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Future	Circular	Collider	Study	
•  100	km	storage	ring	

•  FCC-hh	(=long-term	goal):	
à  High-energy	hadron	collider	
à  Push	the	energy	frontier	to	100	TeV	
	
•  FCC-ee	(TLEP):	
à  e+/e--collider	as	intermediate	step	

•  FCC-he	
à  Hadron-lepton	collider	option	
à  Deep	inelastic	scattering	
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Physics	goals	of	FCC-ee	
Provide	highest	possible	luminosity	for	a	wide	physics	program	ranging	from	
the	Z	pole	to	the	tt	production	threshold.	

Ø  Beam	energy	range	from	45	GeV	to	175	GeV	

Main	physics	programs	/	energies	(+	scan	around	central	values):	

Ø  Z	(45.5	GeV):	 	Z	pole,	high	precision	of	MZ	and	ΓZ,	
Ø  W	(80	GeV):	 	W	pair	production	threshold,	
Ø  H	(120	GeV):	 	H	production,	
Ø  T	(175	GeV):	 	tt	threshold.	

All	energies	quoted	refer	to	BEAM	energies	
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	 Z W H tt 
Beam	energy	[GeV] 45.5 80 120 175 
Beam	current	[mA] 1450 152 30 6.6 
Bunches	/	beam 91500 5260 780 81 
Bunch	population	[1011] 0.33 0.6 0.8 1.7 
Transverse	emittance	ε	
-  Horizontal	[nm]	
-  Vertical	[nm] 

		
0.09	
0.001 

		
0.26	
0.001 

		
0.61	
0.0012 

		
1.3	

0.0025 

Momentum	comp.	[10-5] 0.7 0.7 0.7 0.7 

Betatron	function	at	IP	β*	
-  Horizontal	[mm]	
-  Vertical	[mm] 

		
1000	
2 

		
1000	
2 

		
1000	
2 

		
1000	
2 

Energy	loss	/	turn	[GeV] 0.03 0.33 1.67 7.55 

Total	RF	voltage	[GV] 0.2 0.8 3 10 
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Challenges	and	constraints	(1)	

Small	emittance	ratio	0.2%	
requires	
•  Coupling	correction	
•  Small	vert.	dispersion	

Small	beta	functions	
•  make	lattice	sensitive	towards		

FF	misalignments	
•  require	strong	sextupoles		

(coupling)	
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Vertical	beta	function	in	the	IR:	

Hor.	Dispersion	along	the	ring:	

Phase	advance	per	cell:	90/90	deg.	

5	

FCC-ee	Optic	
IP	

beta	function	in	the	IR	IP	

bety	max	=	5.2	km	
betx	=1.5	km	



17/01/18	 6	

Emittance	tuning	for	electron	machine	
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•  Horizontal	emittance:	
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•  Vertical	emittance:	

•  Source	of	vertical	emittance	growth	
		
-	vertical	dispersion	Dy	
-	betatron	coupling		
-	opening	angle	à	here	negligible	~		1/�



•  Quadrupoles	off-set:	dipolar	kick	*	
	
	
	
•  Sextupoles	off-set	*	
	
	
	
	
	
•  Quadrupole	roll:		skew	quad,	coupling	of	the	planes	
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Skew	quad	(coupling)	+	vertical	dipole	

Source	emittance	growth	
*	SY	Lee	“Accelerator	Physics”	

Source	of	vertical	dispersion	&	coupling	
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Constant	term	
Vertical	dipole	->	vertical	dispersion	
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•  Challenging	and	strict	emittance	budget	(1.3nm,	2.5pm)	and	coupling	
ratio	(0.2%)	

•  Very	sensitive	machine	to	alignment	errors.	
•  Study	strategy:	

§  study	each	error	separately	
§  Establish	appropriate	correction	scheme	to	get	convergence	on	a	maximum	seed	

number	(MADX	fails	easily	to	mind	closed	orbit)	
§  Merge	step	by	step	the	different	errors	together,	keeping	the	Final	Focus	Doublets	

for	the	end.	
§  Unless	mentioned,	FF	quadrupoles	are	left	perfectly	aligned.	
§  Emittance	calculations:	

	
à	Fully	tapered	machine:	every	magnet	strength	follows	beam	energy	loss	
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Challenges	and	constraints	(4)		
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•  Orbit	correction	with	MICADO	&	SVD	from	MADX	
à	Hor.	corrector	at	each	QF,	Vert.	corrector	at	each	QD	
à	BPM	at	each	quadrupole	
	

•  Vertical	dispersion	and	orbit:	
Orbit	Dispersion	Free	Steering	(DFS)	
	

•  Linear	coupling:	
Linear	Coupling	resonant	driving	terms	(RDT)	
à	1	skew	at	each	sextupole	+	skews	correctors	at	the	IP	
	

•  Beta	beating	correction	&	Hor	dispersion	via	Response	Matrix:	
Rematching	of	the	phase	advance	at	the	BPMs	
à	1	trim	quadrupole	at	each	sextupole	

(��
xy

,�D
x

,�Q
x

,�Q
y

) = R�k1
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Correction	methods	



•  Build	numerically	a	matrix	for	vertical	orbit	(u)	&	dispersion	(Du)	
response	under	a	corrector	kick	(al)	

	

	

Dispersion	Free	Steering:	Principle	

PRST-AB 3 EMITTANCE OPTIMIZATION WITH DISPERSION FREE … 121001 (2000)

(N . M) or under (N , M) constrained. In the for-
mer and most frequent case, Eq. (7) cannot be solved
exactly. Instead, an approximate solution must be found,
and commonly used least square algorithms minimize the
quadratic residual

S ! k "u 1 A "uk2. (8)

Dispersion free steering is based on the extension of
Eq. (7) to include the dispersion at the BPMs. The ex-
tended linear system is

µ
!1 2 a""u

a "Du

∂
1

µ
!1 2 a"A

aB

∂
"u ! 0 , (9)

where vector "Du (dimension N) represents the dispersion
at the BPMs. B is the N 3 M dispersion response matrix,
its elements Bij giving the dispersion change at the ith
monitor due to a unit kick from the jth corrector. The
weight factor a is used to shift from a pure orbit (a !
0) to a pure dispersion correction (a ! 1). In general,
the optimum closed orbit and dispersion rms are not of
the same magnitude and a must be adjusted for a given
machine. a can, in principle, be evaluated from the BPM
accuracy and resolution. Applied to Eq. (9), a least square
algorithm will minimize

S ! !1 2 a"2 k "u 1 A "uk2 1 a2k "Du 1 B "uk2. (10)

Singular response matrices are a well-known problem of
orbit corrections. The singularities are related to redundant
correctors, i.e., areas of the machine where the sampling
of the orbit is insufficient. Such situations yield numeri-
cally unstable solutions where large kicks are associated
to minor changes in the orbit. A standard cure consists in
disabling a subset of correctors and removing the corre-
sponding lines from the linear systems of Eqs. (7) and (9).
Regularization can also be obtained by extending Eq. (9)
to constrain the size of the kicks,0

B@
!1 2 a" "u

a "Du
"0

1
CA 1

0
@ !1 2 a"A

aB
bI

1
A "u ! 0 . (11)

Here "0 is a null vector of dimensionM, I is a unit matrix of
dimension M 3 M, and b is a kick weight. The quadratic
residual now contains the rms strength of the corrector
kicks,

S ! !1 2 a"2 k "u 1 Auk2 1 a2k "Du 1 B "uk2

1 b2k "uk2, (12)

and large kicks are suppressed since they receive a penalty
which can be adjusted with b.
Various other constraints can be added to the linear sys-

tem to be solved, for example, to maintain a constant or-
bit length or to stabilize the beam at given locations in
the ring. Adequate weight factors can be used to control

the importance of such constraints. It is also possible to
correct the machine coupling using a similar scheme. The
orbit coupling of horizontal corrector kicks into the ver-
tical plane is then minimized using skew quadrupoles as
correcting elements [10]. To simplify the expressions in
the following sections, vector "d and matrix T are defined
as

"d !

0
@ !1 2 a" "u

a "Du
"0

1
A, T !

0
@ !1 2 a"A

aB
bI

1
A , (13)

with

"d 1 T "u ! 0 . (14)

A. Singular value decomposition (SVD) and orbit
eigenvectors

Dispersion free steering is particularly interesting in
conjunction with the singular value decomposition (SVD)
algorithm [11,12], because it allows a simultaneous limi-
tation of the corrector kick strength. The SVD algorithm
is a powerful tool to handle singular systems and to solve
them in the least square sense. For M $ N the singular
value decomposition of matrix T has the form

T ! UWVt ! U

0
BB@

w1 0 · · · 0
0 w2

· · · · · · 0
0 · · · 0 wM

1
CCAVt, (15)

where W is a diagonal M 3 M matrix with non-negative
diagonal elements and Vt is the transpose of the M 3 M
orthogonal matrix V,

VVt ! VtV ! I , (16)

while U is an N 3 M column-orthogonal matrix

UtU ! I . (17)

The vector "q !i", corresponding to the ith column of
matrix V,

"q !i" !

0
BB@

V1i
V2i
· · ·
VMi

1
CCA , (18)

is an eigenvector with eigenvalue w2
i $ 0 of the M 3 M

symmetric matrix TtT [12,13],

TtT "q !i" ! w2
i

"q !i". (19)

It follows from Eq. (16) that the M vectors "q !i" form an
orthonormal base of the corrector space since

! "q !i" ? "q !j"" ! "q !i"t "q !j" ! dij . (20)

121001-3 121001-3
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Figure 2: Vertical dispersion in the SPS ring due to a kick of 0.1 mrad at corrector
MDV.10307. The solid line is the MADX prediction, the points correspond to the analytical
expression of Eq. 20 evaluated at the location of the BPMs.

strength, the horizontal dispersion at the sextupole and to the orbit offset in the sextupole.
The sextupole term is obtained by replacing the K in the equation for the quadrupoles by
−K2Dx, see for example Ref. [4] for a rigorous treatment of the dispersion response.

When all contributions are combined the dispersion response at monitor i due to the kick
from corrector j becomes

Bij = {
quad
∑

l

KlLlβl

4 sin(πQ)2
cos(|µi − µl|− πQ) cos(|µl − µj|− πQ)

−
sext
∑

m

K2,mDx,mLmβm

4 sin(πQ)2
cos(|µi − µm|− πQ) cos(|µm − µj|− πQ)

−
cos(|µi − µj |− πQ)

sin(πQ)
}
√

βlβj (20)

where the sums run over all quadrupoles (i) and sextupoles (m). The last term is the direct
effect from the corrector kick itself. Eq. 20 is valid for the horizontal plane. For the vertical

6

•  Orbit	response	

•  Dispersion	
response	

“Emittance	optimization	with	dispersion	
free	steering	at	LEP”	
R.	Assmann	et	al.	Phys.	Rev.	ST	Accel.	
Beams	3,	121001	

•  SVD	analysis	to	solve	the	system	and	mind	a	
solution	

Low	Emittance	Ring	Workshop	2018	
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Resonance	driving	terms	(RDT)	

injection oscillations. The coupling is reconstructed locally
by the ∼500 TbT BPMs. Finally, we will describe the
design of a feedback to control the coupling beyond 2015.
In Sec. II we start with describing a more precise equation
relating the f1001 to the C−. We continue in Sec. III with
demonstrating the benefit of selecting two BPMs close to π

2
when measuring the coupling. The measurement resolution
is also increased using a singular value decomposition
(SVD) cleaning, which is described in Sec. IV. The
automatic coupling correction approach based on injection
oscillations, which was used in normal operation in 2012, is
demonstrated in Sec. V. The coupling is reconstructed from
all BPMs and the paring algorithm ensures that the phase
advance is close to the optimal. The method to use the
injection oscillations, however, only provides measure-
ments for injection energy. The resolution of the BPMs
is not good enough to measure the coupling from accept-
able excitations during normal operation with high inten-
sity beams. The diode orbit and oscillation (DOROS) [21]
are being developed at CERN and will provide very precise
phase and amplitude measurements. The location of the
BPMs equipped with DOROS electronics are, however, not
optimized for coupling measurements, since their main
purposes are to provide very precise orbit and phase
measurements close to the interaction points (IPs). As a
consequence the phase advance is far from the optimal π2. In
Sec. VI a feedback based on the combined information
from all the BPMs equipped with DOROS electronics is
presented.

II. MORE PRECISE EQUATION FOR C−

The closest the horizontal and vertical tune can approach
each other is termed ΔQmin and is equal to the jC−j. The
RDT f1001 is a local property related to the Hamiltonian
term h1001. A relation of the f1001 to the jC−j close to the
difference resonance, was described as [22]

ΔQmin ¼ jC−j ≈ 4Δ
1

N

XN

i¼1

jf1001ij; ð1Þ

where ΔQmin is the closest the tunes can approach each
other, N is the number of BPMs and Δ is the fractional tune
split. A more precise relation was published in [23] but
never applied to data. The nomenclature used in this article
is different and we therefore derive the relation in the
Appendix for clarity. The relation is described as

ΔQmin ¼ jC−j ¼
!!!!
4Δ
2πR

I
dsf1001e−iðϕx−ϕyÞþisΔ=R

!!!!; ð2Þ

where R is the radius of the machine, ϕx is the horizontal
phase, ϕy is the vertical phase, and s is the longitudinal
distance. The integral extends over the entire ring but in
practice it will only be evaluated at the locations of the

BPMs. In Fig. 1 the jC−j is calculated from Eqs. (1) and (2).
TheΔQmin is retrieved by trying to match the tunes as close
as possible to each other in methodical accelerator design
(MAD) [24]. We observe that the two formulas give almost
identical and correct results close to the resonance but
Eq. (1) deviates more when the fractional tune split
increases. We also observe that the term iΔs=R has a
negligible effect on the calculated jC−j. This also holds true
for the European Synchrotron Radiation Facility (ESRF)
booster [25]. The main differences between the formulas
can then be interpreted as Eq. (1) is the average of the
jf1001j while Eq. (2) is the absolute value of the aver-
age f1001.

III. OPTIMAL PARING OF BPMs

We reconstruct the f1001 and the f1010 terms from TbT
data [26] using the Courant-Snyder variable [27]

hx;− ¼ x̂ − ip̂x; ð3Þ

where x̂ is the normalized horizontal position and p̂x is the
horizontal transverse momentum. The momentum is not a
directly measurable quantity with a BPM but needs to be
reconstructed using two BPMs. The momentum at the ith
BPM can be written as [22]

p̂xi ¼
x̂iþ1 − x̂i cosΔϕx

sinΔϕx
; ð4Þ

where Δϕx is the horizontal phase advance between the ith
and ðiþ 1Þth BPM under the assumption that the region
between the two BPMs is free of coupling sources and
nonlinearities contributing to the main and the coupling
line. Equation (4) indicates that a phase advance of π

2 is the

FIG. 1. A comparison of Eqs. (1) and (2) to calculate the ΔQmin
from f1001. Qy was kept constant at 59.31 while Qx was varied
between 64.22 and 64.40. Injection optics for the LHC was used
in the simulation.

T. PERSSON AND R. TOMÁS Phys. Rev. ST Accel. Beams 17, 051004 (2014)
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Coupling	RDT	f1001-f1010	are	related	to	the	coupling	parameter	via:		
References:	
-Vertical	emittance	reduction	and	preservation	in	
electron	storage	rings	via	resonance	driving	terms	
correction,	A.	Franchi	et	al,	PRSTAB	14,	034002		
	
	
	
	

A. RMS apparent emittances

As far as the apparent emittances of Eq. (2) are con-
cerned, the following relations apply (a dependence on s
has to be assumed in all quantities, bar the two eigenemit-
tances Eu;v):

Ex ¼ C2Eu þ ½S2
$ þ S2

þ $ 2S$Sþ cosðqþ þ q$Þ'Ev; (4)

Ey ¼ C2Ev þ ½S2
$ þ S2

þ $ 2S$Sþ cosðqþ $ q$Þ'Eu; (5)

The following definitions (all s dependent) apply:

C ¼ coshð2P Þ; (6)

S $ ¼ sinhð2P Þ
P

jf1001j; (7)

S þ ¼ sinhð2P Þ
P

jf1010j; (8)

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$jf1001j2 þ jf1010j2

q
; (9)

f1001
1010

¼
PW

w Jw;1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!w

x!
w
y

p
eið!"w;x(!"w;yÞ

4ð1$ e2#iðQu(QvÞÞ
; (10)

q$ ¼ argff1001g; qþ ¼ argff1010g: (11)

Jw, w ¼ 1; 2; 3 . . . , W are the skew quadrupole integrated
strengths present in the ring and originated by quadrupole
tilts, sextupole misalignments, insertion devices, and cor-
rector skew quadrupoles already powered. Qu;v are the
eigentunes, which are equal to the measured tunes up to
the first order in strengths, Qu;v ¼ Qx;y þOðJ2w;1Þ. !w

r

denotes the Twiss parameter corresponding to the location
of the skew quadrupole kick, whereas !"w;r is its phase
advance with respect to the position where the RDTs f1001
and f1010 are either measured or computed. Both!r and"r

refer to the ideal, uncoupled lattice. Even though all quan-
tities in Eqs. (6)–(10) are complex numbers, the following
relations hold:

1 ¼ C2 þ S2
$ $ S2

þ; C2;S2
$;S2

þ;SþS$ 2 <; (12)

hence guaranteeing that both apparent emittances of
Eqs. (4) and (5) are always real numbers.

B. RMS projected emittances

Different relations apply for the RMS projected emit-
tances of Eq. (3), namely,

$x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Eu þ ½S2

$ þ S2
þ'EvÞ2 $ ð2SþS$EvÞ2

q
; (13)

$y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Ev þ ½S2

$ þ S2
þ'EuÞ2 $ ð2SþS$EuÞ2

q
: (14)

In the absence of coupling f1001 ¼ f1010 ¼ 0, C ¼ 1 and
S$ ¼ Sþ ¼ 0. Only in this case the three emittances

coincide, $r ¼ Er ¼ Er ¼ %2
rðsÞ=!rðsÞ. The negative

terms in Eqs. (13) and (14) shall not be of concern, as
they are canceled out after expanding the first parenthesis.
Before analyzing the dependence of the eigenemittances

on the RDT, it is worthwhile examining the main differ-
ences between the apparent and the projected emittances
along the ring in the presence of coupling. As proved in
Refs. [18,19], the amplitudes of coupling RDTs remain
constant in regions free of coupling sources, while their
phases q) oscillate with the betatron phases ð"x )"yÞ.
When a skew quadrupole kick is met, both the amplitude
and phase execute abrupt jumps. This behavior is trans-
mitted to the RMS emittances: As shown in Fig. 1, the
apparent emittances oscillate around the ring, because of
the terms S$Sþ cosðqþ ) q$Þ. This oscillation is of
course more important for the vertical apparent emittance,
as it is proportional to the larger horizontal eigenemittance
Eu. The plots refer to the ideal ESRF storage ring with no
errors but three localized skew quadrupole kicks. The
projected emittance stays constant in the region between
the two coupling sources, while the apparent emittance
keeps oscillating. When a skew quadrupole kick is met,
the projected emittance jumps, while the apparent emit-
tance changes in oscillation amplitude and baseline
(because both S$ and Sþ change abruptly). In the bottom
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FIG. 1. Example of RMS apparent and projected emittances
plotted along the ESRF storage ring. Betatron coupling is driven
by three skew quadrupoles whose location is indicated by the
vertical dashed lines. In the top and center plots, the horizontal
and vertical emittances are evaluated via Eqs. (4), (5), (13), and
(14). The bottom plot shows the results for the vertical plane as
computed by AT. The corresponding equilibrium emittances are
Eu ¼ 4:0 nm and Ev ¼ 18:4 pm.

VERTICAL EMITTANCE REDUCTION AND PRESERVATION . . . Phys. Rev. ST Accel. Beams 14, 034002 (2011)

034002-3

f1001-f1010	can	be	computed	via	analytical	formulas,		
or	via	a	matrix	formalism	with	the	coupling	matrix:	

Figure 1: Beta functions (upper figure) in the IR and in the
arcs and horizontal dispersion (lower figure).

FCC-hh layout

A. Bogomyagkov (BINP) FCC-ee crab waist IR 8 / 25

Figure 2: Racetrack layout with chromaticty correction in
the arcs [1].

tially tapered option - or sectorwise version- the machine
provides a tapering to the dipoles only, leaving therefore a
remaining horizontal orbit as shown in Fig. 4 [5].

Therefore, with targeted emittances of the order of nm
and pm, FCC-ee is a collider with foreseen performances of
light sources (ESRF, SLS).

AMPLIFICATION FACTOR BY ERROR
TYPE

In this section, amplification factors on the orbit and/or
the vertical dispersion are computed by errors type. For
emittance tuning purposes, any source of vertical dispersion
and coupling has to be identified and should be corrected as
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50 m FODO cell

10.5 m 1.5 m0.5 m 0.65 m

50 m

0.55 m0.65 m

Katsunobu’s	lattice	–fully	tapered	(dipole,	
quadrupole,	sextupole)	

Bastian	Racetrack	–	tapering	
sector	wise	dipole	only	

FCC-ee	Racetrack	Layout	

Tolerance	consideration	for	Anton’s	IR	layout	will	be	cover	by	Sergey	(next	talk)	
Figure 3: Racetrack layout with local chromaticty correction
at the IR [2].
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Optics	functions	with	synchrotron	radiation	

FCC	week	2016	-	Rome	

S(m)	

X(m)	

Issues	with	sector-wise	tapering	(Bastian’s	lattice+Andreas	Tapering)	

	

DFS+local	vertical	dispersion	correction	at	the	Ips	brings	the	vertical	dispersion	

from	1.0e-2	m	down	to	1.0e-5	m	

	

->	For	a	fully	tapered	machine	(Katsunobu	racetrack),	this	won’t	be	an	issue.	

Dy	rms	(m)	

Nb	of	iterations	

X(m)	

Figure 4: In green, typical horizontal orbit remainding after
correction without synchrotron radiation, in blue [5]

much as possible. Let consider the most important errors to
consider.

A vertical o�set �y in the quadrupole provides a dipolar
kick since [6],

B

x

= k (y + �y) = ky + k�y (2)

with k the normalised quadrupole strength. The constant
term k�y provides a vertical dipole component and therefore
vertical dispersion. Sextupole o�sets produce coupling and
vertical dipole kick since,

B

x

= k xy + k x�y

B

y

= k (x

2 � y2) � 2k�y � (�y2)
(3)

Quadrupole roll angles produce a skew strength, generating
betatron coupling and transfering horizontal emittance to
vertical emittance. The resulting vertical dispersion change
due to a skew strength componant is

�D

y

= �(�J

w

)D

x

p
�
y

�
y0

2sin(⇡Q)
cos(⇡Q � |�

y0 � �y |) (4)

where J

w

is the skew strength, D

x

is the horizontal dis-
persion, �

y

and �
y0 are respectively vertical beta function

For	FCC-ee,	I	build	a	RDT	and	vertical	dispersion	response	matrix	with	skew	
quadrupole	kick	

devices: two x-ray pinhole cameras (D09, D25), plus 11
in-air x-ray detectors (C03, C05, . . ., C31) placed along the
ring. Details on these diagnostic tools can be found in
Ref. [25]. A typical result before coupling correction is
shown in Fig. 3.

The distribution of skew quadrupole strengths along the
machine is derived as follows:

Jw;1 ¼ "½Kw;1 þ !Kw;1% sinð2!wÞ; (29)

where the index w ¼ 1; 2; . . . ; 256 corresponds to the po-
sition of the 256 main quadrupoles, where the skew quad-
rupole integrated strengths are inserted. Following the
procedure described in Sec. II D, the projected emittances
may be evaluated together with all other optics parameters.

IV. SCHEME FOR COUPLING CORRECTION AND
VERTICAL EMITTANCE MINIMIZATION

The ESRF storage ring is equipped with 32 independent
corrector normal quadrupoles to compensate focusing er-
rors induced by !Kw;1. Coupling (and vertical dispersion)
correction is performed by means of 32 independent skew
quadrupoles, distributed rather uniformly around the ring.

Until the end of 2009 coupling correction was performed
by minimizing along the ring either the vertical eigenemit-
tance or the apparent one (as computed by AT) via the
Matlab function FMINSEARCH. The dependence of the ver-
tical emittances on the corrector strengths being quadratic,
this resulted in a nonlinear multidimensional minimization
over 32 parameters. The main drawbacks of this approach
are CPU time (about 10 min for 500 iterations) and the risk
of limited improvements whenever a local minimum (not
necessarily the lowest) is found.

Equations (5) and (14) suggest an intuitive considera-
tion: the lower the RDTs (i.e. the coupling), the lower
the vertical emittance, as the contribution from the large
horizontal equilibrium emittance Eu is minimized. A set-
ting for the 32 skew quadrupole correctors may be then

found to minimize as uniformly as possible both coupling
RDTs along the ring. The system to invert via SVD reads

~f1001
~f1010

 !
meas ¼ "M ~Jc; (30)

where ~Jc ¼ ðJð1Þ1 ; . . . ; JðcÞ1 ; . . . ; Jð32Þ1 Þ are the integrated
strengths of the 32 corrector skew quadrupoles to be

determined, ~fT ¼ ðfð1Þ; . . . ; fðwÞ; . . . ; fð224ÞÞ is a 224 (com-
plex) vector containing the measured or computed RDT at
all BPMs, and M is the (complex) RDT ð224 ( 2Þ ) 32
response matrix, whose generic element according to
Eq. (10) reads

mw;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðcÞ

x "ðcÞ
y

q
eið!#

ðcÞ
w;x"!#ðcÞ

w;yÞ

4ð1" e2$iðQu"QvÞÞ
for w * 224; (31)

mw;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðcÞ

x "ðcÞ
y

q
eið!#

ðcÞ
w;xþ!#ðcÞ

w;yÞ

4ð1" e2$iðQuþQvÞÞ
for w> 224; (32)

where "ðcÞ is the beta function at the location of the skew

corrector c, and !#ðcÞ
w is the phase advance between the

same corrector and the BPM w. By inverting via SVD the
linear system of Eq. (30) the strengths for the corrector
magnets that best reduce the coupling RDTs are derived.
By itself coupling correction implies thatC2 ’ 1,S2

+ ’ 0,
and hence that %y ’ Ey ’ Ev. This, however, is not suffi-
cient, as the eigenemittance Ev is minimized only after a
further correction of vertical dispersion, i.e., after minimiz-
ingH y, see Eq. (27). Skewquadrupolesmay still be used to
this end. Indeed, Eq. (30) may be generalized as follows:

a1 ~f1001

a1 ~f1010

a2 ~Dy

0
BBB@

1
CCCA

meas

¼ "M ~Jc; (33)

whereM is now a ð224 ( 2þ 224Þ ) 32matrix. The generic
element of the additional 224) 32 block reads

mw;c ¼
!DðwÞ

y

!JðcÞ1

; (34)

where!DðwÞ
y is the vertical dispersion distortion at the BPM

number w induced by the skew corrector strength !JðcÞ1 .
These terms need to be computed by means of optics codes,
as they depend on the error lattice model. The weights
a2 ¼ 1" a1 are introduced in order to determine the best
compromise between correction of dispersion and deterio-
ration of coupling. Their determination is empirical and in
the case of the ESRF storage ring the best correction is
found for a2 ¼ 0:7. Note that the system of Eq. (33) is
analogous to the one already proposed and successfully
implemented in Ref. [14], with the difference of having
the RDTs instead of the vertical orbit distortion to be
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FIG. 3. Example of comparison between the apparent emittan-
ces Ey (before coupling correction) measured at ten available in-
air x-ray detectors (blue) and the predictions of AT (red) after
creating the lattice error model from the ORM measurement of
January 16, 2010.
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Jc	are	the	skew	strength	

Emity	
[pm]	

Full	DFS	correction	scheme	

Status,	so	far:	
-	quadrupoles	misalignements	tolerance	has	been	improved	from	5microm	to	
20microm	
-	1/2	of	the	seeds	produce	too	high	vertical	emittance.	
-	BPM	errors	from	5	to	20	microm	–	worse	case	scenario	so	far	

For	a	sector	wise	tapering	
machine	

Figure 9: RMS vertical dispersion for several iterations of
Dispersion Free Steering first without sextupole and then
with sextupoles.

Figure 10: Vertical, horizontal emittance and coupling ratio
as a function of the errors in the BPMs.

ROLLS IN QUADRUPOLES AND
COUPLING CORRECTION

Current skew quadrupole correctors scheme for

FCC-ee

In order to correct the betatron coupling, one skew
quadrupole has been installed every 6 FODO cells, with
a horizontal and vertical phase advance of ��

x

= 540 and
��

y

= 360 degrees, since the lattice has a 90/60 degrees
phase advance per cell. Therefore the total amount of skews
in the machine is 272, installed in dispersive places. Cur-
rently, they are used to correct both betatron coupling and
vertica dispersion. No local correction of the coupling at the
IPs is performed, but is foreseen as next step in order to com-
pensate the coupling generated by the roll angles of the final

focus doublets. To correct the betatron coupling, the cou-
pling resonance driving terms, so called f1001 for di�erence
resonance and f1010 for the sum resonance, are mitigated,
as successfully applied in LHC and at the ESRF [7] [8].

The closest tune approach is related to the complex cou-
pling parameter, C

� - here the di�erence coupling parameter
- which is directly a function of the coupling resonance driv-
ing terms (RDT) as [7] [8] [9]

�Q

min

= |C� | = | 4�
2⇡R

I
ds f1001e

�i (�
x

��
y

)+is�/R | (7)

The resonant driving terms f1001 and f1010 can be computed
from several ways, here the analytical formula

f

1001
1010 =

P
w

J

w

q
�w
x

�w
y

e

i (��
w,x�/+��

w,y )

4(1 � e

2⇡i (Q
u

�/+Q
v

) )
(8)

where J are the skew strength, �w
x

�w
y

are the horizontal and
vertical beta function at the location of the skew strength,
��

w,x ,��w,y are the phase advance between the observa-
tion point and the skew componant.

Using the matrix formalism, a response matrix of the RDT
using the quadrupole skews of the lattice can be computed,

( ~
f1001)

meas

= �M

~
J (9)

where J are the vector of the skew, ~
f1001 are the complex

coupling RDT at the BPMs, M is the response matrix of
the RDT to skew quadrupole kicks. ~

f1010 is neglected to
the distance of the working point with respect to the sum
coupling resonance.

Coupling correction for a lattice with roll angles

in the quadrupoles

The roll quadrupole tolerances are much less tigh com-
pared to the transverse displacement with an amplification
factor of 25 on the vertical dispersion. Let us consider the
FCC-ee lattice at 175 GeV with 50 µrad roll angle gaussian
distributed cut at 2 sigma. Since no other error is consid-
ered in this simulation, the coupling mainly comes the tilted
quadrupoles.

The coupling RDT at the BPMs are computed and cor-
rected with the corresping response matrix after a SVD, and
skew quadrupoles strength are then applied. The resulting
RDT are compared to the initial RDT. The successive cor-
rections allows to correct by a factor 10 the RDT ~

f1001.
This correction can be combined with a response matrix

of the vertical dispersion to the skew quadrupoles:

( ~Dy) = �M

~
J (10)

where ~
D

y

is the vertical dispersion measured at the BPMs, M
is the response matrix of the RDT to the skews, J are the skew
strength. While introducing roll angles in the quadrupoles
of the lattice, dispersion is transferred from the horizontal
plane to the vertical one Eq. 4. The correction of the vertical
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•  100	μrad	RMS,	gaussian	distributed	truncated	2.5	sigma	in	arc	quads	
+	10μrad	in	IR	quads	
	Without	correction	at	175	GeV:	
	
ey=2.47	pm	(design	vertical	emittance	value),		
ey/ex~0.2	%	coupling	ratio	
Dy=0.003	m	
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Roll	angles	in	arc	quadrupoles	+	IR	quadrupoles	

100	μrad	Arc	quad	+	
10μrad	IP	quads.	
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emit	 100μrad	 150μrad	 200μrad	

εy	(pm)		 0.002	
+/-0.0002	

0.005	
+/-0.0005	

0.01	
+/-0.001	

εx(nm)	 1.34+/-5.0e-6	 1.34+/-5.0e-6	
	

1.34+/-5.0e-6	

εy/εx	 1.87e-6	 4.2e-6	 7.4e-6	

Roll	angles	in	arc	and	IR	quadrupoles	

100	μrad	RMS,	arc	quads	
+	10μrad	in	IR	quads	
ey=2pm	
	
100	μrad	RMS,	arc	and	IR	quads	
à ey/ex~0.002	pm	

	skew	coils	at	IP	quads	side	to	
locally	correct	the	coupling	from	the	
IR	à	can	be	optimised	
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•  Errors,	no	strength	in	sextupoles	
•  X-y	orbits	correction	
•  Dispersion	Free	Steering	wo	sextupole	(y+Dy	correction)	
•  Save	x,x’,y,y’	at	the	beginning	of	the	machine	

•  Switch	on	sextupole	to	+10%	of	their	design	current	
-	coupling	correction,	tune	matching	
-	beta	beat	correction,	Dx	correction	
-	coupling	+	Dy	correction	
-	increase	by	10%	the	sextupole	strength	

•  Emittance	computation	

Transverse	displacement	of	arc	quadrupoles	
Manage	by	a	python	
script.	

up	to	4h	of	
computation	time/
seeds	
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Orbit	correction	
+DFS	(no	sextupole)	

Init	DY	 After	CO-
correction	
Factor	2e4	

DFS	
factor	50	

Dispersion	correction	during	the	
coupling	correction	(coupling	due	to	
sextupole)	

Factor	~10	

Transverse	displacement	of	arc	quadrupoles	

Switch	on		
sextupoles	
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Coupling	matrix	
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emittance	 	Δx	=		Δy	=200μm	

εy	(pm)		 0.012	+/-0.008	

εx(nm)	 1.51	+/-0.01	

εy/εx		(%)	 0.001	

90%	seeds	valid	

Transverse	displacement	of	arc	quadrupoles	
Example	of	emittances	with	200	μrad	,	IR	perfectly	aligned	



•  Δy=10	μm	RMS	gaussian	distributed	truncated	at	2.5	sigma	
No	correction	
	

•  After	correction	
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✏
y

= 2.1 pm, ✏
x

= 1.26 nm, ✏
y

/✏
x

0.0017

Sextupole	transverse	displacements	

2.5	pm	vertical	
emittance	design	
value!	

Δx,	Δy	 εx	(nm)	 εy	(pm)	 εy/ex	%	

100	 1.34+/-0.0001	 0.074+/-0.008	 0.005	

150	 1.34	+/-	
0.0003	

0.17+/-0.022	 0.012	

200	 1.34	+/-	
0.0001	

0.3+/-0.03	 0.022	



•  Errors	,	no	strength	in	sextupoles	
•  X-y	orbits	correction	
•  Pure	coupling	correction	
•  Rematch	the	horizontal	dispersion	
•  1	step	Dispersion	Free	Steering	wo	sextupole	(Dy	correction)	

+	
1	step	coupling	correction	(kicker	strength	change	the	coupling	conmiguration)	

•  Save	x,x’,y,y’	at	the	beginning	of	the	machine	

•  Switch	on	sextupoles	to	+10%	of	their	design	current	
-	orbit	corrections	
-	coupling	correction,	tune	matching	
-	beta	beat	correction,	Dx	correction	
-	coupling	+	Dy	correction	
-	increase	by	10%	the	sextupole	strength	
	

•  Emittance	computation	
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This	avoid	the	tunes	
run	of	to	resonance	
and	maximize	the	
number	of	seeds	

Arc	Quads	&	sextupoles	misaligned		
		
Strategy	

Loop	20	times	

7-8h	up	to	one	day	
of	simulation/seed	
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Arc	Quads	&	sextupoles	misaligned		
Δx	 Δy	 Δθ	

Arc	quad	 100	 100	 100	

Sextupole	 100	 100	

IP	quad	 0	 0	 0	

Out	of	500	seeds,	436	converged	
	
εy	=	0.093	pm	+/-		0.01	
εx=	1.52	nm	+/-	0.009	
εy/εx=	0.006%	(limit	0.2%)	
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dy~2mm	

y~0.05mm	

several	100	meters	
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Arc	Quads	&	sextupoles	misaligned	:	beta	beat	
Beta	beat	
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Momentum	Acceptance	with	Errors	

•  Very	preliminary	results,	still	
work	on	going.	

•  No	misalignment	in	IR	
quadrupoles	

•  tracking	for	100	turns	(4	
damping	times)	PTC	

•  One	seed	

•  No	large	Mom.	Acceptance	
reduction	

Tracking	done	by	Tobias	Tydecks	
	



..	to	treat	the	IR	quadrupoles,	it	is	better	to	start	
from	a	relax	optics,	20mm	beta	star.	
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Misaligned	Arc	and	IP	elements	20mm	beta*	
Δx	 Δy	 Δθ	

Arc	quad	 100	 100	 100	

Sextupole	 100	 100	

IP	quad	 100	 100	 100	

Out	of	500	seeds,	436	converged	
	
εy	=	0.067	pm	+/-		0.006	
εx=	1.52	nm	+/-	0.009	
εy/εx=	0.0044%	(limit	0.2%)	
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Misaligned	Arc	and	IP	elements	2mm	beta*	
Δx	 Δy	 Δθ	

Arc	quad	 100	 100	 100	

Sextupole	 100	 100	

IP	quad	 50	 50	 50	

Out	of	1000	seeds,	700	converged	
	
εy	=	0.099	pm	+/-		0.013	
εx=	1.52	nm	+/-	0.01	
εy/εx=	0.0065%	(limit	0.2%)	
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Misaligned	Arc	and	IP	elements	2mm	beta*	
Δx	 Δy	 Δθ	

Arc	quad	 100	 100	 100	

Sextupole	 100	 100	

IP	quad	 100	 100	 100	

Out	of	1000	seeds,	369	converged	
	
εy	=	0.11	pm	+/-		0.03	
εx=	1.52	nm	+/-	0.01	
εy/εx=	0.0073%	(limit	0.2%)	
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Conclusions	-	Outlooks	
•  FCC-ee	is	a	100km	electron-positron	collider	

	
•  With	100	μm	–	100	μrad	in	Arc	quads+Sextupoles	and	50μm	and	50	μrad	

	IP	quads	à	ey	=	0.1	pm	(limit	2pm)		
	-	Stray	mield	solenoid	not	taken	into	account	in	the	calculation	and	can	take	30%	of	the	total	
emittance	budget.	
-	Above	those	tolerances,	convergence	&	numerical	problems,	not	enough	statistics.	
-	Local	correctors	in	IR	mandatory.	

•  Optimization	of	the	number	of	correctors.	Can	we	preserve	the	luminosity	with	less	
correctors?	

	
•  next	step:	BPM	errors	and	dipole	roll	still	to	be	included.	

	
•  Field	errors	are	still	to	be	treated	(chromaticity	correction	preservation,	impact	mom.	

accept.	etc..)	
•  CDR	for	this	year.	
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Sextupole	transverse	displacements,	no	roll	
Vertical	Δβ/β	after	beta	beat	
correction	(initial	up	to	50%)	

Horizontal	Δβ/β	after	beta	beat	
correction	below	1%	

Vertical	dispersion	during	correction	
with	sextupole	misalignments	



•  Initial	working	point	Qx=0.08	&	Qy=0.14	(for	beam-beam	effect)	
à		1/Sin(pi	Q)	amplimication	in	orbit,	dispersion,	coupling	response	due	to	errors	
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Figure 2: Vertical dispersion in the SPS ring due to a kick of 0.1 mrad at corrector
MDV.10307. The solid line is the MADX prediction, the points correspond to the analytical
expression of Eq. 20 evaluated at the location of the BPMs.

strength, the horizontal dispersion at the sextupole and to the orbit offset in the sextupole.
The sextupole term is obtained by replacing the K in the equation for the quadrupoles by
−K2Dx, see for example Ref. [4] for a rigorous treatment of the dispersion response.

When all contributions are combined the dispersion response at monitor i due to the kick
from corrector j becomes

Bij = {
quad
∑

l

KlLlβl

4 sin(πQ)2
cos(|µi − µl|− πQ) cos(|µl − µj|− πQ)

−
sext
∑

m

K2,mDx,mLmβm

4 sin(πQ)2
cos(|µi − µm|− πQ) cos(|µm − µj|− πQ)

−
cos(|µi − µj |− πQ)

sin(πQ)
}
√

βlβj (20)

where the sums run over all quadrupoles (i) and sextupoles (m). The last term is the direct
effect from the corrector kick itself. Eq. 20 is valid for the horizontal plane. For the vertical

6

Challenges	and	constraints	(2)	

Vertical	dispersion	response	to	errors	in	
quad/sextupole	



•  Δy=Δx=100μm	RMS	displacement	in	
arc	quadrupoles,	errors	gaussian	
distributed	truncated	at	2.5sigma		
(No	sextupole)	

•  Response	of	vertical	dispersion	Dy	to	
Qy	(nominal	working	point	qx=0.08	
qy=0.14	à	qx=0.106,	qy=0.18)	

•  Δy=Δx=100μm	RMS	displacement	in	arc	
quadrupoles	(No	sextupole,	Qy=0.14)	
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Example	of	FCC-ee	lattice	sensitivity	to	errors	
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Dynamical	Aperture	


