1/36

New Top Mass Results and Prospects for Run I Combination

Andrea Knue on behalf of the ATLAS and CMS Collaborations TopLHCWG meeting, 2nd November, 2017

• select events with exactly one lepton and at least 4 jets

 \hookrightarrow 2 $\mathit{b}\text{-tagged}$ jets amongst the leading 4

• compare three different unbinned likelihood fits:

Event reconstruction

- new nominal sample Powheg (NLO), at 8 TeV: Madgraph (LO)
- use 4 leading jets, charged lepton and E_T^{miss} as input
- per event: two jet-parton assignments, two solutions for p_z^{ν}
- calculate per permutation a goodness-of-fit probability: $P_{
 m gof} = \exp(-0.5\cdot\chi^2)$

Event reconstruction

Additional requirements:

- remove events with $P_{
 m gof} = \exp(-0.5\cdot\chi^2) < 0.2$: removes 76% events
- ullet in addition: weight the permuations with $P_{
 m gof}$
- \bullet fraction of correct permutations increases from 15 to 48 %

Observables used in measurement:

- $m_{
 m top}^{
 m fit}$ as obtained from kinematic reconstruction
- $m_{
 m W}^{
 m reco}$ before constrained by kinematic fit

Now:

- \hookrightarrow sum over PDFs for correctly, wrongly and unmatched events
- \hookrightarrow sum over permutations, take into account $P_{
 m gof}$

$$\mathcal{L}(\text{sample}|m_{t},\text{JSF}) = P(\text{JSF}) \cdot \prod_{\text{events}} \left(\sum_{i=1}^{n} P_{\text{gof}}(i) \left(\sum_{j} f_{j} P_{j}(m_{t,i}^{\text{fit}}|m_{t},\text{JSF}) \times P_{j}(m_{W,i}^{\text{reco}}|m_{t},\text{JSF}) \right) \right)^{w_{\text{events}}}$$

Systematic uncertainties for three methods

2D approach	1D approach	Hybrid
0.13	0.85	0.19
0.42	0.31	0.39
0.19	0.29	0.22
0.24	0.22	0.13
0.22	0.42	0.03
0.34	0.23	0.31
0.71	1.09	0.62
	2D approach 0.13 0.42 0.19 0.24 0.22 0.34 0.71	2D approach1D approach0.130.850.420.310.190.290.240.220.220.420.340.230.711.09

- $\bullet\,$ systematic uncertainty reduced by 35% when going from 1D to 2D
- \bullet systematic uncertainty reduced by 13% when going from 2D to Hybrid
 - \hookrightarrow largest reduction in Jet energy corrections and early resonance decays
- CR uncertainty increased compared to 8 TeV:
 - \hookrightarrow include now ERD in Pythia, and test different CR models

Result from fit to data

Result for Hybrid Method:

 $m_{
m top} = 172.25 \pm 0.08 ({
m stat.+JSF}) \pm 0.62$ (syst.) GeV

→ relative uncertainty: 0.36 %

Differential measurements: modelling of pQCD

plot here the mass per bin minus the mass obtained from the inclusive sample

- ${\scriptstyle \bullet}\,$ setup using Herwig++ shows large differences with data and other MC setups
 - \hookrightarrow has no matrix-element corrections to the top quark decay

Differential measurements: color reconnection models

- nominal Powheg+Pythia8 setup models data measurement well
- $\Delta R(q,q)$: setup with early resonance decays agrees best with data
- in general: not enough precision to exclude one of the models

- ullet take events with opposite sign leptons e/μ + 1 or 2 b-tagged jets
- ullet take differential lepton distributions which are sensitive to $m_{
 m top}$

 \hookrightarrow unfold back to stable particle level

 \bullet obtain $m_{
m top}$ and $m_{
m top}^{
m pole}$ using fits or from moments

 $m_{
m top}^{
m pole}$ from fixed order predictions

very good agreement with standard methods and other m^{pole}_{top} measurements
 smallest uncertainty obtained from fit to p^{eµ}_T distribution
 largest uncertainty from choice of functional form for QCD scales

 \hookrightarrow benefit from NNLO predictions with QCD effects in top prod.+decay

Combined fit: $m_{
m top}^{
m pole}=173.2\pm0.9~({
m stat.})\pm0.8~({
m exp.})\pm1.2$ (theor.) GeV

Introduction News from CMS News from ATLAS Combination Prospects Run I Summary Backup
New ATLAS result at 8 TeV • ATLAS-CONF-2017-071

- 3D-Template method in the lepton+jets channel as in Paper @ 7 TeV
- Variable 1: $m_{\rm top}^{\rm reco}$ from reconstructed event (KLFitter)
- Variable 2: $m_{\rm W}^{\rm reco}$

• Variable 3:
$$R_{bq}^{\text{reco},2b} = \frac{p_{\text{T}}^{b_{\text{had}}} + p_{\text{T}}^{b_{\text{lep}}}}{p_{\text{T}}^{W_{\text{jet}_1}} + p_{\text{T}}^{W_{\text{jet}_2}}}$$

 \rightarrow Variable 2 and 3 from chosen jet permutation (but original 4-vectors)

 \hookrightarrow $m_{
m top}$ has sizable uncertainties from JES and bJES

 \hookrightarrow can be reduced by simultaneous measurement of m_{top} , jet energy scale factor (JSF) and relative b-to-light-jet energy scale factor (bJSF)

Event yields after preselection

Selection	Preselection		BDT selection	
Data	9610)5	38054	
$t\bar{t}$ signal	$85000 \pm$	10000	$36100 \pm$	5500
Single-top-quark signal	$4220 \pm$	360	$883 \pm$	85
NP/fake leptons (data-driven)	$700 \pm$	700	$9.2 \pm$	9.2
W+jets (data-driven)	$2800 \pm$	700	$300 \pm$	100
Z+jets	$430 \pm$	230	$58 \pm$	33
WW/WZ/ZZ	$63 \pm$	32	$7.0 \pm$	5.2
Signal+background	$93000 \pm$	10000	$37300~\pm$	5500
Expected background fraction	$0.043~\pm$	0.012	$0.010~\pm$	0.003
Data / (Signal+background)	$1.03 \pm$	0.12	$1.02 \pm$	0.15

- \rightarrow exactly one lepton, at least 4 jets and exactly two *b*-tagged jets
- \rightarrow cut on exactly 2 *b*-tagged jets: significantly reduces background
- ightarrow good data/MC agreement for both selections shown
- ightarrow single-top production is $m_{
 m top}$ dependent and hence included in signal

		News from ATLAS		
Optimisa	tion studies			

- assumption: wrongly/unmatched events will have larger systematic uncertainties
- idea: find discriminant to distinguish correctly matched from wrongly/unmatched events
- method:

 \hookrightarrow take variables (including some KLFitter variables) and train a BDT algorithm

- cut on classifier output $r_{\rm BDT}$ to increase fraction of well reconstructed events
- \rightarrow perform full analysis and compare total uncertainties

Discrimination power of BDT classifier

- Good agreement between training and test samples
- Good agreement between data and prediction

 \Rightarrow the good performance of the algorithm allows to apply it to data

Backup

$\overline{ ext{Data}/ ext{MC}}$ agreement of the three observables $r_{ ext{BDT}} > -0.05$

- $m_{
 m top}^{
 m reco}$ taken from kinematic fit
- $m_{\rm W}^{\rm reco}$ and $R_{\rm bq}^{\rm reco}$: chosen jet-permutation but from original 4-vectors
- only shape uncertainties shown here

- use 3D template method, perform unbinned likelihood fit
- peform full analysis chain for 4 BDT working points
 - \hookrightarrow evaluate total uncertainty using pseudo-experiments
- compare with result for "Standard" analysis (no BDT cut)

Likelihood function for unbinned fit:

$$egin{aligned} L_{ ext{shape}}^{\ell+ ext{jets}}(\textit{m}_{ ext{top}}, ext{JSF}, ext{bJSF}, f_{ ext{bkg}}) &= \prod_{i=1}^{N} P_{ ext{top}}(\textit{m}_{ ext{top}}^{ ext{reco},i} \mid \textit{m}_{ ext{top}}, ext{JSF}, ext{bJSF}, f_{ ext{bkg}}) \ & imes P_{ ext{W}}(\textit{m}_{ ext{W}}^{ ext{reco},i} \mid ext{JSF}, f_{ ext{bkg}}) \ & imes P_{\mathcal{R}_{ ext{bq}}}(\mathcal{R}_{ ext{bq}}^{ ext{reco},i} \mid \textit{m}_{ ext{top}}, ext{JSF}, ext{bJSF}, f_{ ext{bkg}}) \end{aligned}$$

Vary BDT requirement to obtain smallest total uncertainty

• working point with smallest total uncertainty is $r_{\rm BDT}$ > -0.05

- gain mostly caused by strongly reduced modelling uncertainties
 - \hookrightarrow trade here statistical for reduced systematic uncertainties
 - \hookrightarrow leads to a strongly reduced correlation to other estimates!

What do we gain from the BDT optimisation?

	m_{top} [GeV]			
	$\sqrt{s} = 7 \text{ TeV}$	TeV $\sqrt{s} = 8$ TeV		
Event selection	Standard	Standard	BDT	
Result	172.33	171.90	172.08	
Statistics	0.75	0.38	0.39	
 Stat. comp. (m_{top}) 	0.23	0.12	0.11	
 Stat. comp. (JSF) 	0.25	0.11	0.11	
 Stat. comp. (bJSF) 	0.67	0.34	0.35	
Method	0.11 ± 0.10	0.04 ± 0.11	0.13 ± 0.11	
Signal Monte Carlo generator	0.22 ± 0.21	0.50 ± 0.17	0.16 ± 0.17	
Hadronisation	0.18 ± 0.12	0.05 ± 0.10	0.15 ± 0.10	
Initial- and final-state QCD radiation	0.32 ± 0.06	0.28 ± 0.11	0.08 ± 0.11	
Underlying event	0.15 ± 0.07	0.08 ± 0.15	0.08 ± 0.15	
Colour reconnection	0.11 ± 0.07	0.37 ± 0.15	0.19 ± 0.15	
Parton distribution function	0.25 ± 0.00	0.08 ± 0.00	0.09 ± 0.01	
Background normalisation	0.10 ± 0.00	0.04 ± 0.00	0.08 ± 0.00	
W+jets shape	0.29 ± 0.00	0.05 ± 0.00	0.11 ± 0.00	
Fake leptons shape	0.05 ± 0.00	0	0	
Jet energy scale	0.58 ± 0.11	0.63 ± 0.02	0.54 ± 0.02	
Relative b-to-light-jet energy scale	0.06 ± 0.03	0.05 ± 0.01	0.03 ± 0.01	
Jet energy resolution	0.22 ± 0.11	0.23 ± 0.03	0.20 ± 0.04	
Jet reconstruction efficiency	0.12 ± 0.00	0.04 ± 0.01	0.02 ± 0.01	
Jet vertex fraction	0.01 ± 0.00	0.13 ± 0.01	0.09 ± 0.01	
b-tagging	0.50 ± 0.00	0.37 ± 0.00	0.38 ± 0.00	
Leptons	0.04 ± 0.00	0.16 ± 0.01	0.16 ± 0.01	
E_{T}^{miss}	0.15 ± 0.04	0.08 ± 0.01	0.05 ± 0.01	
Pile-up	0.02 ± 0.01	0.14 ± 0.01	0.15 ± 0.01	
Total systematic uncertainty	1.03 ± 0.08	1.07 ± 0.10	0.82 ± 0.06	
Total	1.27 ± 0.08	1.13 ± 0.10	0.91 ± 0.06	

Precision of systematic uncertainty:

$$u \pm s = \sqrt{\Sigma_k u_k^2} \pm \frac{\sqrt{\Sigma_k (s_k^2 u_k^2)}}{u}$$

 \hookrightarrow use to test stability of combination

- ightarrow total systematic uncertainties almost equal for standard selections at 7 and 8 TeV
- \rightarrow overall uncertainty is reduced by 19 % when using BDT optimisation
- 19/36

- Latest Top Mass Results -

- use BLUE method (best linear unbiased estimator)
 Link hepforge
 Eur. Phys. J. C (2014) 74
- for each source of uncertainty the correlation between any pair of analyses needs to be known
- need to properly map the uncertainty components between 7 and 8 TeV (JES, *b*-tagging)
- if uncertainy has no equivalent at other centre-of-mass energy:

 $\hookrightarrow \mathsf{treat} \text{ as independent}$

Pairwise estimator correlation for all systematic uncertainties

- $\textbf{\rightarrow}$ red full points correspond to $\rho=+1,$ blue open points to $\rho=\text{-}1$
- → ISR/FSR (left): dilepton (8 TeV): 0.23 ± 0.07, I+jets (8 TeV): 0.08 ± 0.11 GeV
- → ISR/FSR (right): I+jets (7 TeV): -0.32 ± 0.06, I+jets (8 TeV): 0.08 ± 0.11 GeV

Combination of pair of most important results

 \rightarrow evaluate the combination (value and uncertainty) as function of the correlation

- ightarrow blue point: actual correlation between lepton+jets and dilepton at 8 TeV
- \rightarrow correlation between two channels is small due to different analysis techniques

Combination with previous ATLAS results

 \rightarrow left : change of combined result when consecutively adding results

- \hookrightarrow 7 TeV dilepton result does not improve result significantly
- \hookrightarrow has not been included in final combination
- $\textbf{\rightarrow}$ central values for ATLAS and CMS agree well, both have <0.3% uncertainty:
- \hookrightarrow ATLAS ($\sigma_{\rm tot} = 0.50 \pm 0.04$ GeV) and CMS ($\sigma_{\rm tot} = 0.49$ GeV)

What steps need to be taken for final Run I combination?

- \rightarrow Run 1 results now available in all channels from both experiments
- \rightarrow contribute with very different weights to the combination
- \rightarrow What measurements should be included in the combination?

Introduction News from CMS News from ATLAS Combination Prospects Run I Summary Backup Important: estimate correlations between measurements

Example: Combination of lepton+jets and dilepton channel @ 7 TeV

- → including the sign of the correlations: $\sigma_{m_{\rm top}} = 0.91$ GeV
- $\boldsymbol{\rightarrow}$ in case the sign of the correlation per sub-component is ignored
- \hookrightarrow the uncertainty is: $\sigma_{m_{
 m top}}=$ 1.16 GeV

 \rightarrow Need to evaluate signs in systematic shifts between different centre-of-mass energies and between experiments.

- correlation within each collaboration:
 - \hookrightarrow information already exists, has been used for the CMS and ATLAS combinations shown in slide 26
- Q correlation of estimates from the different collaborations
 → mapping of uncertainties needs to be found
- \rightarrow Can we also calculate the statistical precision of the systematics?

Detector uncertainties:

- *b*-tagging: uncorrelated
- some JES components are correlated between different CME (e.g. η-intercalibration, flavour composition/response, ...)

Correlation strategy: Jet energy scale • TOPLHC note

Description	Components, CMS	Components, ATLAS	Corr. range
1a. Statistical in situ terms	AbsoluteStat, SinglePionHCAL, RelativeStat[FSR][EC2][HF]	 [11] Z-jet balance stat./meth. terms (p_T), [13] γ-jet balance stat./meth. terms (p_T), [10] multi-jet balance stat./meth. terms (p_T), η-intercalibration statistical term (p_T,η) 	0%
1b. Detector in situ terms	AbsoluteScale, SinglePionECAL, RelativeJER[EC1][EC2][HF], RelativePt[BB][EC1][EC2][HF]	Z-jet balance det. term, γ -jet balance det. term, [2] correlated Z/ γ -jet balance det. terms (p_T)	0%
2. Absolute balance modeling	AbsoluteMPFBias	 [7] Z-jet balance model + mixed terms (p_T), [4] y-jet balance model + mixed terms (p_T), [2] correlated Z/y-jet balance terms (p_T), [5] multi-jet balance model + mixed terms (p_T) 	0-50%
3. Relative balance modeling	RelativeFSR	η -intercalibration modeling (p_T, η)	50-100%
g-jet fragmentation	FlavorPureGluon	Flavor response (p_T, η)	100%
b-jet fragmentation	FlavorPureBottom	b-jet response (pT)	50-100%
6. Other fragmentation types	FlavorPureQuark, FlavorPureCharm	Flavor composition (p_T, η)	0%
7. Pileup	PileupDataMC, PileupPt[Ref][BB][EC1][EC2][HF]	N_{PV} offset $(p_{\text{T}}, \eta, N_{\text{PV}}), \langle \mu \rangle$ offset $(p_{\text{T}}, \eta, \langle \mu \rangle),$ p_{T} term $(p_{\text{T}}, \eta, N_{\text{PV}}, \langle \mu \rangle), \rho$ topology (p_{T}, η)	0%
8. High- <i>p</i> _T	Fragmentation	High- $p_T(p_T)$	0%
9. Single-experiment terms	TimeEta, TimePt	Fast simulation closure (p_T, η) , punch-through $(p_T, \eta, N_{segments})$	0%

Components with non-zero correlation:

- absolute/relative balance modelling (category 2 and 3)
- g/b-jet fragmentation (category 4 and 5)

- MC background normalisation uncertainties: correlated
- signal and background modelling uncertainties:

 \hookrightarrow Needs to be seen case by case. Did not use same generators / variations, but some methods are similar

Example ISR/FSR uncertainty:

Check if $m_{\rm top}$ increases/decreases for more/less radiation. Do not distinguish how the change in variation is achieved

 \hookrightarrow example ATLAS 7 TeV: based on AcerMC, 8 TeV: based on Powheg

Example ME Generator uncertainty:

- \rightarrow CMS: Powheg vs. Madgraph
- → ATLAS: Powheg vs. MC@NLO

First 13 TeV result using 2016 data by CMS in lepton+jets channel:

- largest impact from JEC and signal modelling uncertainties
- already relative uncertainty of 0.36 % CMS-PAS-TOP-17-007
- new nominal MC generator and higher centre-of-mass energy
 → result consistent with 8 TeV measurement

8 TeV data:

- ATLAS lepton+jets result was made public for TOP conference
- BDT optimisation allowed to reduce systematic uncertainties
- dominating uncertainties: JES, b-tagging, signal modelling
- \hookrightarrow performed ATLAS combination: relative uncertainty of 0.29 %
- → Time to combine ATLAS and CMS results to create the Run I legacy!

Backup

Object definition

Electrons

- $E_{
 m T}>25$ GeV, $|\eta|<2.47$
- no crack region, Tight++
- e24vhi_medium
 OR e60_medium1

Muons

- $p_{
 m T}>25$ GeV, $|\eta|<2.5$
- mu24i_tight OR mu36_tight
- mini-isolation

small-R jets

- antiKt 0.4, LC TopoClusters
- JVF > 0.5 for $p_T <$ 50 GeV and $|\eta| <$ 2.4
- b-tagging: MV1, 70% WP
- $p_{T}>25~{
 m GeV}$ for $|\eta|\leq 2.5$

$E_T^{\rm miss}/M_T^W$

• $E_T^{\text{miss}} > 30 \text{ GeV}, M_T^W > 30 \text{ GeV}$ (e+jets)

•
$$E_T^{\text{miss}} > 20 \text{ GeV},$$

 $E_T^{\text{miss}} + M_T^W > 60 \text{ GeV} (\mu + \text{jets})$

				Backup
Event reco	nstruction			
First approach	• expect $\Rightarrow 24$	4 jets possible jet-parto	n assignments	
	• do not $\Rightarrow 12$	distinguish light permutations left	jets within W	

- pick one for calculation of variables
 - \Rightarrow use kinematic fit to find best permutation

32/36

Combination Prospects Run

Backup

Reconstruction with KLFitter

$$\begin{split} L &= BW(m_{q_{1}q_{2}}|m_{W}, \Gamma_{W}) \cdot BW(m_{l\nu}|m_{W}, \Gamma_{W}) \\ BW(m_{q_{1}q_{2}b_{had}}|m_{top}, \Gamma_{top}) \cdot BW(m_{l\nu b_{lep}}|m_{top}, \Gamma_{top}) \\ W(\tilde{E}_{jet_{1}}|E_{b_{had}})W(\tilde{E}_{jet_{2}}|E_{b_{lep}})W(\tilde{E}_{jet_{3}}|q_{1})W(\tilde{E}_{jet_{4}}|q_{2}) \\ W(\tilde{E}_{x}^{miss}|p_{x,\nu})W(\tilde{E}_{y}^{miss}|p_{y,\nu}) \left\{ \begin{array}{c} W(\tilde{E}_{l}|E_{l}) \\ W(\tilde{P}_{\tau,l}|p_{\tau,l}) \end{array} \right\} \end{split}$$

• to increase reconstruction efficiency:

 \hookrightarrow use up to 6 jets with highest p_T as input

- detector resolution: encoded in transfer functions
- veto b-tagged jets in position of light jets and vice versa
- → Choose jet-parton assignment with maximum Likelihood for analysis

Template parametrisation

→ Template fit functions are used as pdfs in an unbinned likelihood fit to data

BDT: use 13 input variables

Separation	Variable	Description
31%	$\ln L$	Logarithm of the likelihood of best permutation
13%	$\Delta R(q, q)$	ΔR of the two untagged jets from the
		hadronically decaying W boson
5.0%	$p_{\rm T}(W_{\rm had})$	p_T of hadronically decaying W boson
4.3%	$p_{T,had}$	p_T of hadronically decaying top quark
4.2%	P_{Evt}	Event probability of best permutation
2.0%	$p_T(t\bar{t})$	p_T of reconstructed $t\bar{t}$ system
1.7%	$p_{T,lep}$	p_T of leptonically decaying top quark
1.2%	m_T^W	Transverse mass of leptonically decaying W boson
0.3%	$p_{\rm T}(\tilde{W}_{\rm lep})$	p_T of leptonically decaying W boson
0.3%	N_{jets}	Number of jets
0.2%	$\Delta R(b, b)$	ΔR of reconstructed b-tagged jets
0.2%	E_{T}^{miss}	Missing transverse momentum
0.1%	$p_{T,\ell}$	p_T of lepton

Correlation between ATLAS results

Correlations	$m_{\rm top}^{\rm dil}$ (7 TeV)	$m_{\rm top}^{\rm l+jets}$ (7 TeV)	$m_{\rm top}^{\rm dil}$ (8 TeV)	$m_{\rm top}^{\rm l+jets}$ (8 TeV)
$m_{\rm top}^{\rm dil}$ (7 TeV)	1.00			
$m_{\rm top}^{\rm l+jets}$ (7 TeV)	-0.07	1.00		
$\hat{m_{top}^{dil}}$ (8 TeV)	0.52	0.00	1.00	
$m_{\rm top}^{\rm l+jets}$ (8 TeV)	0.06	-0.07	-0.19	1.00
BLUE weight (m_{top})	-	0.17	0.43	0.40

- \rightarrow correlation between two channels is small
- \hookrightarrow due to different analysis techniques
- ightarrow measurements not strongly correlated between 7 and 8 TeV
- \hookrightarrow due to many uncorrelated detector uncertainties