

Detection of Cherenkov Diffraction Radiation on the Cornell Electron Storage Ring

M. Bergamaschi¹, V.V. Bleko², M. Billing³, L. Bobb⁴, J. Conway³, R. Kieffer¹, A.S. Konkov² P. Karataev⁵, R.O. Jones¹, **T. Lefevre¹**, J.S. Markova², S. Mazzoni¹, Y. Padilla Fuentes³, A.P. Potylitsyn², J. Shanks³

- 1. CERN, Geneva, Switzerland
- 2. Tomsk Polytechnic University, Tomsk, Russia
- 3. Cornell University, Ithaca, New York, USA
- 4. Diamond Light Source, Oxfordshire, United Kingdom
- 5. John Adams Institute at Royal Holloway, University of London, Egham, United Kingdom

Outline 2

- Development of non-invasive beam size monitor for CLIC
	- **Firm the emission of Diffraction radiation in Slits to Cherenkov** Diffraction Radiation in longer dielectric
- Experimental set-up on CESR
- Experimental results obtained on CESR in 2017
- **Perspectives and future work**

Incoherent Diffraction Radiation on CESR (1/6)

 Experimental program since 2011 at Cornell (electrons@2.1GeV) measuring DR for non-interceptive beam size monitoring using thin (0.5mm aperture) slits

T. Lefevre, LER 2018, CERN

Incoherent Diffraction Radiation on CESR (2/6)

Imaging the slits to measure the beam position / centering

The light emitted by each edge of the slit changes depending on the beam centering

Incoherent Diffraction Radiation on CESR (3/6)

Steering the beam through the slit

Conditions: wavelength 600 nm, beam size: 23.7 um, slit width 0.5mm

From the profile asymmetry we get **Optical Beam Position Monitor (BPM)** with a sensitivity: 1.52 %/um *T. Lefevre, LER 2018, CERN*

Incoherent Diffraction Radiation on CESR (5/6)

 Measuring the **beam size** from the **visibility Imin/Imax** of the projected vertical polarization component of the ODR **angular distribution**

An **horizontal slit** is used to measure a **vertical beam size**.

We use a polarizer to select only the **vertically polarized ODR photons** and 40nm BW **filters** to select the **wavelength**

The **angular distribution** is obtained using a camera located at the back focal plane of an optical **lens** (effective infinity) ODR source **Aperture**

T. Lefevre, LER 2018, CERN

Incoherent Diffraction Radiation on CESR (6/6)

Main limitation is due to Synchrotron background, even using mask

7

 Slit aperture of 0.5mm is a serious aperture restriction to use ODR operationally (lifetime strongly affected due to scraping of beam tails 50 100 150 200
y [pixel] SR background y [pixel]
Slit aperture of 0.5mm is a serious aperture restriction to use OD
operationally (lifetime strongly affected due to scraping of bei
on the slit) *T. Lefevre, LER 2018, CERN*

Motivation to develop Incoherent Cherenkov Diffraction Radiation

Larger aperture slits

- Difficult as DR will provide less photons
- **Looking for a physical process providing more photons**

Suppress Synchrotron radiation \rightarrow cleaner signal

- ▶ DR and SR are emitted at similar angles
- **Looking for a physical process emitted at larger angles**

'Generating Cherenkov diffraction radiation in longer dielectric'

T. Lefevre, LER 2018, CERN

Incoherent Cherenkov Diffraction Radiation

Incoherent Cherenkov Diffraction Radiation (ChDR)

The electric field of ultra-relativistic charged particles passing in the vicinity of a dielectric radiator produce photons by Cherenkov mechanism (polarization effect).

- Large emission angle: $cos(\theta_{Ch}) = \frac{1}{\beta_2}$ βn
- Photons emitted along the target

For a cylindrical geometry

a, *fine structure constant* b, *normalised beam velocity* g, *beam relativistic factor* q, *angle of observation*

 θ_{Ch}

E Field

 $\mathbf O$

Cherenkov DR

photons

Dielectric

Vacuum

h

Experimental set-up on CESR (1/3)

Re-using the DR vacuum chamber and optical system

T. Lefevre, LER 2018, CERN

Experimental set-up on CESR (2/3)

- ▶ Design a 2cm long SiO2 (n=1.46) Cherenkov Diffraction Radiation target
	- Testing with 2.1GeV e- and measuring in IR (0.9-1.7um) April 2017

'The red curve as been scaled down by 1/3 for better presentation

Xenics Bobcat 640 GigE

- Cooled InGaAs 640x512 pixels : 20um pixel pitch
- QE up to 80% at 1.6um
- 14bit ADC
- 1us-40ms integration window

Experimental set-up on CESR (3/3)

- ▶ Design a 2cm long SiO2 (n=1.46) Cherenkov Diffraction Radiation target
	- Testing with 5.3GeV e- / e⁺ and measuring in visible (0.3-0.7um) October 2017

Cherenkov radiators (1/2)

- **Two different geometries have been tested**
	- **Prismatic radiator**

Cherenkov radiators (2/2)

Pictures of the radiators

Experimental data : Positron at 5.3GeV

Imaging the Flat radiator (diffusive coating to extract the photons out of the target)

'Cherenkov photons emitted all along the target surface'

T. Lefevre, LER 2018, CERN

Experimental data : Positron at 5.3GeV

Angular distributions with Prismatic radiator : Comparison with simulations

Horizontal polarization Vertical polarization

Measurements

Simulations

T. Lefevre, LER 2018, CERN

Experimental data : Electron at 2.1GeV

Steering the beam vertically

 \triangleright No wavelength filter – no polarizer

'Cherenkov photons yield increasing strongly for smaller impact parameter'

T. Lefevre, LER 2018, CERN

Experimental data : Electron at 2.1GeV

Steering the beam vertically : comparison with simulations

T. Lefevre, LER 2018, CERN

Experimental data : Positron at 5.3GeV

Measuring the horizontal Beam size :

Horizontal polarization Vertical polarization

'Vertically polarized photons give the best spatial resolution $(\sigma_{\rm v} = 2 \text{mm})'$

T. Lefevre, LER 2018, CERN

Experimental data : Positron at 5.3GeV

'Measuring the Beam tilt angle with respect to the surface of dielectric as the light intensity strongly depends on the impact parameter'

T. Lefevre, LER 2018, CERN

Experimental data : Measuring counterpropagating beams

Measuring counter-propagating beams using the prismatic target

T. Lefevre, LER 2018, CERN

Experimental data : Measuring counterpropagating beams

Imaging both beams with the prismatic target

Experimental data : Measuring counterpropagating beams

Imaging both beams with the prismatic target

Electron Beam

Images from e-is truncated due to the limited aperture of the current detection system

Positron Beam

The photons produced by electrons and positrons appear on a different part of the target and give the possibility to high directivity beam measurements (measured more than 60dB)

T. Lefevre, LER 2018, CERN

Summary of the measurements

- Incoherent ChDR has been studied in IR and visible range for beams propagating at a distance of 1-3mm from the edge of the dielectric
- The light is polarized and emitted in a narrow cone angle providing excellent S/N ratio
- The number of photons scales linearly with the length of the radiator and exponentially with the impact parameter
	- \triangleright e.g. for 5.3GeV and h=1.5mm, measured 10⁻³ photons/turn/particle
- Different target geometries have been successfully tested
- Still many things to learn to understand how to use this radiation at best

Perspectives for beam instrumentation

Imaging system for relativistic beam

- What is the the smallest beam size measurable?
	- \triangleright The Cherenkov diffraction PSF should be smaller than transition radiation PSF
	- \rightarrow possible tests in 2018 with micron
	- beam sizes on ATF2

- What is the smallest the beam tilt angle measurable ?
	- A non linear response depending on wavelength, beam energy and impact parameter
- Measuring counter-propagating beams with very high directivity : BPM for FCC, HE-LHC, …
- A Beam Position Monitor for Crystal collimator on LHC

T. Lefevre, LER 2018, CERN

$I \cap \triangle C$ and Perspectives on radiator's shapes and mn02 < aR, dehsil op material

- Prismatic or flat targets ? Something else ?
	- **BPM using flat target possibly using long(er) target**
	- Imaging system requiring to select the appropriate polarization
- How thick should a target be ? cm/mm/um ?
	- ChDR is mainly emitted within the first atomic layer of the dielectric since the beam field decreases as it penetrates inside the material.
- Testing different materials for different applications / wavelength

T. Lefevre, LER 2018, CERN

ChDR Beam

CONSTRUCTS

26

00. 51

are normally unpolished

Conclusions

- Incoherent Cherenkov Diffraction Radiation looks promising for Beam diagnostic applications on both high-energy leptons and hadrons
- After CESR, several beam tests prepared at CERN/CLEAR and possibly at KEK/ATF2 and Diamond in order to continue the R&D
- Optimisation of the radiator geometry for a given application
	- ▶ Best shape/configuration for light extraction and polarization selection
- Motivation to study the Beam dynamic involved in the emission of ChDR
	- ChDR is the emission of wakefield in a dielectric materiel
	- Coherent and incoherent emissions should lead to very different beam dynamic effects
	- Some work on-going on the simulation/theoretical sides (Tomsk Univ.)
		- Simulations of coherent ChDR is being studied with codes such as Particle studio, Magic or Vsim for different applications (Dielectric acceleration and THz source)

Thanks for your attention

M. Bergamaschi¹, V.V. Bleko², M. Billing³, L. Bobb⁴, J. Conway³, R. Kieffer¹, A.S. Konkov² P. Karataev⁵, R.O. Jones¹, T. Lefevre¹, J.S. Markova², S. Mazzoni¹, Y. Padilla Fuentes³, A.P. Potylitsyn², J. Shanks³

- 1. CERN, Geneva, Switzerland
- 2. Tomsk Polytechnic University, Tomsk, Russia
- 3. Cornell University, Ithaca, New York, USA
- 4. Diamond Light Source, Oxfordshire, United Kingdom
- 5. John Adams Institute at Royal Holloway, University of London, Egham, United Kingdom

Incoherent Diffraction Radiation on CESR (4/6)

Steering the beam through the slit

Conditions: wavelength 400/600 nm, beam size: 16.2/23.7 um, slit width 0.5mm

Different sensitivity depending on the wavelength

T. Lefevre, LER 2018, CERN

Experimental data : Positron at 5.3GeV

▶ Imaging the prismatic target at wavelength of 600±10nm

Experimental data : Positron at 5.3GeV

- Steering the beam vertically
	- ▶ Wavelength 600±10nm
	- Vertical Polarization component

Cherenkov photons yield increasing strongly for smaller impact parameter

Experimental data : Positron at 5.3GeV

- **Prismatic target : Angular distribution and polarization study**
- Impact parameter fixed , 600±10nm wavelength, Polarization Scan

Experimental data : electron at 2.1GeV

Prismatic target for the detection of electrons

Experimental data : electron at 2.1GeV

- Optically polished ChDR target insertion passing over a 3mm de-polished strip on the surface.
- Diffusive surface =>We loose the highly directional ChDR emission.

Target Movement

ChDR measurements at CERN

- Previously named CTF3-**CALIFES**, the new CERN electron beam test facility CLEAR is being commissioned at present.
- Beam: **130-220MeV** electrons
- **Up to 0.5nC per bunch**, trains available 1-100 bunches.
- CLEAR Proposal online: https://clear.web.cern.ch/sites/clear.web.cern.ch/files/documents/CLEAR_proposal.pdf

End of 2017 two **ChDR** experiments foreseen, in the infrared range:

- 1. Under vacuum, using **CVD diamond** radiator.
- 2. In-air, using crystalline **silicon** radiator.

1. Diamond ChDR on CLEAR at CERN \bullet -0.10

CVD diamond radiator under vacuum. Goal: Comparison between OTR, Cherenkov, and surfaces are **normally comparation** ChDR light emission.

Already tested cameras on that setup:

- **Ueye** (visible range) =>*Nice images, but inappropriate wavelength for diffraction radiation studies at 200 MeV*
- **Onca-MWIR-InSb** (2-5um) =>Bad SNR
- **Gobi-LWIR**(8-15um) =>Bad SNR (bolometer)

To be tested soon:

• **Bobcat-SWIR**(0.8-1.6um) Might be the right one for this measurement.

1/16/2018 R.Kieffer, RREPS 2017 DESY 36

Experimental set-up at Califes@CERN

- CALIFES : 200MeV electrons up to 15nC per bunch train
- 15x2x1.2mm Diamond crystal with one face cut and Al Coated to reflect the ChDR photons on a FIR Camera (microbolometer, 16bit, 8-14um)

37

Measuring and comparing Transition, Cherenkov and Cherenkov Diffraction radiation

2. Silicon ChDR on CLEAR at CERN

In-air spectral-angular measurement of ChDR in an half silicon wafer radiator.

Detector: PDA10 InGaAs (0.9- 2.6um) single pixel photodiode mounted on a motorized Goniometer.

Set of bandpass filters used to select wavelength (BW 30nm).

2. Silicon ChDR on CLEAR at CERN

Cherenkov radiation (1/2)

'Equivalent to the supersonic boom but for photons'

Threshold process: Particles go faster than light β > 1/n • n is the index of refraction

-
- \cdot β is the relative particle velocity

40

 \cdot $\theta_{\rm c}$ is the Cherenkov light emission angle 1

$$
\cos\left(q_c\right)=\frac{1}{bn}
$$

• d the length of the cherenkov radiator

ø

è

- $N_{ph} = 2p$ a × *d* × 1 l*a* - 1 $\frac{1}{b}$ æ è ç ö ø $-\frac{1}{2}$ 1 $(bn)^2$ æ ç ç ö ÷ ÷ \triangleright The total number of photons proportional to the thickness of the Cherenkov radiator
- Almost no dependency on beam energy

Cherenkov radiation (2/2)

 Emitted (measurable) power spectrum depends on the materiel transparency $(Tr(\lambda))$

41

Wavelength, um

…Using beam parameters of LHC

e.g. Positioning of Crystal collimator in LHC or FCC

e.g. Positioning of Crystal collimator in LHC or FCC

 LHC collimators are equipped with electrostatic BPM to allow their alignment with a resolution better than 10microns in10-20seconds at a distance of few mm from the beam

LHC collimator aperture (≈1mm) at 7TeV

Equipped with BPM button on both end of the jaw (1m long)

e.g. Positioning of Crystal collimator in LHC or FCC

 LHC collimators are equipped with electrostatic BPM to allow their alignment with a resolution better than 10microns in10-20seconds at a distance of few mm from the beam

- **Crystal collimators are now seriously considered** as the future primary collimators in LHC and FCC
	- Investigating the use of Cherenkov Diffraction Radiation as way to measure the position of the crystal with respect to the beam

e.g. Cherenkov Diffraction Radiation

 ChDR Photons spectrum in Silicon for LHC (7TeV protons) and different impact parameters

$$
\frac{dP}{dI} = \frac{2pa \cdot L \cdot Tr\left(I\right)}{I^2}e^{\frac{-4p \cdot h}{gbt}}\left(1 - \frac{1}{\left(bn\right)^2}\right)
$$

e.g. Cherenkov Diffraction Radiation

 Number of ChDR photons and ChDR power spectrum as function of beam Energy (LHC-FCC)

e.g. Positioning of Crystal collimator in LHC or FCC

- *3mm long Silicon Crystal and 7TeV protons*
- *Emitted Photon power for h=1mm (typical for primary collimators) ≈ 5watts for full LHC beam 2808 nominal bunches (1.1E11 protons)*

e.g. Positioning of Crystal collimator in LHC or FCC

- *3mm long Silicon Crystal and 7TeV protons*
- *Emitted Photon power for h=1mm (typical for primary collimators) ≈ 5watts for full LHC beam 2808 nominal bunches (1.1E11 protons)*
- *In current design (i.e. parallel crystal faces), a large fraction of the power would be totally reflected (16,9*°*) and possibly absorbed*

 Crystal outer face built with different angle or with a high roughness to diffusive the light out

 Measuring infrared photons coupled in a optical fiber

ChDR for Beam cooling ?

ChDR for Beam cooling ?

- During normal operation, LHC luminosity drops over a fill due to beam losses
- Synchrotron Radiation cooling time is 21hours
	- Particle energy lost by SR is approximately 7keV per turn (80MeV.s⁻¹) with a critical energy at 42eV
	- Effect of SR Transverse beam cooling is not visible on the peak luminosity

ChDR for Beam cooling ?

Cool the beam transversely in 4-5 hours to maintain the peak luminosity constant : Gain in integrated luminosity

ChDR for Beam cooling ?

 Assuming a *ring shaped radiator*, the energy lost by one proton in a 1m long Diamond radiator as function of impact parameter h

ChDR for Beam cooling ?

Radiating and Cooling

54

It requires that Particle recoils opposite to its direction of propagation

- Assuming this is true (or partially true), the emittance of the beam would then decrease down to an equilibirum emittance – What would that be ?
- Assumed that radiator is thin enough so that there is no coherent emission

Time evolution of the LHC beam emittance at 7TeV for different impact parameter h

Assuming **10x 1m long Diamond radiators**

ChDR for Beam cooling ?

Damping time as function of beam energy (h=1.5mm)

Damping time = the time it would take particle to lose half of its energy

56

Assuming **10x 1m long Diamond radiators**

- Beware, this is the ChDR photon flux produced and not extracted (x10-3)!
- If interested in longer wavelength *(FIR/THz) – use larger impact parameter*

ODRI experiment at KEK ATF2

Experiment installed at ATF2 in February 2016, in the laser-wire previous location where vertical beam can be focused to < 1um

ODRI experiment at ATF2

- The **target** as **4 slits for DR (50 to 201 µm)**
- A couple of vertical and horizontal **mask slits** can be inserted 13 cm upstream the target

Synchronous Imaging and Angular acquisition for position filtering in angular

ODRI at ATF2

Direct Image of the ODRI 2D Angular distribution of the ODRI

