

Progress in NEG Coatings for Particle Accelerators

O.B. Malyshev and R. Valizadeh,

ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK

7th Low Emittance Rings Workshop

15-17 January 2018 CERN, Geneva, Switzerland

Outlook

- Introduction
- Pumping properties
- Desorption properties
- Bombardment induced activation and pumping
- Surface resistance
- SEY
- Summary

Two concepts of the ideal vacuum chamber

Traditional:

- <u>surface which outgasses as little as</u> possible ('nil' ideally)
- surface which *does not pump* otherwise that surface is contaminated over time

Results in

- Surface cleaning, conditioning, coatings
- Vacuum firing, ex-situ baling
- Baking in-situ to up to 300°C
- Separate pumps

'New' (C. Benvenuti, CERN, ~1998):

- <u>surface which outgasses as little as</u> possible ('nil' ideally)
- a surface which *does pump*, however, will not be contaminated due to a very low outgassing rate

Results in

- NEG coated surface
- There should be no un-coated parts
- Activating (baking) *in-situ* at **150- 180°C**
- Small pumps for C_xH_y and noble gases

What NEG coating does

1) Reduces gas desorption:

- A pure metal (Ti, Zr, V, Hf, etc.) film ~1-μm thick without contaminants.
- A barrier for molecules from the bulk of vacuum chamber.
- 2) Increases distributed pumping speed, S:
 - A sorbing surface on whole vacuum chamber surface

 $S = \alpha \cdot A \cdot v/4;$

- where α sticking probability,
 - A surface area,
 - v mean molecular velocity

Comparison of PSD from 316LN and NEG

Samples coated with Ti-Zr-V at CERN (Switzerland) Experiments on the SR beam line at BINP (Russia)

O.B. Malyshev

Using these result for the ILC-DR design

Average pressure after 100 Ahr beam conditioning:

inside a stainless steel tube S_{eff} = 200 l/s every 5 m

inside a NEG coated tube S_{eff} = 20 I/s every 30 m

NEG coating for accelerators

- First used in the ESRF (France);
- ELETTRA (Italy);
- Diamond LS (UK);
- Soleil (France) first fully NEG coated;
- LHC (Switzerland) longest NEG coated vacuum chamber;
- SIS-18 (Germany); MAX-IV (Sweden); Solaris (Poland)
- and many others.

Meanwhile:

- NEG film capacity for CO and CO₂ is ~1 ML:
 - If $P = 10^{-9}$ mbar then 1 ML can be sorbed just in ~10³ s;
 - Lab measurements of different NEG coatings often don't repeat CERN's data on sticking probability and capacity;
 - However, NEG coated parts of accelerators work well.

O.B. Malyshev

- Input data for accelerator design:
 - $\eta(D,E,T_a)$, $\alpha(M,T_a)$, pumping capacity;
- Better understanding:
 - what and why;
 - practical 'do's and 'don't's;
- Further development of this coating:
 - lower η , T_a, SEY;
 - higher $\alpha(M)$, pumping capacity;
 - optimising for an application.

Deposition method

Cylindrical magnetron deposition for vacuum chambers

Region scan of XPS core levels of Ti, Zr, C and V of a Ti-Zr-V film (surface composition and chemical bounding)

O.B. Malyshev

RBS (film compositions in bulk)

O.B. Malyshev

SEM images of films (film morphology)

columnar

dense

O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.

ASTeC activation procedure

Advantages of ASTeC activation procedure:

- better activation (less poisoning by das from uncoated parts),
- lower electricity cost,
- lower total thermal expansion.

O.B. Malyshev, K.J. Middleman, J.S. Colligon and R. Valizadeh. J. Vac. Sci. Technol. A 27 (2009), p. 321.

O.B. Malyshev

NEG pumping properties

O.B. Malyshev

Thin films deposited on Si sample from a single metal wire

Cylindrical Magnetron: Power = 60 W, $P_{Kr} = 10^{-2}$ mbar, Deposition rate = 0.14-0.16 nm/s, T = 120°C.

Average grain size: 100 – 150 nm. Ti: Zr: Hexagonal lattice structure V: Rhombohedral lattice structure Hf: Hexagonal lattice structure

O.B. Malyshev

Thin film deposited on Si sample from two twisted wires

Cylindrical Magnetron:

Power = 60 W, $P_{Kr} = 10^{-2}$ mbar, Deposition rate = 0.13-0.16 nm/s, T = 120°C.

Average grain size:

Ti-V: 50 – 100 nm, Hexagonal lattice structure Ti-Zr: 50 – 100 nm, Hexagonal lattice structure Zr-V: **10 – 20 nm**, Rhombohedral lattice structure

Ternary NEG film deposited on Si test sample from twisted Ti, V, Zr, and Hf wires and TiZrV alloy wire

Cylindrical Magnetron: Power = 60 W, $P_{Kr} = 10^{-2}$ mbar, deposition rate = 0.12 nm/s, T = 120°C. Average grain size 5 nm. Hexagonal lattice structure.

Quaternary NEG alloy film deposited on Si test sample from twisted Ti, V, Zr, and Hf wires

Cylindrical Magnetron: Power = 60 W, $P_{Kr} = 10^{-2}$ mbar, deposition rate = 0.12 nm/s, T = 120°C. Very glassy structure.

Pumping properties of some NEG films

Ti-Zr-Hf-V is the best Hf-Zr-V, Ti-Zr-Hf, Ti-Hf-V and Zr are comparable Ti-Zr-V is lower Zr-V (best binary alloy) has the lowest activation temperature

Pressure in the accelerator vacuum chamber

 $P\propto rac{\eta}{lpha}$

where

- η desorption yield (photon, electron or ion stimulated desorption)
- α sticking probability

 Improving pumping properties is limited:

 $\alpha \leq 1$

- $0.005 < \alpha_{H2} < 0.02$
- $0.1 < \alpha_{CO} < 0.5$
- $0.4 < \alpha_{CO2} < 0.6$
- Reducing the desorption yields η in orders of magnitude was our aim

Reducing the gas desorption from the NEG coatings

- Main gases in the NEG coated vacuum chamber are H_2 and CH_4
 - Only H₂ can diffuse through the NEG film under bombardment or heat
 - CH₄ is most likely created on the NEG surface from diffused H₂ and C (originally from sorbed CO and CO₂)
 - Therefore the H₂ diffusion must be suppressed

• Where H₂ come from?

Gas molecules are contained on the NEG coating surface after exposure to air minimise exposure to air inside the NEG coating trapped during deposition purity of discharge gas background pressure in subsurface substrate layer substrate bakeout before NEG deposition in the substrate bulk vacuum firing

SEM images of films (film morphology)

columnar

dense

Best for pumping

A first candidate for a barrier

O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.

O.B. Malyshev

Electron stimulated desorption facility

ESD is studied as a function of

• Electron energy

Facilities Council

- Dose
- Wall temperature (-5 to +70°C)
- Activation/bakeout temperature
- Can be used for samples with:
 - Specially treated samples
 - Vacuum fired, polished, etc.
 - Low desorption coating
 - No coatings
 - NEG coating
 - ESD measurements
 - Sticking probability measurements

ESD yield from NEG coated samples

O.B. Malyshev

ESD yield from NEG coated samples

O.B. Malyshev

H₂ ESD from NEG coated vacuum fired 316LN

Dual layer

Columnar layer:

- Activated at lower temperature
- Provides higher sticking probability and pumping capacity
- Dense layer:
 - Provides lower ESD
- Dual Layer:
 - Combines benefit of both
 - For more details: see A. Hannah's poster EM286 on Thursday

Columnar NEG Coating

Dense NEG Coating

Bulk metal

Vacuum

O.B. Malyshev

Dual layer

O.B. Malyshev, R. Valizadeh and A.N. Hannah. JVST A 34, 061302 (2016)

ESD for dense, columnar and dual layer NEG (a) Dense film (b) Columnar film (c) Dual Layer

NEG Coated Vacuum Chamber: SR Induced Pumping

NEG TiZrV coated surface saturated with CO (i.e. no pumping speed) exposed to SR

Electron stimulated NEG activation

The electron stimulated NEG activation efficiency estimated as $7.9 \times 10^{-4} < \sigma_1 < 2.4 \times 10^{-3}$ [CO/e⁻]

O.B. Malyshev

Electron stimulated NEG activation

The electron stimulated NEG activation efficiency estimated as

Science & Technolog Facilities Council

CH₄ problem

- NEG does not pump CH₄ and other hydrocarbons
- However, CH_4 can be pumped in a presence of SR or electron bombardment: $\chi = 2.3 \times 10^{-5} CH_4/e^{-1}$.

O.B. Malyshev

Surface resistance: method

- The cavity geometry consists of two parts:
 - a body of the cavity
 - a planar sample,
 - separated by an air gap.
- Contactless
- RF chokes in order to keep the RF power within the cavity

$$R_S^{sam} = \frac{G Q_0^{-1} - R_S^{cav} p_c}{p_s}$$

- Modelled with CST Microwave Studio.
- $G = 235 \Omega$.
- The field ratios $p_c = 0.625$ and $p_s = 0.375$ for perfect electric conductor boundary conditions.

NEG coatings

- NEG films
 - columnar
 - dense
- Deposited on:
 - polycrystalline copper
 - silicon Si(100) substrates.
- The substrate size was 100 mm × 100 mm × 2 mm
- Sample thickness:
 - from 0.7 to 18 μm

O.B. Malyshev, L. Gurran, P. Goudket, K. Marinov, S. Wilde, R. Valizadeh and G. Burt.. Nucl. Instrum. Methods Phys. Res., A 844, 99-107 (2017)

O.B. Malyshev

Science & Technology

Facilities Counci

Analytical model

 The expressions for the surface impedance of a planar metallic film deposited on a substrate (dielectric or metallic) are derived by following the standard approach employed in calculating the transmission and reflection coefficients in layered media

$$R_{s} = R_{1} \frac{1 - \delta^{2} \exp(-4\kappa_{1}d_{1}) - 2\delta \sin(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}{1 + \delta^{2} \exp(-4\kappa_{1}d_{1}) + 2\delta \cos(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}$$
 for NEG on metal substrate;

$$R_{S} = R_{1} \frac{1 - \exp(-4\kappa_{1}d_{1}) + 2\sin(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}{1 + \exp(-4\kappa_{1}d_{1}) - 2\cos(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})} \quad \text{for NEG on Si substrate}$$

O.B. Malyshev, L. Gurran, P. Goudket, K. Marinov, S. Wilde, R. Valizadeh and G. Burt.. Nucl. Instrum. Methods Phys. Res., A 844, 99-107 (2017)

O.B. Malyshev

Science & Technology Facilities Council

The surface resistance RS of dense and columnar NEG coatings on copper and silicon substrates as a function of film thickness

The bulk conductivity was obtained with the analytical model:

 $\sigma_d = 1.4 \times 10^4 S/m$ for the columnar NEG coating

 $\sigma_d = 8 \times 10^5$ *Slm* for the dense NEG coating

The surface resistance R_s as a function of NEG film thickness on copper at various frequencies

O.B. Malyshev

SEY from columnar NEG

O.B. Malyshev

Ongoing studies

- NEG coating of narrow tubes < 10 mm diameter
 - See presentations at IPAC'2018
- Higher electric conductivity NEG coatings
 - i.e. better than for Ti,Zr,Hf and V alloys
 - See presentations at IPAC'2018

Conclusions

Science & Technology Facilities Council

- NEG coating is a technology that allows to meet UHV/XHV vacuum specification win long narrow vacuum chambers.
 - PSD and ESD After NEG activation at 180°C the initial η (316LN)/ η (Ti-Zr-V) =
 - =20 for H_2 , =1000 for CH_4 and =200 for CO.
 - Vacuum firing => an order of magnitude lower ESD
 - η (Ti-Zr-Hf-V) < η (Ti-Zr-V).
 - Best results is for the dense and dual layer NEG activated at 180 °C
 - Often the only vacuum solution
 - Lower cost of pumping system
- NEG film requires *activation* at 150-180 °C in stead of 250-300 °C usual bakeout:
 - Shorter bellows or less number of bellows
 - Wider choice of material for vacuum chamber and components
- SR (or electron bombardment) induced activation/pumping:
 - NEG can be (re-)activated by irradiation/bombardment
 - NEG can pump CH₄ molecules *during* irradiation/bombardment
- The bulk conductivity:
 - $\sigma d = 1.4 \times 10^4 S/m$ for the columnar NEG coating
 - $\sigma d = 8 \times 10^5$ S/m for the dense NEG coating
- SEY < 1.1 can be obtained after activation or by conditioning

Co-authors (team):

<u>ASTeC</u>

- Dr. R. Valizadeh
- Mr. A.N. Hannah
- Mr. B.T. Hogan
- Mrs. R.M.A. Jones
- Mr. A.P. Smith
- Dr. K.J. Middleman
- Dr. K. Marinov
- Dr. P. Goudket
- Mr. L. Gurran
- Mr. S. Wilde
- Dr. S. Wang

O.B. Malyshev

LER-7 WS, 15-17 Jan. 2018, CERN, Geneva

MMU / Huddersfield Uni.

- Prof. J.S. Colligon
- Dr. V. Vishnyakov

Lancaster University

• Dr. G. Burt

ASTeC / ISIS

Dr. S. Patel