ANALYTICAL N-BPM METHOD

IMPROVING ACCURACY AND ROBUSTNESS OF LINEAR OPTICS MEASUREMENTS

Andreas Wegscheider

PhD student at CERN and Hamburg University

MOTIVATION

- Measurement and correction of focusing errors is of great importance in circular accelerators
 - colliders as well as light sources
- N-BPM method has been used in various machines
 - IHC
 - ALBA
 - ESRF
- Want to **improve** existing measurement techniques.

N-BPM method used Monte Carlo simulations to get systematic errors

- · time consuming
- · failed for pushed optics

β FUNCTION MEASUREMENT

beta from phase, 3-BPM method, N-BPM method

BETA FROM PHASE

The position of the beam at a position s_i in the ring is

$$x(s_i) = A\cos(2\pi Q + \phi(s_i)) + x_{CO}$$

Q: machine tune, $\phi(s)$: betatron phase, x_{CO} : closed orbit

Measured with **Beam Position Monitors** (BPMs). The phase $\phi(s_i)$ is derived by a **harmonic** analysis of the BPM signal.

 β from phase using three BPMs via the following formula:

$$\beta(s_i) = \frac{\cot(\phi_{ij}) - \cot(\phi_{ik})}{\cot(\phi_{ij}^m) - \cot(\phi_{ik}^m)}$$

 $\phi_{ij} = \phi_j - \phi_i$

Assumption: relatively **small lattice imperfections** between the BPMs.

blue: probed BPM (BPM i) red: used BPM (j, k)

BETA FROM PHASE

$$\beta(s_i) = \frac{\cot(\phi_{ij}) - \cot(\phi_{ik})}{\cot(\phi_{ij}^m) - \cot(\phi_{ik}^m)}$$

sensitive to the position of the BPMs with respect to each other.

The cotangens enhances phase measurement errors if $\phi_{ij} pprox n\pi \quad n \in \mathbb{N}$

SKIP BPMS / USE MULTIPLE COMBINATIONS

- **Skipping BPMs** to avoid unpreferable phase advances. But lattice imperfections deteriorate the quality of the result
- Take into account possible sources of errors between the BPMs
- Use more than one combination to increase the amount of information

N-BPM method

To get the β function at the position of a BPM i: calculate **several combinations** (i, j_l, k_l) and use the **mean value**.

But there are errors and far-away BPMs yield worse data.

To get the β function at the position of a BPM i: calculate several combinations (i,j_l,k_l)

$$\beta_l(s_i) = \frac{\cot(\phi_{ij_l}) - \cot(\phi_{ik_l})}{\cot(\phi_{ij_l}^m) - \cot(\phi_{ik_l}^m)}$$

The best estimation for the beta function is calculates by

$$\beta = \sum_{l} \beta_l(s_i) g_l$$

The weights g_l are determined by a **least-squares** estimation

$$g_l = \frac{\sum_k V_{ik}^{-1}}{\sum_{i,j} V_{ij}^{-1}}$$

$$g_l = \frac{\sum_k V_{ik}^{-1}}{\sum_{i,j} V_{ij}^{-1}}$$

$$\mathbf{V} = \mathbf{Cov}[\vec{eta}]$$
 is the **covariance matrix** of $\vec{eta} = \begin{pmatrix} eta_1 \\ \vdots \\ eta_n \end{pmatrix}$

It can be calculated from the diagonal **error matrix M** = $diag(\epsilon_1, \ldots, \epsilon_M)$ where the ϵ_{λ} are all the sources of error $(\Delta \phi, \Delta K_1, \Delta s, \ldots)$:

$$\mathbf{V} = \mathbf{T} \mathbf{M} \mathbf{T}^{-1}$$

where T is the Jacobian

$$T_{l\lambda} = \left. \frac{\partial \beta_l}{\partial \epsilon_{\lambda}} \right|_{\delta \epsilon = 0}$$

- Only statistical errors were calculated analytically. Systematic errors were calculated by Monte Carlo simulations
- Yields only approximated results and is time consuming. (LHC has many different optics)
- Pushed optics can cause a **crash** of the simulations.

ANALYTICAL N-BPM METHOD

analytical calculation of the covariance matrix, removal of bad BPM combinations

CALCULATION OF THE CORRELATION MATRIX

The Jacobian T can be split into blocks

$$\mathbf{T} = (\mathbf{T}^{\phi} \mathbf{T}^K \mathbf{T}^s)$$

 \mathbf{T}^{ϕ} : phase uncertainties, \mathbf{T}^{K} : magnet field uncertainties, \mathbf{T}^{s} : longitudinal misalignments

The three parts of the matrix can be calculated:

$$\mathbf{T}^{\phi} = \left(\frac{\partial \beta_l}{\partial \phi_{\lambda}}\right)_{l\lambda} \quad \mathbf{T}^K = \left(\frac{\partial \beta_l}{\partial K_{\mu}}\right)_{l\mu} \quad \mathbf{T}^s = \left(\frac{\partial \beta_l}{\partial s_{\nu}}\right)_{l\nu}$$

The phase part is already known, for the others we need a relationship

$$\beta^{\text{real}}(s_i) = \beta(\phi, \{\delta K_1\}_{\text{acc}}, \{\delta s\}_{\text{acc}}, \dots) = \beta^m + \Delta \beta(\phi, \{\delta K_1\}_{\text{acc}}, \{\delta s\}_{\text{acc}}, \dots)$$

 $\{\delta K_1\}_{\rm acc}$: quadrupolar field errors in the accelerator

 $\{\delta s\}_{acc}$: longitudinal misalignments (BPMs and quads).

EFFECT OF IMPERFECTIONS ON THE $oldsymbol{eta}$ FUNCTION AND ITS MEASUREMENT

new formula to calculate β function from

- phase advances
- quadrupolar field errors
- longitudinal BPM misalignments
- longitudinal quadrupole misalignments

$$\beta_l(s_i) \approx \frac{\cot \phi_{ij_l} - \cot \phi_{ik_l}}{\cot \phi_{ij_l}^m - \cot \phi_{ik_l}^m + g_{ij_l} - g_{ik_l}} \left[\beta^m(s_i) - 2\alpha^m(s_i) \delta s_i \right]$$

where the terms g_{ij} collect the dependency on **lattice imperfections**.

$$g_{ij} = \operatorname{sgn}(i-j) \frac{\frac{1}{\beta^m(s_i)} \delta s_j - \frac{1}{\beta^m(s_i)} \delta s_i + \sum_{w \in I} \beta_w^m \delta K_{w,1} \sin^2 \phi_{wj}^m}{\sin^2 \phi_{ij}^m}$$

CALCULATION OF THE CORRELATION MATRIX - CONCLUSION

$$T_{l\lambda}^K = \mp \frac{\beta^m(s_i)\beta^m(s_\lambda)}{\cot \phi_{ij_l}^m - \cot \phi_{ik_l}^m} \times \left(\frac{\sin^2 \phi_{\lambda j_l}}{\sin^2 \phi_{ij_l}} A_{ij_l}(\lambda) - \frac{\sin^2 \phi_{\lambda k_l}}{\sin^2 \phi_{ik_l}} A_{ik_l}(\lambda) \right)$$

and:

$$T_{l\lambda}^{s} = -2\alpha^{m}(s_{i})\delta_{i}^{\lambda} \pm \frac{\frac{\operatorname{sgn}(i-j_{l})}{\sin^{2}\phi_{ij_{l}}^{m}}\left(\frac{\beta^{m}(s_{i})}{\beta^{m}(s_{j_{l}})}\delta_{\lambda}^{j_{l}} - \delta_{\lambda}^{i}\right) - \frac{\operatorname{sgn}(i-k_{l})}{\sin^{2}\phi_{ik_{l}}^{m}}\left(\frac{\beta^{m}(s_{i})}{\beta^{m}(s_{k_{l}})}\delta_{\lambda}^{k_{l}} - \delta_{\lambda}^{i}\right)}{\cot\phi_{ij_{l}}^{m} - \cot\phi_{ik_{l}}^{m}}$$

REMOVAL OF BAD BPM COMBINATIONS

filter BPM combinations by phase advances

bad:

 $\Delta \phi \in [n\pi - \delta, n\pi + \delta]$ for $n \in \mathbb{N}$, threshold δ .

- enhances phase errors
- numerically unstable

If any of the four phase advances $\phi_{ij_l}, \phi_{ik_l}, \phi^m_{ij_l}, \phi^m_{ik_l}$ in

$$\beta_l(s_i) = \frac{\cot(\phi_{ij_l}) - \cot(\phi_{ik_l})}{\cot(\phi_{ij_l}^m) - \cot(\phi_{ik_l}^m)}$$

is bad, the corresponding BPM combination is disregarded.

2016 and 2017 for the LHC: $\delta = 2\pi \times 10^{-2}$.

SIMULATIONS

Evaluation of the new method

TEST SETUP

- generate many test lattices with randomly distributed errors
 simulate measurement by tracking a single particle via PTC
 use the LHC-OMC tools to analyse the data

Standard deviation of introduced errors:

	$\frac{\sigma K}{K} 10^{-4}$	σs [mm]	σx [mm]
MQ	18	1.0	-
MQM	12	1.0	-
MQY	11	1.0	-
MQX	4	1.0	-
MQW	15	1.0	-
MQT	75	1.0	-
MS	-	-	0.3
BPM	-	1.0	-

NOMINAL LATTICE

40 cm $oldsymbol{eta}^*$ | collision tunes | collision energy

HL-LHC LATTICE

10 cm $oldsymbol{eta}^*$ | collision tunes | collision energy | ATS optics

ACCURACY AND PRECISION OF THE METHODS

HL-LHC

MEASUREMENTS

ATS machine development, 10cm β^{\ast}

ATS MD IN OCTOBER 2016

Beta beating plot at $\beta^* = 10cm$

Export to plot.ly »

CONCLUSIONS

new method has been developed fully analytical calculation of the covariance matrix

- faster
- · more accurate
- · avoids complication from failing simulations

successfully used at CERN:

- LHC measurements and optics correction (commissioning, machine development)
- · first measurements at PS
- · first measurements at PS Booster

method independent of accelerator and accelerator type

- Analytical N-BPM method can be used with any kind of accelerator
- linear optics analysis toolbox ready for integration of new accelerators

THANK YOU VERY MUCH FOR YOUR ATTENTION