# ATLAS-CMS tt charge asymmetry combination



arXiv:1709.05327

Thorsten Chwalek (KIT), <u>Frédéric Déliot</u> (CEA-Saclay)

LHCtopWG open session, November 2nd, 2017

## tt charge asymmetry at the LHC

• At NLO, QCD predicts an asymmetry for tt produced via qq (gg fusion is symmetric)

- in the lab frame, top quarks preferentially emitted in the forward/backward directions while antitop

quarks are produced more centrally

charge asymmetry observable

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$
$$\Delta|y| \equiv |y_t| - |y_{\bar{t}}|$$





SM predictions

|                       |                         | Centre-of-mass energy       |                                |  |  |
|-----------------------|-------------------------|-----------------------------|--------------------------------|--|--|
| Inclusive $A_{\rm C}$ |                         | $\sqrt{s} = 7 \mathrm{TeV}$ | $\sqrt{s} = 8 \mathrm{TeV}$    |  |  |
|                       | QCD NLO + EW NLO [1]    | $0.0115 \pm 0.0006$         | $0.0102 \pm 0.0005$            |  |  |
| Theory predictions    | QCD NLO + EW NLO [3]    | $0.0123 \pm 0.0005$         | $0.0111 \pm 0.0004$            |  |  |
|                       | QCD NNLO + EW NLO [4-6] |                             | $0.0095^{+0.0005}_{-0.0007}$   |  |  |
|                       | ATLAS [10, 12]          | $0.006 \pm 0.010$           | $0.0090 \pm 0.0051$            |  |  |
| Experimental results  | CMS unfolding [11, 14]  | $0.004 \pm 0.010 \pm 0.011$ | $0.0010 \pm 0.0068 \pm 0.0037$ |  |  |
|                       | CMS template [13]       |                             | $0.0033 \pm 0.0026 \pm 0.0033$ |  |  |

## Theoretical predictions at LHC

#### NNLO inclusive and differential predictions

- predictions @ 8 TeV provided by Czakon et al. to us just for this paper. THANKS!

#### inclusive predictions

- Ac: ratio of expanded numerator and denominator
- Ac exp: expanding the ratio in alpha\_s

#### SM predictions

|                       |                         | Centre-of-mass energy       |                                |  |
|-----------------------|-------------------------|-----------------------------|--------------------------------|--|
| Inclusive $A_{\rm C}$ |                         | $\sqrt{s} = 7 \mathrm{TeV}$ | $\sqrt{s} = 8 \mathrm{TeV}$    |  |
|                       | QCD NLO + EW NLO [1]    | $0.0115 \pm 0.0006$         | $0.0102 \pm 0.0005$            |  |
| Theory predictions    | QCD NLO + EW NLO [3]    | $0.0123 \pm 0.0005$         | $0.0111 \pm 0.0004$            |  |
|                       | QCD NNLO + EW NLO [4-6] |                             | $0.0095^{+0.0005}_{-0.0007}$   |  |
|                       | ATLAS [10, 12]          | $0.006 \pm 0.010$           | $0.0090 \pm 0.0051$            |  |
| Experimental results  | CMS unfolding [11, 14]  | $0.004 \pm 0.010 \pm 0.011$ | $0.0010 \pm 0.0068 \pm 0.0037$ |  |
|                       | CMS template [13]       |                             | $0.0033 \pm 0.0026 \pm 0.0033$ |  |

Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro, to appear



## LHC measurements at 7 TeV

#### lepton+jets

- ATLAS inclusive and differential measurements (JHEP 02 (2014) 107)
- $Ac = 0.006 \pm 0.010 \text{ (stat. + syst.)}$
- CMS (unfolding analysis) inclusive and differential measurements (Phys. Lett. B 717 (2012) 129)
- $Ac = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$

#### dilepton

- ATLAS inclusive measurement (JHEP 05 (2015) 061)
- $Ac = 0.021\pm0.025 \text{ (stat.)}\pm0.017 \text{ (syst.)}$
- CMS inclusive and differential measurements (JHEP 04 (2014) 191)
- $Ac = -0.010 \pm 0.017 \text{ (stat.)} \pm 0.008 \text{ (syst.)}$





## LHC measurements at 7 TeV

#### lepton+jets

- ATLAS inclusive and differential measurements (JHEP 02 (2014) 107)
- $Ac = 0.006 \pm 0.010 \text{ (stat. + syst.)}$
- CMS (unfolding analysis) inclusive and differential measurements (Phys. Lett. B 717 (2012) 129)
- $Ac = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$

Different binning for the differential measurements: no possible differential combination at 7 TeV



#### dilepton

- ATLAS inclusive measurement (JHEP 05 (2015) 061)
- $Ac = 0.021 \pm 0.025 \text{ (stat.)} \pm 0.017 \text{ (syst.)}$
- CMS inclusive and differential measurements (JHEP 04 (2014) 191)
- $Ac = -0.010 \pm 0.017 \text{ (stat.)} \pm 0.008 \text{ (syst.)}$

No significant impact on the combination when testing the inclusion of the dilepton channel



## LHC measurements at 8 TeV

#### lepton+jets

- ATLAS inclusive and differential measurements (EPJC-15-09-029)
- $Ac = 0.009 \pm 0.005 \text{ (stat. + syst.)}$
- ATLAS inclusive and differential boosted measurements (Phys Lett B 756 (2016) 52)
  - $Ac = 0.042 \pm 0.032 \text{ (stat. + syst.)}$
- CMS (unfolding analysis) inclusive and differential measurements (Phys. Lett. B 757 (2016) 154)
- $Ac = 0.0010 \pm 0.0068 \text{ (stat.)} \pm 0.0037 \text{ (syst.)}$
- CMS (template analysis) inclusive measurements (Phys. Rev. D93 (2016) 034014)
- $Ac = 0.0033 \pm 0.0026 \text{ (stat.)} \pm 0.0033 \text{ (syst.)}$

#### dilepton

- ATLAS inclusive and differential measurements (Phys. Rev. D 94 (2016) 032006)
- $Ac = 0.021 \pm 0.016 \text{ (stat. + syst.)}$
- CMS inclusive and differential measurements (Phys. Lett. B 760 (2016) 365)
- $Ac = 0.011 \pm 0.011 \text{ (stat.)} \pm 0.007 \text{ (syst.)}$





## LHC measurements at 8 TeV

#### lepton+jets

- ATLAS inclusive and differential measurements (EPJC-15-09-029)
- $Ac = 0.009 \pm 0.005 \text{ (stat. + syst.)}$
- ATLAS inclusive and differential boosted measurements (Phys Lett B 756 (2016) 52)
  - $Ac = 0.042 \pm 0.032 \text{ (stat. + syst.)}$
- CMS (unfolding analysis) inclusive and differential measurements (Phys. Lett. B 757 (2016) 154) Ac =  $0.0010 \pm 0.0068$  (stat.)  $\pm 0.0037$  (syst.)
- CMS (template analysis) inclusive measurements (Phys. Rev. D93 (2016) 034014)
- $Ac = 0.0033 \pm 0.0026 \text{ (stat.)} \pm 0.0033 \text{ (syst.)}$

Differential combination only possible vs Mtt

#### dilepton

- ATLAS inclusive and differential measurements (Phys. Rev. D 94 (2016) 032006)
- $Ac = 0.021 \pm 0.016$  (stat. + syst.)
- CMS inclusive and differential measurements (Phys. Lett. B 760 (2016) 365)
- $Ac = 0.011 \pm 0.011 \text{ (stat.)} \pm 0.007 \text{ (syst.)}$

No significant impact on the combination when testing the inclusion of the dilepton channel





## Measurement highlights

#### Analysis steps

- background estimation:
  - main background: W+jets, multijets
- top kinematics reconstruction
- unfolding
  - regularized matrix unfolding or Fully Bayesian Unfolding with marginalisation of the systematics
- systematic evaluation

#### Main steps similar between ATLAS and CMS but numerous differences

- default tt MC (at 7 TeV)
- background estimation (external/in-situ W+jets determination)
- unfolding technique
- systematic evaluation, systematic constrained or not
  - ⇒ will need to do assumptions on the correlations between experiments

#### Combination method

- using the standard BLUE method with assessment of the correlations between the systematics
- ATLAS input: uncertainties before marginalisation (7 TeV) or varying one source at a time (8 TeV)

## Systematics for 7 TeV inclusive combination

### 7 TeV inputs

- coarse breakdown (older results)

|                                           | ATLAS   | CMS     | ρ     | Combined |
|-------------------------------------------|---------|---------|-------|----------|
| $A_{C}$                                   | 0.006   | 0.004   | 0.058 | 0.005    |
| Statistical (data)                        | 0.010   | 0.010   | 0     | 0.007    |
| Statistical (simulation)                  | 0.002   | 0.002   | 0     | 0.001    |
| Detector model                            | 0.004   | 0.007   | 0     | 0.004    |
| Pile-up+ $p_{\mathrm{T}}^{\mathrm{miss}}$ | 0.002   | < 0.001 | 0     | 0.001    |
| Signal modelling                          | < 0.001 | 0.002   | 0.5   | 0.001    |
| PDF                                       | 0.001   | 0.002   | 1     | 0.001    |
| Multijet                                  | < 0.001 | 0.001   | 0     | 0.000    |
| W+jets                                    | 0.002   | 0.004   | 0.5   | 0.003    |
| Model dependence                          |         |         |       |          |
| Specific physics models                   | < 0.001 |         |       | 0.000    |
| General simplified models                 |         | 0.007   |       | 0.002    |
| Systematic uncertainty                    | 0.005   | 0.011   |       | 0.006    |
| Total uncertainty                         | 0.011   | 0.015   |       | 0.009    |

### 7 TeV inclusive combination result

#### result

- weights: 0.65 (ATLAS), 0.35 (CMS)
- 18% improvement wrt ATLAS, 40% improvement wrt CMS



## Systematics for 8 TeV inclusive combination

#### • 8 TeV inputs

- finer splitting
- use CMS template method as CMS input

|                                 | ATLAS  | CMS    | ρ    | Combined |
|---------------------------------|--------|--------|------|----------|
| $A_{\rm C}$                     | 0.0090 | 0.0033 | 0.13 | 0.0055   |
| Statistical (data)              | 0.0044 | 0.0026 | 0    | 0.0023   |
| Statistical (simulation)        | 0.0010 | 0.0015 | 0    | 0.0010   |
| Detector model (excluding JES)  |        |        |      |          |
| Leptons                         | 0.0003 | 0.0001 | 0    | 0.0001   |
| Jet energy resolution           | 0.0005 | 0.0004 | 0    | 0.0003   |
| b-tagging                       | 0.0004 | 0.0007 | 0    | 0.0005   |
| Missing transverse momentum     | 0.0002 |        |      | 0.0001   |
| Pile-up                         | _      | 0.0003 | _    | 0.0002   |
| Jet energy scale                |        |        |      |          |
| Uncorrelated JES                | 0.0010 | 0.0004 | 0    | 0.0005   |
| Partially correlated JES        | 0.0009 | 0.0010 | 0.5  | 0.0008   |
| Mostly correlated JES           | 0.0002 | 0.0004 | 1    | 0.0003   |
| Fully correlated JES            | 0.0009 | 0.0008 | 1    | 0.0008   |
| Signal modelling                |        |        |      |          |
| Event generator                 | 0.0004 | 0.0002 | 1    | 0.0003   |
| Parton shower and hadronisation | 0.0004 | _      |      | 0.0002   |
| Scale/radiation                 | 0.0009 | 0.0014 | 1    | 0.0012   |
| PDF                             | 0.0007 | 0.0002 | 1    | 0.0004   |
| Integrated luminosity           |        | 0.0001 |      | 0.0001   |
| Backgrounds                     |        |        |      |          |
| Single-top-quark / Z+jets       | 0.0001 | 0.0004 | 1    | 0.0003   |
| Multijet                        | 0.0005 | 0.0018 | 0    | 0.0011   |
| W+jets                          |        | 0.0002 |      | 0.0001   |
| Method                          | 0.0003 |        |      | 0.0001   |
| Systematic uncertainty          | 0.0025 | 0.0033 |      | 0.0025   |
| Total uncertainty               | 0.0051 | 0.0041 |      | 0.0034   |
|                                 |        |        |      |          |

### 8 TeV inclusive combination result

#### result

- weights: 0.39 (ATLAS), 0.61 (CMS)
- 32% improvement wrt ATLAS, 17% improvement wrt CMS



## Constraints from the inclusive combination



### 8 TeV differential combination

- assessment of the correlations
  - same systematics mapping as for the inclusive combination
  - correlations between bins
    - statistics: from unfolding
    - systematics of source u between bin i and bin j
      - \* within ATLAS projection the posterior probability density into the (i, j) plane +/-1 for un-marginalised systematics
      - \* within CMS  $\operatorname{corr}^{\mathrm{u}}(C_{i},C_{j}) = \operatorname{sign}\left[\left(A_{\mathrm{C}}^{\mathrm{u}}(C_{i}) A_{\mathrm{C}}^{\mathrm{nom}}(C_{i})\right)\left(A_{\mathrm{C}}^{\mathrm{u}}(C_{j}) A_{\mathrm{C}}^{\mathrm{nom}}(C_{j})\right)\right] \\ + 1 \text{ or } -1 \text{ for single uncombined source}$
      - \* between ATLAS and CMS
        - for the same bin: as for the inclusive measurement (pu)
        - between bins: average between Atlas and CMS:

$$corr^{u}(A_{i}, C_{j}) = \rho_{u} \frac{corr^{u}(C_{i}, C_{j}) + corr^{u}(A_{i}, A_{j})}{2}$$



## 8 TeV differential combination results

#### results

- improvements:
  - 20% (bin 6), 51% (bin 1) wrt the ATLAS result
  - 9% (bin 1), 31% (bin 6) wrt the CMS result
- weights
  - ATLAS: 22% (bin 1), 59% (bin 6)
  - CMS: 41% (bin 6), 78% (bin 1)



#### Correlations between the combined bins

| ins | L1     | L2     | L3     | L4     | L5     | L6    |
|-----|--------|--------|--------|--------|--------|-------|
| 1   | 1.000  |        |        |        |        |       |
| 2   | -0.129 | 1.000  |        |        |        |       |
| 3   | -0.100 | 0.015  | 1.000  |        |        |       |
| 4   | -0.018 | -0.060 | -0.098 | 1.000  |        |       |
| 5   | -0.009 | -0.074 | 0.067  | -0.342 | 1.000  |       |
| 6   | -0.088 | -0.040 | 0.012  | 0.199  | -0.188 | 1.000 |



## Stability test and cross checks

- Several tests performed to test the stability of the results wrt to the assumed correlations
  - statistical only combination: moderate impact of the systematics
  - variation of the default correlation (100%  $\rightarrow$  50%, 0%  $\rightarrow$  50%):
    - no impact within the quoted precisions for the inclusive combinations
    - below 0.1  $\sigma_{tot}$  in each bin for the differential combination
  - specific checks for the differential combination:
    - ATLAS correlation matrix set to +1 or +/-1 (instead of using the result from the unfolding for the marginalised systematics)
    - correlations between experiment: set to ATLAS correlations or to CMS correlations (instead of the average)
    - changes:

central values:  $< 0.4 \sigma_{tot}$  (in each bin)

uncertainties: 0.002 at most

### Conclusion

- Combination of the inclusive 7 TeV and 8 TeV ATLAS and CMS results
- Combination of the differential 8 TeV ATLAS and CMS results
  - allow a thorough scrutiny of the two results
  - significant improvement in precision
- Paper submitted to JHEP
  - this is the first ATLAS+CMS combination from the top groups and from the LHCtopWG
  - working on addressing the referee comments

