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Parallel hardware history

I Before ~2005, processor manufacturers increased clock speed.
I Then we hit the power and memory wall, which limits the frequency at which

processors can run (without melting).
I Manufacturers response was to continue improving their chips performance by

adding more parallelism.

To fully exploit modern processors capabilities, programmers need to put effort into the
source code.
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Parallel Hardware

Processors are naturally parallel:
I Caches
I Different processing units (floating

point, arithmetic logic...)
I Integrated GPU

Programmers have plenty of options:
I Multi-threading
I SIMD / Vectorization (Single

Instruction Multiple Data)
I Heterogeneous hardware
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Parallel hardware
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Figure: Intel Xeon processors evolution

0Source: ark.intel.com

07 Mar 2018 11



Parallel considerations

When designing parallel algorithms where are interested in speedup. How much
faster (or slower) does my code run with parallel algorithms?

Speedup
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Predicting scalability

Amdahl’s Law

Sp =
1

(1 − p) + p/n

Serial
Parallel

n=1 n=2 n=4

Gustafson-Barsis’ Law

Sp = 1 − p + np

n=1 n=2 n=4

Work-Span model

n = number of parallel parts
p = parallel % of the program
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Pattern

Software design pattern (Wikipedia):
general, reusable solution to a commonly
occurring problem in a given context in
software design.

Parallel pattern: recurring combination of
task distribution and data access that
solves a specific problem in parallel
algorithm design.

Here we are mostly interested in control flow patterns and distinguish between data
parallel and streaming patterns.
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Sequential and parallel patterns

Structured serial control flow
patterns

I Sequence
I Selection
I Iteration
I Reduce

Parallel control and data
management patterns

I Fork-join
I Map
I Stencil
I Farm
I Superscalar sequence
I Parallel reduce
I Pipeline
I Geometric decomposition
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Data parallel vs streaming patterns

Data parallel patterns
I Map
I Farm
I Reduction
I Stencil

Streaming patterns
I Farm
I Pipeline
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Data parallel vs streaming parallel patterns

I Size of the input + dependencies between items define which pattern to use.
I Data parallel patterns may not be efficient in streaming scenarios, and the other

way around.
I For streaming patterns, there is usually one (or more) input items that distributes

the input elements to working items as they come.
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Parallel patterns

I By using parallel patterns, source code can be "free of threads and vector
intrinsecs".

I Which parallel patterns to choose depends the type of problem we are addressing
and the dependencies between the items.

Also programming in terms of generic parallel patterns address the typical parallel
programming problems:

I Race conditions
I Deadlocks
I Strangled scaling

I Lack of locality
I Load imbalance
I Overhead
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Fork-join (parallel)

I Generalization of any problem
that can be partitioned.

I The load of each item can be split
to get a smaller grain size.

I Recursive.
I Base implementation of many

parallel patterns.
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Sequence (sequential)

I Ordered list of items to compute.
I Dependencies between them

don’t matter, so side-effects won’t
affect.

I Items without dependencies also
run one after the other.

Note that

Compilers will try to reorder
instructions if they consider that is an
optimization.
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Superscalar sequence (parallel)

I Is the parallel generalization of
the sequence.

I Items are ordered attending to the
dependencies between them.

I Items without dependencies may
run in parallel.

Used in

This is the pattern followed by HEP
data processing frameworks!
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Iteration (sequential)

I Used to loop over collections of
items.

I We can fit it as a "while" or "for"
loops commonly used in
programming languages.

I Checks if condition is met, then
runs an item or continues.

I May seem trivial to parallelize,
but... Check dependencies!
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Parallel patterns derived from iteration

I There is no one but many parallel pattern equivalents.
I Many parallel patterns are generalizations of the iteration pattern.
I Which one to use is given by the dependencies between the items.
I If the input is not known in advance, usually we have streaming alternatives.
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Map (parallel)

I Used on embarrassingly parallel
collections of items.

I Same function applied to every
item, all at the same "time".

I Applicable if all items are
independent.

I Usually good candidate for SIMD
abstractions.

Used in

Ray tracing, Monte Carlo simulations.
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Reduction (sequential)

I Combines a collection of items
into one, with a defined operation.

I Many different partition options.
I Elements depend on each other,

but are associative.

Used in

Matrix operations, computing of
statistics on datasets.

Figure: Sequential reduction
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Reduction (parallel)

I Combines a collection of items
into one, with a defined operation.

I Many different partition options.
I Elements depend on each other,

but are associative.

Used in

Matrix operations, computing of
statistics on datasets.

Figure: Parallel reduction
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Geometric decomposition (parallel)

I Divides input into smaller
collections of items.

I It provides a different organization
of the data

Used in

Image compression, matrix
multiplication, spatial-temporal
simulations.
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Stencil (parallel)

I When for every item of a
collection, we need data from the
neighbourhood items.

I Usually a fixed number of
neighbourhood is accessed.

I Boundary conditions have to be
taken into account.

I Data reuse in the implementation
(cache).

Used in

Signal filtering, image processing, grid
methods.
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Farm (parallel streaming)

I Similar to map, but size of
collection is not known in
advance.

I Used for embarrassingly parallel
computations in stream
computations.

I There at least one producer item.

Used in

Used in HEP online trigger software.
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Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.
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Composing parallel patterns

I Complex parallelization schemes can be created by composing and nesting
different parallel patterns.
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Using the patterns

I These patterns are usually found in high performance computing environments,
but can be applied to any scenario and any programming language with threading
capabilities.

I Computing in parallel gives an speedup, but also causes overhead.
I Be careful with overparallelizing or making items to small, watch the grain size.
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Many available options

C++
I Custom thread implementation
I Intel TBB
I Open MP
I Intel Cilk
I HPX
I OpenCL

Others
I MPI
I Python multiprocessing
I River-trail Javascript engine
I Rust Rayon
I Hadoop, Spark (Java, Scala, etc)
I Java 8 Streams
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GrPPI

I Generic Reusable Parallel Patterns Interface.
I Simple interface that hides the complexity of the used concurrency mechanisms.
I Supports data parallel and streaming computations.
I No deep understanding of parallel frameworks or third party libraries needed.
I Various backends supported: C++ threads, Intel TBB, OpenMP, CUDA.
I Changing the used backend means just changing one line of code.
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GrPPI example
A Map example

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_thr p {num_threads};
5

6 // collection of items
7 std::vector<int> data(n);
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::map(p, data, processFn);
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GrPPI example
A Map example using OpenMP as a backend

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_omp p {num_threads};
5

6 // collection of items
7 std::vector<int> data(n);
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::map(p, data, processFn);
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GrPPI example
A Map example using TBB as a backend

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_tbb p {num_threads};
5

6 // collection of items
7 std::vector<int> data(n);
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::map(p, data, processFn);
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GrPPI example
A Farm example

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_thr p {num_threads};
5

6 // Input lambda
7 const auto inputFn = [](InputData data){...}
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::farm(p, inputFn, processFn);
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GrPPI example
A composed pipeline-farm example

1 #include "grppi.h"
2

3 grppi::parallel_execution_thr p {num_threads};
4

5 const auto inputFn = [](InputData data){...}
6 const auto stepOneFn = [](InputData data){...}
7 const auto stepTwoFn = [](InputData data){...}
8 const auto stepThreeFn = [](InputData data){...}
9

10 grppi::pipeline(p,
11 inputFn,
12 grppi::farm(num_threads/3, stepOneFn),
13 grppi::farm(num_threads/3, stepTwoFn),
14 grppi::farm(num_threads/3, stepThreeFn)
15 );
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GrPPI with NUMA awareness

I Topology detection with hwloc
library

I Generate hierarchy and balance
the load across the different
nodes, cores and hyperthreads.

I Threads need to be pinned
according to the topology.

Source: ark.intel.com
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Conclusions

I Generic patterns create useful abstraction to express parallelism in a easy and
intuitive way.

I Using them makes it easier to avoid the typical parallelism errors and complexities.
I Nested parallelism allows to create complex patterns for big problems.
I Side effects need to ensured by the programmer.
I Vector and thread parallelism can be covered with these patterns.
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