




Most of the sector-arc (round) vacuum
chambers to have r=6.5mm radius

3D view of .
sector-arc
vacuum
chamber

* Swap-out of low-emittance beam allows for narrow-
aperture chamber

— High-gradient magnets using conventional technology

* Preliminary concept of vacuum chamber in the
sector-arcs

— Combination of r=6.5mm and r=10mm round chambers
— Narrower chambers to be NEG coated

\ ALS-U Vacuum Layout
] )
o £ e ) vcas |
=0 BN Discrete Pumy - H
s |2 — ’ o & [ w Sectors with No IR
€ c ® Vacuum Instrumentation d A — 1 :
§6 (gauge, RGA, /e vaie) . s =rry Cu, Beamline
@ C - — - T, #,
- Independently supported BPM with side bel ows\J g i — = < . ’ﬁ'{: 42
8 |— o ] A Ph
‘ | | | - JF o otons
BPM supported by vacuum chamber, - I | A % A o P
N B | @ } 8 Cy
] X X ] ~ | O
BN Flange-Bellow-Flange assembly & ) 2 8PN #8 BPM#10. | - 5
BPM M y
I Fange Assembly ® T2 BPM #11 b
& BPM # 1,
SRAbsorber o
) A oo $
E] Gate Valve O o &
5 7 & %
& M 24 BPM 4 &
BPM #15 .
L v Vacuum Chamber (VC) | Beam Path 1D [mm) Pro’ hamber Material | Cooled wall |NEG Coated D‘XJ
2 c«; BPM #3 1,13,14,15 20 Cireular Stainless Steel NO | NO | BPM#IE 4 AGO
0 \7 23 20 whole | Copper VS BPM #17 R
L d&a 7 BPM #2 412 20/13 Crotch absorber chamber | Stainless Stee NO BPM #18 405"
y T BpMEL 69 bE] nte-chamber inii NO e@\.
57,810, 11 13 cular | Copper YES U,




Expect large RW contribution to the
impedance budget

e Multi-bunch, single-bunch

* Longitudinal and especially transverse
— 1/73 scaling of RW transverse impedance

* NEG coating

TMCI in the ALSu®

RW-Z Cu-monolayer; no Harmonic Cavities; zero chroms (elegant simulations)

Mode Analysis: RW Cu Monolayer y—centroid; w/ Hanning window

0.369 ; 0.001,
0368 o m = o <
e Y Mo = '
_0.367 de B | 3
- . | & o , ‘o
0.366 : Wl - g = ;- S
L] ! . . Lol E : ri?
0.365 im = —1 mode i | 2 | =
1 1 | i
0364 : —_— : - 10—9 |
i2 4 6 8 !0 0.362 0.364 0.366 0.368 0.370 0.372 0.374
1 1

threshold Q,
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Simulations with Harmonic Cavities showed unexpected
is Landau not doing his job ???

result:

lowers threshold by factor ~2

Re Zy, [Im Z,| (k{}/m)

0.369

0.368

0.367
=

0.366

0.365

0.364

Including NEG

(still no HCs)

Weighted RW Z,, (Total); NEG on Cu Round Chamber

0.1 1

10 100

frequency w/2x (GHz)
Mode Analysis: RW 1umNEG on Cu; round pipe

1000

Iy (mA)

1
1

“ I threshold
o
o |
L 2N |

° L] 0}1\\
1
1
1
1
2 4 6 8 10

=1.um

NEGd

=2k

ele run; Npart

* “ldeal” setting for HCs (maximum
flattening of RF voltage, profile)

 Motion always unstable or very
small instability threshold?

Growth rate with HCs

RW 1umNEG on Cu; round pipe; HCAV on
1000 "
500

200 thre§hold
100 !
50

growth time (ms)

10

1

1

1

1

20 Radiation damopina |
nuauragarorr aar IPII y 1
r

1

1

1

1

ele run; Npart=2k




Surprisingly, not much literature on theory of transverse
instabilities with HCs. & Somewhat contradictory claims

e Cullinan et al.:

PRAB 2016

Multi-bunch + chromaticities. Careful macro-particle simulations +
mode analysis for linear RF voltage (no HCs)

TMCI regime excluded
Conclusion: HCs help

e S. Krinksy:

Unpublished 2005 (early NSLS-1l studies) + NSLS-Il conference papers with
collaborators

Macroparticle simulations using home-made Matlab code
Single-bunch instability. Zero chromaticities. No radiation damping.

Conclusion: in the presence of RW, HCs lower instability threshold

* For broad-band resonator Z , HCs may not have much effect, depending on
parameters

e Y.Chinetal.:

rrererr "I|
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Part. Accel. 1985 (!)
Mode analysis of Sacherer’s integral equation

Effect of HCs on single-particle dynamics as a small perturbation + ‘hand
waving’ extrapolation to case of cubic RF voltage

Conclusion: HCs cause instability at any current (broad-band
resonator model of impedance)

G5
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TMCI theory (no Harmonic Cavities) on a cheat-sheet.
(localized RW Impedance)

Beam equilibrium as a
Gaussian

Amplitude(action)- exp(— Z"’2 _ 5 )
angle variables 2070 20502

Unpertubed
(long.) dynamics:
harmonic

oscillator Mode expansion of perturbation to

equilibrium
[

A
Ml
rereers

Dimensionless
BERKELEY LAB JRSTTaeNer parameter

dr _ ] B ['(a) 1 p% _
ﬁ'jp(ﬁ-p>)Jy[hp<) - I-(l _ b)F(l + I/) \/% p; QFI ba a, 1 + v, p%




How to solve Sacherer’s Text-book picture:

integral equation Instability emerges from
crossing of m=0 and m=-1 modes

e Approximate finite-dimension representation of

integral equation 15
— Expand beam density perturbation in terms of orthogonal 1.0 bownk
polynomials (conventional approach) ' "
— Radial function R,,(]) on grid (done here) C 0.5
<00
e . % _(.5;
Problem reduced to determination of eigenvalues 0
of matrix M y _ e
det (1AQ M) 0. 13l
ﬂf{m,m’,n,n" = '?nﬁsm,m’én,n’ - 'jje_pi '/ng_,m’ (p?h pn’)p’n’AP' 00
Extrapolate to case with HCs? 0.5
E
AT ; 0.0
" _L'\' TEC I.l:j)y Lu ,_E;
o = =57 3 =02 0.5
(27)3/2ypgob Jeo o020 2 -0.
@ 2% 0.0 |
jler = - 9@,6, X

vsSe®t— \Who wins? 109‘9”@; AT/ 48




Toward a mode-analysis theory that includes HCs

Unpertubed
(long.) dynamics: Main RF cavity Harmonic RF cavity

unharmonic + .- + .-
oscillator hi(z) = Visin(krz 4 ¢1) 4+ Vi sin(kn 2 + ép)

Vie(2) = 23[(n? — 1)/6]k3Vi cosé1.  Cubic approx.

Hamiltonian w/ quartic

52 4
7_[ — (XC 9 HC{II potential for motion in RF bucket

n? —1 eVqk} ,_ 4 w2 k3

= — cos P > — ——
g 6 «acEyTy 3 (ac)?
37-HCs

Negligible radiation loss
BERKELEY LAB 11 ALS-U ’J"




Toward a mode-analysis theory that includes HCs

Exact solution:

Unpertubeq Amplitude(action)- Jacobi elliptic function
(long.) dynamics:

angle variables P .rCll(Qﬁr;pz/Tr; 1/2)

unharmonic z ~1(J,)cos g,

oscillator

* Error for dropping higher harmonics of ¢, is <6%
* Formally the same as in the linear (no HC) case
e Bessel functions still appear in the kernel of integral

Z = TUZ) COS @, equation: J,~ fozn dp, e tmez+TE Cos ¢z)

* No conceptual difficulty in doing an exact calculation
in terms of generalized ‘Bessel’ functions (just more

. R(pz 1
. # 21 —i[m@,+rK cn(322z,2
numerical work) J,~ [ do,e (mez Sl

2m o
Ty 2K

-~
— (%
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ws (1) = qoer Synchrotron tune is linear with amplitude




Toward a mode-analysis theory that includes HCs

Beam equilibrium

Unpertubed
(long.) dynamics:
unharmonic
oscillator

Amplitude(action)-

angle variables
z ~1(J,)cos @,

Uy=0., Upy=0.182, /;=0.282 MeV - Up=0.282MeV, V1=0.7T6MV
= 1.0
=
< . 05
= g
ln < 00
T N
= Z 05
= |
- I -0t =
-0.04 -0.02 0.00 0.02 0.04 = -03 =02 -0.1 00 0.1 0.2 0.3
z (m) 7 (m)

-~
_, \ '
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Toward a mode-analysis theory that includes HCs

Beam equilibrium

Unpertubed | Amplitude(action)-
(long.) dynamics: angle variables

unharmonic z ~1(J,)cos g,

oscillator
Linearized
Vlasov equation
Sacherer’s equation for radial Rm component of m-mode

—
@ m(p) +ile " Z / R (P Gm.me (p. p')p"dp’ = 0

Same kernel as in linear case

Mode expansion of perturbation to
equilibrium

Main difference is singularity
of the integral equation Modified equilibrium (h, =~ 0.114 is a number)

factor multiplying R -
( : PIYINE fm Similar current parameter
vanishes for some p)

P 7 _ Byl l

BERKELEY LAB - 5/2“@53 co Jz 27 ALS-U ‘




A digression into plasma physics, longitudinal microwave
instability: why is the singularity problematic?

Equation for 1D plasma-waves, microwave instability, has a similar

) _ o—P?/2
singular nature: (p +ifp f fp")dp' =

Eigen-functions can be highly singular .1 peP?
(Dirac distributions). “Van-Kampen modes”: N

Discretize equation = represent a §-function by ordinary The “Onion”: stability analysis
functions. for the uwave-instability
Orthogonal polynomials? Bad idea... dispersion equation
Eigenfunctions on a grid? Better, but still have 5
convergence problems )
Preferred approach: divide by (p — Q) and g 3
integrate to derive the dispersion equation: =2
=
oo
———dp. . -1
: e This is the equation one would \/
e want to discretize to do things | "= & or 13
—_— numerically Re 1/iW()




Preferred numerical approach: regularize Sacherer’s
integral equation before solving it

* Sweeping the singularity under the integral rug by making a change
of the unknown radial function:

ow®
New unknown o\d unk?

Sm(p) = (AD - m—P)Rm(ﬂ)ehlpd

Regularized Sacherer’s equation

00 14

2 - Sm’(,of)ff_hlp N 12 71
Sm(p) + I Z /.; N ' Gm.m’ (p,p")p~dp" = 0.

* Finite-dim. approx. now expected to converge
* Secular equation is now trascendental vs. polynomial: but Newton method worked
well here

« (Note: dispersion equation is defined for Im A Q > 0)

\ars
ALS-U \‘(J)“
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Numerical search of most unstable mode
Mode frequency vs current

Im A

Re Q)

Numerical
solution

* Aroot of the dispersion Eq. with
Im Q) > 0 exists for any value of the

current.

here)

more practical interest)

* Motion is always unstable (no radiation

- Consistent with growth rate « [ for
small [ (this is the current range of

Tm AQ

(25/3f)ﬁ

Conjecture that this may be the exact

asymptotic form in the low I limit

to numerical solution

(ansf)ﬁ

1+ 0.55 x (41)°[1 + tanh(1/2)]

0.005 Numerical
solution
0.001
0.0 0.1 0.2 0.3 0.4
i
1
o, IM )
Lo (log scale) Empirical fit
-6 -
1o Im AQ =
1078
10—10 ]
0.01 0.050.10 0.501.00

I

40 radial points; 3 azimuthal modes

ALS-U
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Restating result in practical form

e Enter radiation: threshold appears when instability growth time equals
damping time 7,

e Case where Im AQ = (25/3])8

Natural bunch length

I
Threshold Threshold ‘l
w/ HCs w/o HCs T 1/6 1/3
N,=~115% N 0 70
c — 4. cl)
P Tyl/s0 f:z
~0.52 for ALSu Lengthened ~0.62 for ALSu
*The fine print: formula valid for small
radia{ion i)ssesf 3rd harmonif cavities. bU”Ch length l

BERKELEY LAB Ideal HC setting 18 ALS-U ‘




Macroparticle simulations (elegant)
confirm the « I® power law for growth rate

Theory vs. simulation

TABLE I: Beam/machine parameters loosely based on ALS-U

| . . . Ring circumference C 196.5 m
100} Radiation damping Do enerey B| 2 Gev
L Design bunch current I, 1.76 mA
__:_'\ 50 Vertical tune 1y 20.368
| I Momentum compaction a | 279 x 1074
\_C:J/ 20 Natural energy spread a5 10.835 x 1072
D) I Energy loss per turn Uy 182 keV
~ Vertical damping time Ty 14.4 ms
g 10 Main rf cavity voltage Vi 0.76 MV
= i Main rf cavity frequency 500 MHz
5 - Harmonic rf cavity frequency 1.5 GHz
E I Rms bunch length (ne HCs) |o.0 3.2 mm
e I Linear synchr. tune (no HCs) | v | 2.3 x 1073
an 2 - Rms bunch length with HCs | o, 13 mm
Avg. synchr. tune with HCs | ()] 0.44 x 1073
1 L Total ID length Ly 40 m
ID vacuum chamber radius b 3 mm
Avg. beta function along IDs | 3, 3m

16 18 2 22 25 3
I, (mA)

* Toy model for ALS-U RW transverse impedance with ten 10m long IDs
chambers (b = 3mm radius; Cu)

’\| "\'| * No radiation damping in simulation \'O\
BERKELEY LAB 19 ALS-U ‘J‘




Taking a peek at the unstable mode

e Unstable mode is a mixture

of mostly m=0 and m=-1 m = —1 component peaked

at radius where coherent tuneshift
equals synchrotron tune

Density plot of unstable perturbation
(normalized long. phase space)
l T —

0.20
0.15
0.10

Re R,(p)

0.05

0.00

0.00

-0.05

-0.10

Im R, (p)

-0.15

-0.20 m=-—1

20




Conclusions & Outlook

 HCs =» Sacherer’s singular integral equation
— Numerical difficulties of naive discretization

* Robust numerical method to solve the Sacherer’s in the presence of
singularity

«  RW-dominated impedance (monolayer pipe, DC conductivity) =
is always unstable (no radiation)

5
— Growth rate consistent with Im A Q = (251) at low-currents.
— Exact asymptotic solution? Rigorous proof?

* With ALS-U like parameters HC could reduce the TMCI current-threshold
to less than half (RW only, including radiation damping)
— Finite chromaticities come to the rescue (see back-up slide; Cullinan et al. work)

* Expand theory to include
— Chromaticities
— Exact account of unperturbed motion (use numerical canonical transformation)
— Arbitrary settings of the HCs
— Multi-bunches
* M — Effect of feed-back systems? l

BERKELEY LAB 21 ALS-U ‘
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Additional slides

G5

23 ALs-u PP




Solving the singular integral equation w/o
regularization shows slow, (questionable?) convergence

Re and Im parts of eigenvalues for increasingly finer radial grid

mmale; nmaxzs mmale; nmax:20 mmale; nmaX:40
3 | | | 3F ‘ ' 3 ' ‘ ‘
21 21 2
3 ERN— I
9 — S v [ PeVeeme—"-r——— Q = =
] ———— . & _1} . ~ _1
2 o | =y 2
—3F | | — —37 , ‘ — -3
0.0 01 02 03 04 0.0 01 02 03 04 00 01 02 03 04
1 1 I
0.500 | e — 0.500 | L — 0.500:
< 0.100 R . 0.100} I« 0.100!
S 0:050 n © G 0050 i S 0050
E 0.010 . | E 0.010 gﬂi; | E 0.010}
0.005 o : 0.005 L 50 | 0.005:
H : g e
0.001- : ‘ : 0.001 o ‘ ‘ ‘ 0.001 L ‘ ‘ .
00 01 02 03 04 00 01 02 03 04 00 01 02 03 04
1 ] 1

rrererr i,

NON
ALS-U ‘9“
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Finite chromaticities generally help more
when HCs are present

Single-bunch instability threshold vs. &,

5 ° v ° @
o co® "’ e ALSu instability study with
current RW Z model
4 e w/ HCs o
° — Include account of NEG
_— ¢ °® coating
Q3 . . w/o HCs
el e ® "N 9 o .
= . * Design bunch charge
S 2 Q = 1.15nC
ol ®
1 «%e oo ®
¢ RW only
% 1 > 3 4 5
ALS-U RW Impedance model
g-}! Vertical RW Impedance: Total and Arcs Contributions Vertical RW Impedance: ID in 10.0
LEN gt
g« 1.00 % 1.00F——
i 0.50 5 050+
cerrers i|\| @i 0.10 @: 0.10
EO‘OS 1T ST :‘é 005 =t .
BERKELEY LAB 0.01 0.1 1 10 100 ~[OOD 0.01 0.1 1 10 100 1000

frequency w/2m (GHz) frequency w/2r (GHz) F




Complete expression for current threshold

More accurate than expression on slide 18 (arbitrary radiation energy loss)

e Still assumeing regime where Im AQ) = (25f3f)6

- 1 1/6 <-7-/3> o. 1/2
Nc — NcO X —
4 x QQ/SICU Tth <ws> Vs0 020

A

I.o ~ 0.197
ho = 23/473/2 )T (1/4)% ~ 0.712
\(’
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