Top modelling uncertainties in run 2 analyses

Emyr Clement, Steffen Henkelmann on behalf of ATLAS & CMS

E Clement

02/11/2017

Introduction

- Modelling uncertainties typically dominant or important source in top measurements
- Prescriptions for dealing with modelling uncertainties under constant scrutiny and development
 - Better understanding of modelling results in improved precision in our measurements
 - ➡ Also important for searches where top is a background in tails of distributions
- Compare prescriptions used in run 2 analyses from ATLAS and CMS
 - Examples of analyses using newest prescription
 - ➡ Also cover single top, tt+V

Current baseline for top pair production

- Powheg+Pythia8 for both CMS and ATLAS
 - ➡ Baseline for all systematic variations
 - 2-point/parameter variation systematic approach
- ATLAS
 - ➡ AI4 Pythia tune
 - \rightarrow h_{damp} = 1.5 m_t
 - ➡ ATL-PHYS-PUB-2016-020
- CMS
 - ➡ CUETP8M2T4 top specific Pythia tune
 - \rightarrow h_{damp} = 1.58 m_t
 - ➡ <u>TOP-16-021</u>

- Other generator combinations
 - ➡ MG5_aMC@NLO
 - ➡ Herwig++/Herwig7
 - Sherpa+OpenLoops+CS
- Factorisation approach modelling uncertainties
 - Each source gets its own variation
 - Source by source comparison in the following slides

Current status

Source	ATLAS	CMS	
Radiation/scaleSimultaneous $\mu_{R,F}$, h_{damp} , α_{S}^{ISR} variations		Individually vary µ _{R,F} , h _{damp} , ISR scale, FSR scale	
Shower/ Hadronisation/ Fragmentation	Pythia8 vs Herwig7	Variations in modelling of b jets, Pythia6 vs Herwig++ in JES	
ME Generator	Powheg vs MG5_aMC@NLO	Powheg vs MG5+aMC@NLO (FxFx) (only in some analyses)	
Non-pertubative	AI4 tune variations	CUET2P8M2T4 variations, CR model variations	

Radiation/scale/ME-PS Uncertainties

	ATLAS	CMS
Nominal	AI4 Tune Var3c $\alpha_s^{ISR} = 0.127$ (SpaceShower:alphaSvalue) $h_{damp} = 1.5 m_t$ NNPDF3.0 NLO in ME, 2.3 LO in PS	CUETP8M2T4 Tune $\alpha_{S}^{ISR} = 0.1108$ $h_{damp} = 1.581 m_t$ NNPDF3.0 NLO (α_{S} =0.118) in ME, LO (α_{S} =0.130) in PS
Uncertainty variations	Simultaneous variation of parameters • Up $\Rightarrow \mu_{F,R} \times 0.5$ $\Rightarrow h_{damp} = 3 m_t$ $\Rightarrow Var3c up (0.140)$ • Down $\Rightarrow \mu_{F,R} \times 2$ $\Rightarrow h_{damp} = 1.5 m_t$ $\Rightarrow Var3c down (0.115)$	 ISR scale varied by 0.5/2 (TimeShower::renormMultFac) FSR scale varied by 1/√2 and √2 (SpaceShower::renormMultFac) Envelope of independent and simultaneous variations of µ_R, µ_F by 0.5/2
		 Vary h_{damp} by ~40% Corresponds to 1 to 2.2 m_t Uncertainty in tuned value

Radiation/scale/ME-PS Uncertainties

Hadronisation, ME generator, b jet modelling

ATLAS

Hadronisation/PS

- Replace Powheg+Pythia8 with Powheg+Herwig7
- Similar comparison performed in deriving JES and corresponding uncertainties <u>ATL-</u> <u>PHYS-PUB-2015_042</u>
- ME generator
 - Replace Powheg+Pythia8 with MG5_aMC@NLO+Pythia8
- See <u>ATL-PHYS-PUB-2016-020</u> for more details
 - Swapping Pythia8 for Herwig7 changes top and tt kinematics - better top pT modelling

CMS

- Flavour response/Hadronisation
 - Vary JES for each jet flavour, from comparisons between Pythia6 and Herwig++
 - ➡ Comparison here only affects JES
 - ➡ Plans to consider Herwig7
- ME generator
 - Replace Powheg+Pythia8 with MG5_aMC@NLO (FxFx) + Pythia8
 - ➡ Only in some analyses
- B jet modelling
 - → Vary $x_b = p_T(B \text{ hadron}) / p_T(bjet)$
 - Reweight branching fraction of semileptonic b hadrons to PDG values
- Тор рт
 - \rightarrow Reweight top p_T to that observed in data

Hadronisation, ME generator, b jet modelling

ATLAS

Hadronisation/PS

- ➡ Replace Powheg+Pythia8 with Powheg+Herwig7
- Similar comparison performed in deriving JES and corresponding uncertainties <u>ATL-</u> PHYS-PUB-2015 042
- ME generator
 - ➡ Replace Powheg+Pythia8 with MG5_aMC@NLO+Pythia8
- See <u>ATL-PHYS-PUB-2016-020</u> for more details
 - ➡ Swapping Pythia8 for Herwig7 changes top and $t\bar{t}$ kinematics - better top p_T modelling

200

400

600

1000

p^{t,had} [GeV]

800

Particle level, absolute cross-section

0.9 0.8

0.7

0

Colour Reconnection, MPI, UE uncertainties

CMS

- Compare nominal simulation with alternative models of CR
 - Turn ERD on allows top decay products to be involved in colour reconnection
 - 'QCD inspired' model string formation beyond leading color
 - 'Gluon move' gluons can be moved to different strings
- Variations of tuned UE parameters in CUETP8M2T4
 - ➡ <u>TOP-16-021</u>
 - MultipartonInteractions:pT0Ref
 - MultipartonInteractions:expPow
 - ColourReconnection:range

ATLAS

- Variations in AI4 tune
 - ➡ <u>ATL-PHYS-PUB-2014-021</u>
 - → Var I (MPI+CR), corresponds to varying:
 - BeamRemnants:reconnectRange
 - MultipartonInteractions:alphaSvalue
 - Effort in improving :<u>ATL-PHYS-</u> <u>PUB-2017-008</u>

CMS : Uncertainties in top mass

- Top mass measurement with run 2 data
 - ➡ <u>TOP-17-007</u>
 - ➡ I72.25 ± 0.08 (stat + JSF) ± 0.62 (syst) GeV
- Dominant uncertainties
 - Colour reconnection
 - Modelling of hadronization (Flavour dependent JEC, b-jet modelling)
 - ➡ ME generator, FSR PS scale
- Alternative CR models tuned to 13 TeV UE data
- Fit to charged particle
 - ➡ multiplicity and average p⊤ sum vs leading charged particle p⊤ in transMIN and transMAX regions

10

multiplicity vs pseudorapidity

CMS : Effect of CR on top mass measurement

- Use tuned CR models to provide better understood uncertainty
 - ➡ Run I method compare same UE tune with and without CR effects
 - ➡ Uncertainties in CR dominant, and larger compared to run 1...
 - ➡ ...but better justified

	2D approach		1D approach	Hy	brid
	$\delta m_t^{ m 2D}$	δJSF^{2D}	$\delta m_t^{ m 1D}$	$\delta m_t^{ m hyb}$	δJSF^{hyb}
	(GeV)		(GeV)	(GeV)	
"'QCD inspired"' (both ERD on)	-0.11	-0.001	-0.19	-0.13	-0.001
"'gluon move"' (both ERD on)	+0.34	-0.001	+0.23	+0.31	-0.001
def. ERD off to def. ERD on	-0.22	+0.008	+0.42	-0.03	+0.005

CMS : Uncertainties in differential cross sections

- Differential cross sections in I+jets at parton and particle level
 - ➡ TOP-16-014 TOP-17-002
 - Modelling uncertainties in theory predictions typically cover any difference wrt data

CMS : Uncertainties in differential cross sections

- Differential cross sections in I+jets at parton and particle level
 - ➡ TOP-16-014 TOP-17-002
 - Modelling uncertainties in theory predictions typically cover any difference wrt data

ATLAS : Uncertainties in differential cross sections

- Similar message from ATLAS
 - ➡ <u>TOPQ-2016-01</u>
 - ➡ Baseline simulation was Powheg+Pythia6
 - Hadronisation systematic assessed with Herwig++

ATLAS : Uncertainties in differential cross sections

- Measurement in di-boosted hadronic channel
 - ➡ Uses most recent uncertainty prescription
 - ➡ Including comparison to latest generators

ATLAS - Colour flow

Single top (tW)

- Both ATLAS & CMS using Powheg (vI)
 - ➡ CMS then simulated PS with Pythia 8,ATLAS with Pythia6
 - → Duplicate Removal (DR) to treat interference with $t\bar{t}$
 - Both migrating to Powheg (v2) + Pythia8

ATLAS

• <u>TOPQ-2015-16</u>

- Modelling uncertainties
 - → Vary $\mu_{F,R}$, and radiation in Perugia tune
 - ➡ Compare DR with DS
 - ➡ ME generator uncertainty
 - Powheg+Herwig++ vs MG5_aMC@NLO+Herwig++
 - ➡ PS/Hadronisation
 - ➡Swap Pythia6 with Herwig++
 - Modelling of tt background

CMS

- <u>TOP-17-018</u>
- Modelling uncertainties
 - → $\mu_{F,R}$, ISR/FSR scale variations
 - Compare DR with DS
 - Modelling of tt background
 - →Including CR, UE, h_{damp} variations

Single top (tW)

- Not easy to compare side by side in one slide
 - See Sergio's talk tomorrow for a more detailed comparison of these measurements

$\Delta \sigma_{Wt} / \sigma_{Wt} [\%]$]
gy scale 21	
gy resolution 8.6	
oft terms 5.3	
ng 4.3	
osity 2.3	
efficiency, energy scale and resolution 1.3	
atrix element generator 18	
shower and hadronisation 7.1	
final-state radiation 6.4	
n removal/subtraction 5.3	
distribution function 2.7	
background normalisation 3.7	
vstematic uncertainty 30	
atistics 10	
ncertainty 31	
efficiency, energy scale and resolution1.3atrix element generator18shower and hadronisation7.1final-state radiation6.4n removal/subtraction5.3distribution function2.7background normalisation3.7vstematic uncertainty30atistics10ncertainty31	

	$\frac{1}{1}$
Source	Uncertainty (%)
Trigger efficiencies	2.7
Muon efficiencies	3.1
Electron efficiencies	3.2
Jet energy scale	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistagging rate	0.2
Pileup	3.3
tt $\mu_{\rm R}$ and $\mu_{\rm F}$ scale	2.5
tW $\mu_{\rm R}$ and $\mu_{\rm F}$ scale	0.9
Underlying event	0.4
ME/PS matching	1.8
Initial state radiation	0.8
Final state radiation	0.8
Color reconnection	2.0
PDF	1.5
DR-DS	1.3
VV normalization	0.4
Drell-Yan normalization	1.1
Non-W/Z leptons normalization	1.6
ttV normalization	0.1
MC statistics	1.6
Full phase space extrapolation	2.9
Total systematic	0.5
(excluding integrated luminosity)	9.0
Integrated luminosity	3.3
Statistical	2.8
Total	10.5

tt-tW interference

- Both ATLAS & CMS compare Duplicate Removal (DR) with Duplicate Subtraction (DS) to derive uncertainty
 - New treatment available in MG5_aMC@NLO (DR2), explored by ATLAS in <u>ATL-</u> <u>PHYS-PUB-2016-020</u>
- Also, both working on production of WWbb
 - Currently dilepton (emu) only

Single top (t-channel and tZ)

ATLAS

CMS

- t-channel
 - → <u>TOPQ-2015-015</u>
 - ➡ Powheg (vI) + Pythia6
 - ➡ Migrating to Powheg (v2) + Pythia8

• tZ

- ➡ ATLAS-CONF-2017-052
- ➡ MG5_aMC@NLO+Pythia6
 - ⇒LO
- Follow similar uncertainty prescription as for tW

- t-channel
 - ➡ <u>TOP-16-003</u>
 - ➡ MG5_aMC@NLO+Pythia8
 - Similar uncertainty treatment, and include comparisons to generators
 - Nominal vs Powheg+Pythia8
 - Nominal vs MG5_aMC@NLO+Herwig++
- tZ
 - ➡ <u>TOP-16-020</u>
 - ➡ MG5_aMC@NLO+Pythia6
 ➡NLO
 - $\Rightarrow \mu_{\rm F,R} \ge 0.5/2$ in ME and PS
- See Lidia's talk tomorrow for comparison of tZ measurements
 - Modelling of PS a dominant source of uncertainty

tt+V

ATLAS

- <u>TOPQ-2015-22</u>
- MG5_aMC@NLO + Pythia8
 - ➡LO, AI4 tune
- Uncertainties
 - → Simultaneous $\mu_{F,R}$ variations
 - ➡ AI4 variations (Var3c and VarI)
 - ➡ Compare to Sherpa+CS
 - Measurement limited by statistical uncertainties

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.6%	3.1%
Reconstructed objects	8.3%	9.3%
Backgrounds from simulation	5.3%	3.1%
Fake leptons and charge misID	3.0%	19%
Signal modelling	2.3%	4.2%
Total systematic	11%	22%
Statistical	31%	48%
Total	32%	53%

- <u>TOP-17-005</u>
- MG5_aMC@NLO + Pythia8
 - ⇒ NLO
- Uncertainties
 - $\rightarrow \mu_{F,R}$ variations only
 - ➡ Found to result in small uncertainty

Source	Uncertainty range	Impact on ttW cross-section	Impact on ttZ cross-section
Luminosity	2.5%	4%	3%
Jet Energy Scale/Resolution	2-5%	3%	3%
Trigger	2-4%	4-5%	5%
B tagging	1-5%	2-5%	4-5%
PU modeling	1%	1%	1%
Lepton ID, efficiency	2-7%	3%	6-7%
μ_R/μ_F scale choice	1%	<1%	1%
PDF choice	1%	<1%	1%
Nonprompt background	30%	4%	< 2%
WZ cross section	10-20%	<1%	2%
ZZ cross section	20%	-	1%
Charge misidentification	20%	3%	-
Rare SM background	50%	2%	2%
ttX background	10-15%	4%	3%
Stat. unc. for nonprompt	5-50%	4%	2%
Stat. unc. rare SM processes	20-100%	1%	< 1%
Total systematic	-	14%	12%

Summary

- ATLAS & CMS have similar baseline Powheg+Pythia8 setup for run 2 tt analyses
 - ➡ Similar tuned parameters
- Comparison of uncertainties in top modelling by ATLAS & CMS
- Improved determination of CR uncertainty for CMS top mass measurement
- ATLAS typically includes more comparisons with other NLO+PS setups to derive uncertainties
 - ➡ Backed up by several notes demonstrating differences between the various predictions
- CMS typically includes a more detailed breakdown of uncertainties for $t\bar{t}$ analyses
 - ➡ Related to b-jet response, CR, UE
 - ➡ top p⊤ modelling
- Single top and tt+V measurements
 - Modelling uncertainties not so dominant in tt+V measurements
 - ➡ Talks tomorrow on tW and tZ measurements
- Several measurements implementing latest prescriptions
 - ➡ Also including comparison with latest ME/PS generators
 - ➡ Sherpa, MG5_aMC@NLO, Herwig7

BACKUP

CMS : Tuned parameters of CR models

Parameters	CUETP8M2T4	QCD inspired	gluon move	
MultipartonInteractions: pT0Ref	2.20	2.17	2.30	
MultipartonInteractions:expPow	1.60	1.31	1.35	
MultipartonInteractions:ecmRef	7000	7000*	7000*	
MultipartonInteractions:ecmPow	0.25	0.25*	0.25*	
ColourReconnection:range	6.59	-	-	
ColourReconnection:junctionCorrection	-	0.12 (1.20)	-	
ColourReconnection:timeDilationPar	-	15.9 (0.18)	-	
ColourReconnection:m0	-	1.2 (0.3)	-	
ColourReconnection:m2lambda	-	-	1.9 (1.0)	
ColourReconnection:fracGluon	-	-	1.0* (1.0)	
ColourReconnection:dLambdaCut	-	-	0.0* (0.0)	
PDF set	NNPDF30_LO [JHEP 04 (2015)]	NNPDF30_LO	NNPDF30_LO	
SpaceShower:alphaSvalue	0.1108^{*}	0.1108^{*}	0.1108^{*}	
Goodness of fit/dof	1.89 [CMS-PAS-TOP-16-021]	1.06	1.69	
* = value kept fixed in the fit				