


From sequential to parallel
programming with patterns

Inverted CERN School of Computing 2018

Plácido Fernández
placido.fernandez@cern.ch

07 Mar 2018

placido.fernandez@cern.ch


Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 3



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 4



Source: Herb Sutter in Dr. Dobb’s Journal



Parallel hardware history

I Before ~2005, processor manufacturers increased clock speed.
I Then we hit the power and memory wall, which limits the frequency at which

processors can run (without melting).
I Manufacturers response was to continue improving their chips performance by

adding more parallelism.

To fully exploit modern processors capabilities, programmers need to put effort into the
source code.

07 Mar 2018 6



Parallel Hardware

Processors are naturally parallel:
I Caches
I Different processing units (floating

point, arithmetic logic...)
I Integrated GPU

Programmers have plenty of options:
I Multi-threading
I SIMD / Vectorization (Single

Instruction Multiple Data)
I Heterogeneous hardware

07 Mar 2018 7



Source: top500.org



Source: Intel



Source: CERN



Parallel hardware

Threads

SIMD Width

Year 2006 20092005

1

2

128

Xeon

2

2

128

Xeon 5100

4

8

128

Xeon 5500

Cores

2012

8

16

256

Sandy Bridge

2015

18

36

256

Haswell

2016

24

48

256

Broadwell Skylake

28

56

512

2017

Figure: Intel Xeon processors evolution

0Source: ark.intel.com

07 Mar 2018 11



Parallel considerations

When designing parallel algorithms where are interested in speedup. How much
faster (or slower) does my code run with parallel algorithms?

Speedup

Sp =
Time1

Timen

1 2 4 8 16 32 64 128 256

1

2

4

8

16

32

64

128

256 Perfect scaling

Superlinear scaling

Good scaling

Typical hyperthread scaling

Cores

S
p
e
e
d
u
p

07 Mar 2018 12



Predicting scalability

Amdahl’s Law

Sp =
1

(1 − p) + p/n

Serial
Parallel

n=1 n=2 n=4

Gustafson-Barsis’ Law

Sp = 1 − p + np

n=1 n=2 n=4

Work-Span model

n = number of parallel parts
p = parallel % of the program

07 Mar 2018 13



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 14



Pattern

Software design pattern (Wikipedia):
general, reusable solution to a commonly
occurring problem in a given context in
software design.

Parallel pattern: recurring combination of
task distribution and data access that
solves a specific problem in parallel
algorithm design.

Here we are mostly interested in control flow patterns and distinguish between data
parallel and streaming patterns.

07 Mar 2018 15



Sequential and parallel patterns

Structured serial control flow
patterns

I Sequence
I Selection
I Iteration
I Reduce

Parallel control and data
management patterns

I Fork-join
I Map
I Stencil
I Farm
I Superscalar sequence
I Parallel reduce
I Pipeline
I Geometric decomposition

07 Mar 2018 16



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 17



Data parallel vs streaming patterns

Data parallel patterns
I Map
I Farm
I Reduction
I Stencil

Streaming patterns
I Farm
I Pipeline

07 Mar 2018 18



Data parallel vs streaming parallel patterns

I Size of the input + dependencies between items define which pattern to use.
I Data parallel patterns may not be efficient in streaming scenarios, and the other

way around.
I For streaming patterns, there is usually one (or more) input items that distributes

the input elements to working items as they come.

07 Mar 2018 19



Parallel patterns

I By using parallel patterns, source code can be "free of threads and vector
intrinsecs".

I Which parallel patterns to choose depends the type of problem we are addressing
and the dependencies between the items.

Also programming in terms of generic parallel patterns address the typical parallel
programming problems:

I Race conditions
I Deadlocks
I Strangled scaling

I Lack of locality
I Load imbalance
I Overhead

07 Mar 2018 20



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 21



Fork-join (parallel)

I Generalization of any problem
that can be partitioned.

I The load of each item can be split
to get a smaller grain size.

I Recursive.
I Base implementation of many

parallel patterns.

07 Mar 2018 22



Sequence (sequential)

I Ordered list of items to compute.
I Dependencies between them

don’t matter, so side-effects won’t
affect.

I Items without dependencies also
run one after the other.

Note that

Compilers will try to reorder
instructions if they consider that is an
optimization.

07 Mar 2018 23



Sequence (sequential)

I Ordered list of items to compute.
I Dependencies between them

don’t matter, so side-effects won’t
affect.

I Items without dependencies also
run one after the other.

Note that

Compilers will try to reorder
instructions if they consider that is an
optimization.

07 Mar 2018 24



Superscalar sequence (parallel)

I Is the parallel generalization of
the sequence.

I Items are ordered attending to the
dependencies between them.

I Items without dependencies may
run in parallel.

Used in

This is the pattern followed by HEP
data processing frameworks!

07 Mar 2018 25



Iteration (sequential)

I Used to loop over collections of
items.

I We can fit it as a "while" or "for"
loops commonly used in
programming languages.

I Checks if condition is met, then
runs an item or continues.

I May seem trivial to parallelize,
but... Check dependencies!

07 Mar 2018 26



Parallel patterns derived from iteration

I There is no one but many parallel pattern equivalents.
I Many parallel patterns are generalizations of the iteration pattern.
I Which one to use is given by the dependencies between the items.
I If the input is not known in advance, usually we have streaming alternatives.

07 Mar 2018 27



Map (parallel)

I Used on embarrassingly parallel
collections of items.

I Same function applied to every
item, all at the same "time".

I Applicable if all items are
independent.

I Usually good candidate for SIMD
abstractions.

Used in

Ray tracing, Monte Carlo simulations.

07 Mar 2018 28



Reduction (sequential)

I Combines a collection of items
into one, with a defined operation.

I Many different partition options.
I Elements depend on each other,

but are associative.

Used in

Matrix operations, computing of
statistics on datasets.

Figure: Sequential reduction

07 Mar 2018 29



Reduction (parallel)

I Combines a collection of items
into one, with a defined operation.

I Many different partition options.
I Elements depend on each other,

but are associative.

Used in

Matrix operations, computing of
statistics on datasets.

Figure: Parallel reduction

07 Mar 2018 30



Geometric decomposition (parallel)

I Divides input into smaller
collections of items.

I It provides a different organization
of the data

Used in

Image compression, matrix
multiplication, spatial-temporal
simulations.

07 Mar 2018 31



Geometric decomposition (parallel)

I Divides input into smaller
collections of items.

I It provides a different organization
of the data

Used in

Image compression, matrix
multiplication, spatial-temporal
simulations.

07 Mar 2018 32



Geometric decomposition (parallel)

I Divides input into smaller
collections of items.

I It provides a different organization
of the data

Used in

Image compression, matrix
multiplication, spatial-temporal
simulations.

07 Mar 2018 33



Stencil (parallel)

I When for every item of a
collection, we need data from the
neighbourhood items.

I Usually a fixed number of
neighbourhood is accessed.

I Boundary conditions have to be
taken into account.

I Data reuse in the implementation
(cache).

Used in

Signal filtering, image processing, grid
methods.

07 Mar 2018 34



Stencil (parallel)

I When for every item of a
collection, we need data from the
neighbourhood items.

I Usually a fixed number of
neighbourhood is accessed.

I Boundary conditions have to be
taken into account.

I Data reuse in the implementation
(cache).

Used in

Signal filtering, image processing, grid
methods.

07 Mar 2018 35



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 36



Farm (parallel streaming)

I Similar to map, but size of
collection is not known in
advance.

I Used for embarrassingly parallel
computations in stream
computations.

I There at least one producer item.

Used in

Used in HEP online trigger software.

07 Mar 2018 37



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 38



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 39



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 40



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 41



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 42



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 43



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 44



Pipeline (streaming)

I Size of collection not needed in
advance.

I Different steps run in parallel, but
others may not be able to run in
parallel.

I Different functions are applied in
different steps, where the order is
important.

Used in

image filtering, signal processing,
game engines.

07 Mar 2018 45



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 46



Composing parallel patterns

I Complex parallelization schemes can be created by composing and nesting
different parallel patterns.

07 Mar 2018 47



Composing parallel patterns

I Complex parallelization schemes can be created by composing and nesting
different parallel patterns.

07 Mar 2018 48



Composing parallel patterns

I Complex parallelization schemes can be created by composing and nesting
different parallel patterns.

07 Mar 2018 49



Composing parallel patterns

I Complex parallelization schemes can be created by composing and nesting
different parallel patterns.

07 Mar 2018 50



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 51



Using the patterns

I These patterns are usually found in high performance computing environments,
but can be applied to any scenario and any programming language with threading
capabilities.

I Computing in parallel gives an speedup, but also causes overhead.
I Be careful with overparallelizing or making items to small, watch the grain size.

07 Mar 2018 52



Many available options

C++
I Custom thread implementation
I Intel TBB
I Open MP
I Intel Cilk
I HPX
I OpenCL

Others
I MPI
I Python multiprocessing
I River-trail Javascript engine
I Rust Rayon
I Hadoop, Spark (Java, Scala, etc)
I Java 8 Streams

07 Mar 2018 53



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 54



GrPPI

I Generic Reusable Parallel Patterns Interface.
I Simple interface that hides the complexity of the used concurrency mechanisms.
I Supports data parallel and streaming computations.
I No deep understanding of parallel frameworks or third party libraries needed.
I Various backends supported: C++ threads, Intel TBB, OpenMP, CUDA.
I Changing the used backend means just changing one line of code.

07 Mar 2018 55



GrPPI example
A Map example

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_thr p {num_threads};
5

6 // collection of items
7 std::vector<int> data(n);
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::map(p, data, processFn);

07 Mar 2018 56



GrPPI example
A Map example using OpenMP as a backend

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_omp p {num_threads};
5

6 // collection of items
7 std::vector<int> data(n);
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::map(p, data, processFn);

07 Mar 2018 57



GrPPI example
A Map example using TBB as a backend

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_tbb p {num_threads};
5

6 // collection of items
7 std::vector<int> data(n);
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::map(p, data, processFn);

07 Mar 2018 58



GrPPI example
A Farm example

1 #include "grppi.h"
2

3 // execution environment
4 grppi::parallel_execution_thr p {num_threads};
5

6 // Input lambda
7 const auto inputFn = [](InputData data){...}
8

9 // Processing lambda
10 const auto processFn = [](InputData data){...}
11

12 grppi::farm(p, inputFn, processFn);

07 Mar 2018 59



GrPPI example
A composed pipeline-farm example

1 #include "grppi.h"
2

3 grppi::parallel_execution_thr p {num_threads};
4

5 const auto inputFn = [](InputData data){...}
6 const auto stepOneFn = [](InputData data){...}
7 const auto stepTwoFn = [](InputData data){...}
8 const auto stepThreeFn = [](InputData data){...}
9

10 grppi::pipeline(p,
11 inputFn,
12 grppi::farm(num_threads/3, stepOneFn),
13 grppi::farm(num_threads/3, stepTwoFn),
14 grppi::farm(num_threads/3, stepThreeFn)
15 );

07 Mar 2018 60



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 61



GrPPI with NUMA awareness

I Topology detection with hwloc
library

I Generate hierarchy and balance
the load across the different
nodes, cores and hyperthreads.

I Threads need to be pinned
according to the topology.

Source: ark.intel.com

07 Mar 2018 62



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 63



Conclusions

I Generic patterns create useful abstraction to express parallelism in a easy and
intuitive way.

I Using them makes it easier to avoid the typical parallelism errors and complexities.
I Nested parallelism allows to create complex patterns for big problems.
I Side effects need to ensured by the programmer.
I Vector and thread parallelism can be covered with these patterns.

07 Mar 2018 64



Table of Contents

Introduction

Sequential vs Parallel patterns
Patterns
Data parallel vs streaming patterns
Control patterns (sequential and parallel
Streaming parallel patterns
Composing parallel patterns

Using the patterns
Real world use case
GrPPI with NUMA

Conclusions

Acknowledgements and references

07 Mar 2018 65



Acknowledgements

Thanks to all these people:
I My CERN supervisors, Omar and Niko
I The ARCOS department at University Carlos III of Madrid
I Daniel Cámpora
I The HTCC members
I Sebastien Ponce, Enric Tejedor and Danilo Piparo
I Sebastian Lopienski and the iCSC team

07 Mar 2018 66



References

D. del Rio Astorga, M. F. Dolz, L. M. Sanchez, J. G. Blas, and J. D. García, “A c++
generic parallel pattern interface for stream processing,” in Algorithms and
Architectures for Parallel Processing, pp. 74–87, Springer, 2016.

“GrPPI: Generic Reusable Parallel Patterns Interface.”
https://arcosuc3m.github.io/grppi/.

M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow: high-level and
efficient streaming on multi-core,” Programming multi-core and many-core
computing systems, parallel and distributed computing, 2014.

E. Gamma, Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

M. D. McCool, A. D. Robison, and J. Reinders, Structured parallel programming:
patterns for efficient computation.
Elsevier, 2012.

07 Mar 2018 67

https://arcosuc3m.github.io/grppi/


www.cern.ch


	Introduction
	Sequential vs Parallel patterns
	Patterns
	Data parallel vs streaming patterns
	Control patterns (sequential and parallel
	Streaming parallel patterns
	Composing parallel patterns

	Using the patterns
	Real world use case
	GrPPI with NUMA

	Conclusions
	Acknowledgements and references

