

Top quark pair production with additional heavy flavour jets

LHCTopWG Workshop, November 2017

Laura Reina (Florida State)

ATLAS: María Moreno Llácer (CERN)

CMS: Benjamin Stieger (Nebraska Lincoln)

on behalf of the whole LHC Higgs tt+H/t+H XS group

Introduction

Twiki: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGTTH

Mailing list: https://linear.nlm.nih.gov/

Subconveners: Theory: Stefano Pozzorini (Zurich)

Laura Reina (Florida State)

ATLAS: María Moreno Llácer (CERN)

CMS: Benjamin Stieger (Nebraska Lincoln)

Activities:

* Signal modelling studies: tt+H and t+H

* More emphasis to precision theory predictions/simulations for tt+H/t+H (irreducible) backgrounds

for tt+H (H \rightarrow WW, $\tau\tau$): tt+W/Z/ γ^*

for tt+H (H $\rightarrow \gamma \gamma$): tt+ $\gamma \gamma$ for tt+H (H \rightarrow bb): tt+bb

Meetings with topical discussions:

Indico: https://indico.cern.ch/category/5847/ (usually Monday's at 17h)

Next meeting: November 6th, topic: <u>tt+b-jet backgrounds to ttH(bb)</u>

Deliverables:

Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector, arXiv: 1610.07922 No more CERN Higgs Yellow Report are planned in the near future, but another kind of deliverables (TBD).

^{*} Address non-trivial aspects of theory uncertainties that play an important role in the experimental analyses (e.g. signal and background shape uncertainties)

^{*} Try to involve more key experts (from both experimental and theory side)

^{*} Foster communication between ATLAS and CMS

Activities within the LHC Higgs tt+H/tH XS subgroup

tt+H modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposaltTH

tt+Z/W modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposaltTV

tt+heavy flavour modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalTtbb

Activities within the LHC Higgs tt+H/tH XS subgroup

tt+H modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposaltTH

tt+Z/W modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposaltTV

tt+heavy flavour modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalTtbb

- → Goal: study tt+bb production with several MC generators (4F and 5F) and compare with data
- → Of great interest for both the Higgs and Top groups
 - → Joined experimental discussion (https://indico.cern.ch/event/638184/, May 2017)

Available tt+bb cross-section measurements

ATLAS

8 TeV: Eur. Phys. J. C76 (2016) 11

Precision of measurements ~30-36% Precision NLO calculation ~20%

CMS

8 TeV: CMS PAS TOP-13-016, Eur. Phys. J. C76 (2016) 379

13 TeV: arXiv: 1705.10141

13 TeV, 2.3 fb⁻¹

Phase space		$\sigma_{ m tar{t}bar{b}}$ [pb]	$\sigma_{ m tar{t}jj}$ [pb]	$\sigma_{ m tar tbar b}/\sigma_{ m tar tjj}$
Visible	Measurement	$0.088 \pm 0.012 \pm 0.029$	$3.7 \pm 0.1 \pm 0.7$	$0.024 \pm 0.003 \pm 0.007$
visible	SM (POWHEG)	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001
Full	Measurement	$4.0 \pm 0.6 \pm 1.3$	$184 \pm 6 \pm 33$	$0.022 \pm 0.003 \pm 0.006$
ruii	SM (POWHEG)	3.2 ± 0.4	257 ± 26	0.012 ± 0.001

tt+bb differential cross-section measurements (CMS)

8 TeV: Eur. Phys. J. C76 (2016) 379

- → tt+bb absolute and normalized differential cross-sections measured as a function of the jet multiplicity for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets.
- → First differential *tt+b* and *tt+bb* cross sections as a function of the kinematic properties of the leading additional *b*-jets.

- * Data/MC(tt+jets 5F) for $tt+b \sim 1.3$
- * Data/MC for tt+bb ~1.8

in agreement with other CMS and ATLAS results. unc. dominated by the stat. unc. (20-100%).

A critical piece in $tt+H(H\rightarrow bb)$ searches: tt+jets modelling

ttH (H→bb) signal produces 0-2 leptons and 4-8 jets, 4 of them b-jets → very challenging

Strategy: categorize events according to # jets and b-jets → define control and signal regions with different background composition

tt+jets events classified into several categories (tt+light / c / b), and subcategories, based on the flavour of additional jets and number of hadrons in each of them.

Two distributions crucial to model correctly:

- * **ttbar p**_T (mainly affects jet multiplicity): improved thanks to differential measurements with several observables sensitive to different effects (matrix element, radiation, hadronisation)
 - → well described with tuned Powheg+Pythia8 with h_{damp} ~1.5-1.58 m_{top} (nominal)
- * **top p**_T (mainly affects jets p_T): largely improved by NNLO computations
- → More details in top modelling and tuning talks

CMS-PAS-HIG-16-038

tt+HF modelling: very challenging task

- pure QCD process, very complicated that involves several scales and massive quarks
 - challenging for the MC generator community
 - > implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (documented in YR4)
 - 5F tt+jets (m_b=0) vs. 4F tt+bb predictions
 - 4F tt+bb NLO+PS predictions (with massive b-quarks in ME) with novel generators
 - recommended but need further studies (settings, associated shape uncertainties, etc.)
 - how to merge 4F and 5F samples?
 - heavy flavour classification

tt+HF modelling: very challenging task

- pure QCD process, very complicated that involves several scales and massive quarks
 - > challenging for the MC generator community
 - > implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (documented in YR4)
 - 5F tt+jets (m_b=0) vs. 4F tt+bb predictions
 - 4F tt+bb NLO+PS predictions (with massive b-quarks in ME) with novel generators
 - recommended but need further studies (settings, associated shape uncertainties, etc.)
 - how to merge 4F and 5F samples?
 - heavy flavour classification

tt+jets 5F NLO+PS or NLOmultileg

$t \bar{t} b \bar{b}$ described through $t \bar{t} j$ tree MEs plus $g \to b \bar{b}$ shower splittings

 $ar bg o t ar t ar b + {\sf IS} \; {\sf splittings}$

Option 1: NLO+PS 5F tt+jets (m_b=0) e.g. Powheg+Pythia8 used as nominal sample in experiments

tt+jets ME cannot describe collinear $g \rightarrow bb$ splittings

Precision vs accuracy

precision lower than LO (parton shower allows for accurate tuning to data)

$t \bar{t} b \bar{b}$ described through $t \bar{t} + 0, 1, 2$ jet MEs and $g \to b \bar{b}$ shower splittings

Precision and CPU cost strongly depend on choice of merging cut $Q_{
m cut}$

ullet separates ME regions $(k_T > Q_{
m cut})$ from shower regions $(k_T < Q_{
m cut})$

Option 2: NLOmultileg
e.g. Sherpa+OpenLoops or
MG5_aMCNLO+Py8/HW7 FxFx
CPU consuming,
challenging for tt+HF,

still based on m_b=0 MEs + shower in collinear regions

tt+jets 5F NLOmultileg

dominated by MEs with 2 extra jets

but 2 extra <u>light</u> jets

→ direct description in terms of ttbb MEs seems preferable

 $t\bar{t}b\bar{b}$ described through $t\bar{t}+0,1,2$ jet MEs and $g\to b\bar{b}$ shower splittings

harder b-quarks

e.g. Sherpa+OpenLoops or MG5 aMCNLO+Py8/HW7 FxFx

Option 2: NLOmultileg

CPU consuming, challenging for tt+HF, still based on m_b=0 MEs + shower in collinear regions

Precision and CPU cost strongly depend on choice of merging cut $Q_{\rm cut}$

• separates ME regions $(k_T > Q_{\rm cut})$ from shower regions $(k_T < Q_{\rm cut})$

tt+bb 4F NLO+PS

NLO precision for tt + 2 b-jets and 1 b-jet! [Cascioli et al '13] (80% LO uncertainty reduced to 20-30% at NLO) can be applied to full phase space (no generation cuts)

Dominant topologies in 4F $t\bar{t}b\bar{b}$ (FS vs IS $q \rightarrow b\bar{b}$)

$t\bar{t}b\bar{b}$ topologies with FS $q \to b\bar{b}$ splittings

- dominant in full ttbb and ttb phase space
- notion of $g \to b\bar{b}$ splittings and IS/FS separation seems ill defined at large ΔR_{bb} , m_{bb} , $p_{T,b}$ due to sizable interferences

$t\bar{t}b\bar{b}$ topologies with IS $g \to b\bar{b}$ splittings

mostly clearly subdominant (no need for 5F scheme resummation)

 m_{bb} with ttb cuts

 p_{T,b_1} with ttb cuts

NLOPS $t\bar{t}b\bar{b}$ 4F with SHERPA+OPENLOOPS [Cascioli et al '13]

Convergence of 4F scheme but unexpected MC@NLO enhancement

_	ttb	ttbb	$ttbb \left(m_{bb} > 100 \right)$
$\sigma_{ m LO}[{ m fb}]$	$2644^{+71\%}_{-38\%}{}^{+14\%}_{-11\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}{}^{+17\%}_{-13\%}$
$\sigma_{ m NLO}[{ m fb}]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{ m MC@NLO}[{ m fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.07	1.28

Large enhancement (\sim 30%) in Higgs region from double $g o b ar{b}$ splittings

One $g o b ar{b}$ splitting from PS

⇒ TH uncertainties related to matching, shower and 4F/5F schemes crucial!

PS is very important: large enhancement in Higgs-boson region due to $g \rightarrow bb$ from PS \rightarrow Theoretical uncertainties related to matching & shower crucial!

tt+HF modelling: very challenging task

- pure QCD process, very complicated that involves several scales and massive quarks
 - challenging for the MC generator community
 - > implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (documented in YR4)
 - 5F tt+jets (m_b=0) vs. 4F tt+bb predictions
 - 4F tt+bb NLO+PS predictions (with massive b-quarks in ME) with novel generators
 - recommended but need further studies (settings, associated shape uncertainties, etc.)
 - how to merge 4F and 5F samples?
 - heavy flavour classification

tt+bb 4F NLO+PS predictions (Sherpa+OpenLoops, MG5_aMC@NLO+Py8 and Powhel+Py8) with theory motivated shower settings for consistent comparisons:

Different NLO+PS methods, showers, and m_b treatments

Tool	Matching	Shower	$m_b [{ m GeV}]$	gencuts
SHERPA2.1+OPENLOOPS	SMC@NLO	Sherpa 2.1	4.75 (4F)	no
${ m MG5_AMC@NLO}$	MC@NLO	Pythia 8.2	4.75 (4F)	no
Powhel	Powheg	Pythia 8.2	0 (5F)	$p_{T,b} > 4.75 {\rm GeV}$
				$\frac{m_{bb}}{2} > 4.75 {\rm GeV}$

using 4F scheme

Renormalisation scale μ_R	$\sqrt[4]{m_{\mathrm{T}}(t)*m_{\mathrm{T}}(\bar{t})*m_{\mathrm{T}}(b)*}$	$m_{\rm T}(\bar{b})$ (CMMPS)
Factorisation scale μ_F	$H_T/2$ with $H_T = \sum$	$a_{i \in \text{final state}} m_{\text{T}}(i)$
Resummation scale $\mu_Q(Q_{sh})$	$\xi \hat{s}$ with $\xi \epsilon [0.1, 0.25]$	$H_T/2$
	for MG5_aMC@NLO	Sherpa

PDF set: NNPDF3.0 4F

Top quarks are not decayed,

hadronisation and UE are swtiched off

More details in: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalTtbb

tt+bb 4F NLO+PS predictions (Sherpa+OpenLoops, MG5 aMC@NLO+Py8 and Powhel+Py8) with theory motivated shower settings for consistent comparisons:

Different NLO+PS methods, showers, and m_b treatments

Tool	Matching	Shower	$m_b [{ m GeV}]$	gencuts
Sherpa2.1+OpenLoops	SMC@NLO	Sherpa 2.1	4.75 (4F)	no
${ m MG5_AMC@NLO}$	MC@NLO	Pythia 8.2	4.75 (4F)	no
Powhel	Powheg	Pythia 8.2	0 (5F)	$p_{T,b} > 4.75 {\rm GeV}$
				$\frac{m_{bb}}{2} > 4.75 {\rm GeV}$

using 4F scheme

Renormalisation scale μ_R	$\sqrt[4]{m_{\mathrm{T}}(t)*m_{\mathrm{T}}(\bar{t})*m_{\mathrm{T}}(b)*m_{\mathrm{T}}(b)}$	$\overline{b})$ (CMMPS)
Factorisation scale μ_F	$H_T/2$ with $H_T = \sum_{i \in \text{final}}$	$m_{\rm T}(i)$
Resummation scale $\mu_Q(Q_{sh})$	ξ s with $\xi \epsilon [0.1, 0.25]$	$H_T/2$
	for MG5_aMC@NLO	Sherpa

PDF set: NNPDF3.0 4F

Top quarks are not decayed,

hadronisation and UE are swtiched off

Inclusive b-jets not from top quarks parton level pT > 25 GeV, InI<2.5

Selection	Tool	$\sigma_{ m NLO} [{ m fb}]$	$\sigma_{ m NLO+PS}$ [fb]	$\sigma_{ m NLO+PS}/\sigma_{ m NLO}$
$n_b \ge 1$	SHERPA+OPENLOOPS	$12820^{+35\%}_{-28\%}$	$12939^{+30\%}_{-27\%}$	1.01
	MADGRAPH5_AMC@NLO		$13833^{+37\%}_{-29\%}$	1.08
	POWHEL		$10073^{+45\%}_{-29\%}$	0.79
$n_b \ge 2$	SHERPA+OPENLOOPS	$2268^{+30\%}_{-27\%}$	$2413^{+21\%}_{-24\%}$	1.06
	MADGRAPH5_AMC@NLO		$3192^{+38\%}_{-29\%}$	1.41
	POWHEL		$2570^{+35\%}_{-28\%}$	1.13

additional b-jets (inclusive)

Differences of ≥40% for tt+≥2b

tt+bb 4F NLO+PS predictions (Sherpa+OpenLoops, MG5_aMC@NLO+Py8 and Powhel+Py8) with theory motivated shower settings for consistent comparisons:

Different NLO+PS methods, showers, and m_b treatments

Tool	Matching	Shower	$m_b [{ m GeV}]$	gencuts
Sherpa2.1+OpenLoops	SMC@NLO	Sherpa 2.1	4.75 (4F)	no
${ m MG5_AMC@NLO}$	MC@NLO	Pythia 8.2	4.75 (4F)	no
Powhel	Powheg	Pythia 8.2	0 (5F)	$p_{T,b} > 4.75 {\rm GeV}$
				$\frac{m_{bb}}{2} > 4.75 \mathrm{GeV}$

using 4F scheme

Renormalisation scale μ_R	$\sqrt[4]{m_{\mathrm{T}}(t)*m_{\mathrm{T}}(\bar{t})*m_{\mathrm{T}}(b)*m_{\mathrm{T}}(\bar{b})}$	(CMMPS)
Factorisation scale μ_F	$H_T/2$ with $H_T = \sum_{i \in \text{final}}$	$m_{\rm T}(i)$
Resummation scale $\mu_Q(Q_{sh})$	$\xi \hat{s}$ with $\xi \epsilon [0.1, 0.25]$	$H_T/2$
	for MG5_aMC@NLO	Sherpa

PDF set: NNPDF3.0 4F

Top quarks are not decayed,

hadronisation and UE are swtiched off

- differences of ≥40% for tt+≥2b cross section
- sizable differences in NLO radiation pattern
- mu_Q (shower starting scale) dependence in MG5_aMC@NLO

p_T leading light-jet (radiation)

tt+bb 4F NLO+PS predictions (Sherpa+OpenLoops, MG5_aMC@NLO+Py8 and Powhel+Py8) with theory motivated shower settings for consistent comparisons:

Different NLO+PS methods, showers, and m_b treatments

Tool	Matching	Shower	$m_b [{ m GeV}]$	gencuts
SHERPA2.1+OPENLOOPS	SMC@NLO	Sherpa 2.1	4.75 (4F)	no
${ m MG5_AMC@NLO}$	MC@NLO	Pythia 8.2	4.75 (4F)	no
Powhel	Powheg	Pythia 8.2	0 (5F)	$p_{T,b} > 4.75 \text{GeV}$
				$\frac{m_{bb}}{2} > 4.75 \mathrm{GeV}$

using 4F scheme

Renormalisation scale μ_R	$\sqrt[4]{m_{\mathrm{T}}(t)*m_{\mathrm{T}}(\bar{t})*m_{\mathrm{T}}(b)*m_{\mathrm{T}}(\bar{b})}$	(CMMPS)
Factorisation scale μ_F	$H_T/2$ with $H_T = \sum_{i \in \text{finals}}$	$tate m_{\rm T}(i)$
Resummation scale $\mu_Q(Q_{sh})$	$\xi \hat{s}$ with $\xi \epsilon [0.1, 0.25]$	$H_T/2$
	for MG5_aMC@NLO	Sherpa

PDF set: NNPDF3.0 4F

Top quarks are not decayed,

hadronisation and UE are swtiched off

- differences of ≥40% for tt+≥2b cross section
- sizable differences in NLO radiation pattern
- mu_o (shower starting scale) dependence in MG5_aMC@NLO
- much more studies and new setups (more in Nov.6th mtg.):
 - . PowHel (arXiv: 1709.06915)
 - Powheg+OpenLoops+Pythia8/Herwig7
 - further studies regarding mu_Q inMG5_aMC@NLO (+Py8/HW7)

p_T leading light-jet (radiation)

tt+bb 4F NLO+PS systematic uncertainties

Scale choices (YR4) and uncertainties (no proposal yet)

Factorisation (μ_Q) and resummation (μ_Q) scales

$$E_{T_i} = \sqrt{m_i^2 + p_{T,i}^2}$$

$$\mu_F = \mu_Q = \frac{H_T}{2} = \frac{1}{2} \sum_{i=t,\bar{t},b,\bar{b}} E_{T,i}$$

 $\mu_Q \equiv$ shower starting scale is a free paramater in MC@NLO (not in Powheg)

CKKW-like (softer) renormalisation scale

$$\mu_R = \mu_{\text{CKKW}} = \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

Scale variations (leading uncertainty) ~20-30%

- factor-2 variations of μ_R and $\mu_F \Leftrightarrow$ normalisation
- "kinematic" variations of μ_R, μ_F, μ_Q ⇔ shape
- \bullet variations of μ_Q in MC@NLO and h_{damp} in Powheg \Leftrightarrow NLOPS matching

Other variations

- PDF variations (only few percent)
- shower variations: tune variations, shower recoil scheme, . . .

tt+HF modelling: very challenging task

- pure QCD process, very complicated that involves several scales and massive quarks
 - > challenging for the MC generator community
 - implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (documented in YR4)
 - 5F tt+jets (m_b=0) vs. 4F tt+bb predictions
 - 4F tt+bb NLO+PS predictions (with massive b-quarks in ME) with novel generators
 - recommended but need further studies (settings, associated shape uncertainties, etc.)
 - how to merge 4F and 5F samples?
 - heavy flavour classification

Approach proposed in the LHCHiggs Yellow Report 4

- * NLO+PS 4F tt+bb sample
 - can be applied in full phase space (no generation cuts)
 - . inclusive description of *tt*+≥1*b*-quarks
- * Inclusive 5F *tt*+jets sample
 - needs to be restricted to tt+0 b-quarks to avoid double counting (veto events containing b-quarks not arising from showered top decays or MPI or UE)
- → Ongoing discussions on possible implementations

tt+HF modelling: very challenging task

- pure QCD process, very complicated that involves several scales and massive quarks
 - > challenging for the MC generator community
 - implementation of latest theoretical developments crucial
- studies ongoing in both experiments in close collaboration with theorists (documented in YR4)
 - 5F tt+jets (m_b=0) vs. 4F tt+bb predictions
 - 4F tt+bb NLO+PS predictions (with massive b-quarks in ME) with novel generators
 - recommended but need further studies (settings, associated shape uncertainties, etc.)
 - how to merge 4F and 5F samples?
 - heavy flavour classification

First, define tt+light, tt+ \geq 1c and tt+ \geq 1b.

ttbb or more b jets
ttb not in acceptance

overlapping

- tt+bb
- *tt+b*: mainly tt+bb with one b-jet out of acceptance
- . tt+B/2b (ATLAS/CMS): 2 B-hadrons merged in same jet, collinear g→bb
- tt+3b: the rest
- tt+bb from MPI and FSR are treated separately (at least in ATLAS, small fraction only available in tt+jets inclusive 5F calculations)

HF definition and treatment of uncertainties

Reconstructed <u>tt+jets</u> events are classified into several <u>categories and subcategories</u>, <u>based on the flavour of additional jets (at particle level) and number of hadrons in each of them</u>.

- * Only additional particle level jets above a p_T threshold are considered in the classification
- * Jets flavour (b, c or light) is determined via a ghost or dR matching to hadrons.
 - For b and c jets, kinematics cuts on leading hadron to which they are matched being studied.
 - No p_T ratio p_T^{hadron}/p_T^{jet} cut is considered (so far) in the HF classification.

Cuts	ATLAS *	CMS
Reco-level jets	(all events are classified)	≥ two jets with p _T > 30 GeV
Particle level jets	15 GeV	20 GeV
Hadrons	5 GeV, no p _T hadron/p _T jet cut	No cuts
Particle-hadron matching	dR<0.3	Ghost matching

* From ongoing studies, the relative differences among generators in tt+jets fractions seem stable against these cuts

<u>Subcategories</u>

Treatment of uncertainties

ATLAS: reweighting fractions (not kinematics) for each subcategory in 5F sample to 4F SherpaOL

→ treating uncertainties as fully correlated among subcategories

CMS: shapes from 5F predictions → treating uncertainties as fully uncorrelated.

ttH, H → bb: Background Modelling

- tt + HF: Powheg+Pythia8, normalised to NNLO+NNLL prediction
- Approach by ATLAS
 - tt+ ≥ 1b fractions corrected to Sherpa+OpenLoops NLO 4-flavour-scheme calculation
 - Normalisation of tt+ ≥ 1b/c freely floating in final fit
 - Add. uncertainties include choice of generator, PDF, QCD scales, ISR/FSR
- Approach by CMS
 - Separate templates for $t\bar{t} + b$, $t\bar{t} + b\bar{b}$, $t\bar{t} + 2b$, $t\bar{t} + c\bar{c}$, $t\bar{t} + LF$
 - 50% rate uncertainty per process, uncorrelated in final fit
 - Add. uncertainties include PDF, QCD scales, ISR/FSR

More on the treatment of systematics

Pre-fit impact on μ : $\theta_0 = +\Delta\theta \quad \theta_0 = -\Delta\theta$

ATLAS-CONF-2017-076

$t\bar{t}$ modelling uncertainties

Systematic source	Description	tt̄ categories
tt cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \geq 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalisation	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \geq 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalisation	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of the NLO generator	All, uncorrelated
PS & hadronisation	Powheg-Box+Herwig 7 vs. Powheg-Box+Pythia 8	All, uncorrelated
ISR / FSR	Variations of μ_R , μ_F , h_{damp} and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	MG5_aMC@NLO+Herwig++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \ge 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg-Box+Pythia 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary μ_{O} from $H_{\text{T}}/2$ to μ_{CMMPS}	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ PDF (MSTW)}$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ PDF (NNPDF)}$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalisation	Up or down by 50%	$t\bar{t} + \ge 1b$

Post-fit impact on u: $\theta_0 = +\Delta \hat{\theta}$ $\theta_0 = -\Delta \hat{\theta}$ ATLAS Preliminary \sqrt{s} = 13 TeV. 36.1 fb⁻¹ Nuis. Param. Pull tt+≥1b: Sherpa5F vs. nomina tt+≥1b: Sherpa4F vs. nomina tt+≥1b: PS & hadronisation tT+≥1b: ISR / FSR tfH: PS & hadronisation b-tagging: mis-tag (light), NP 0 $k(tt+\ge 1b) = 1.24 \pm 0.10$ Jet energy resolution: NP 1 tTH: cross section (QCD scale) tt+≥1b: tt+≥3b normalisation tt+≥1c: Sherpa5F vs. nominal tī+≥1b: shower recoil scheme tt+≥1c: ISR / FSR Jet energy resolution: NP 0 tt+light: PS & hadronisation Wt: diagram subtr. vs. nominal b-tagging: efficiency, NP 1 b-tagging: mis-tag (c), NP 0 Emiss: soft-term resolution b-tagging: efficiency, NP 0 -2 -1.5 -1 -0.5 0 0.5 $(\theta - \theta_{\alpha})/\Delta \theta$

-1 -0.5

- Many sources of modelling uncertainty considered:
 - Generator: Powheg+Pythia8 vs. Sherpa (5F)
 - Parton shower: Powheg+Pythia8 vs. Powheg+Herwig7
 - 5F vs. 4F in Sherpa+OpenLoops
 - Scale variations in Sherpa+OpenLoops
- All $t\bar{t}$ +jets modelling uncertainties uncorrelated between $t\bar{t}+\geq 1b/\geq 1c/\text{light}$
- Scale variation uncertainties correlated across each $t\bar{t}+\geq 1b$ sub-component

- → tt + HF modelling dominant unc.
- → others: *b*-tagging, JER
- → also limited MC sample size in background modelling

ATLAS reweighting to 4F Sherpa+OL for tt+≥1b

- * Correct normalisation of the different subcategories
- * Small kinematic corrections in each category

All samples compared predict more events in tt+b/bb categories than SherpaOL 4F.

ATLAS reweighting to 4F Sherpa+OL for tt+≥1b

$t\bar{t}b\bar{b}, \sqrt{s}=13 \text{ TeV}, m_t=172.5 \text{ GeV}, m_b=4.75 \text{ GeV}$					
ME can	aMC@NLO	aMC@NLO	SHERPA+OPENLOOPS		
ME gen.	+ MadSpin	+ MadSpin	-		
PS/UE gen.	Herwig++	Рутніа8	Sherpa		
Renormalisation scale μ_R	$\sqrt[4]{m_{\rm T}(t)}*n$	$n_{\mathrm{T}}(\bar{t}) * m_{\mathrm{T}}(b) * m_{\mathrm{T}}(b)$	(CMMPS)		
Factorisation scale μ_F	$H_T/2$ with $H_T = \sum_{i \in \text{final state}} m_T(i)$				
Resummation scale $\mu_Q(Q_{sh})$	ξŝ with ξ	$\xi \epsilon [0.1, 0.25]$	$H_T/2$		
ME PDF	NNPDF3.0nlo 4F	NNPDF3.0nlo 4F	CT10nlo 4F		
PS/UE PDF	CTEQ6L1	NNPDF2.3			
Tune	UE-EE-5	A14	author's tune		
Cross-section \times BR($t\bar{t} \rightarrow \mu\mu$)[pb]	0.322 ± 0.020	0.320 ± 0.020	0.315 ± 0.020		

ATL-PHYS-PUB-2016-016

^{*} Differences (up to 20%) in p_T (leading b-jet) for tt+b category: SherpaOL 4F is harder.

Activities within the LHC Higgs tt+H/tH XS subgroup

tt+H modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposaltTH

tt+Z/W modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposaltTV

tt+heavy flavour modelling: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalTtbb

tt+Z and tt+W cross-sections predictions

Recent developments reported in YR4:

* NLO QCD+EW corrections to *tt+H/Z/W*

Table 40: Inclusive $t\bar{t}V$ cross sections at NLO QCD and NLO QCD+EW accuracy for $\sqrt{s}=13\,$ TeV. NLO QCD+EW results represent the best predictions and should be used in experimental analyses. Scale, PDF, and α_s uncertainties are quoted in per cent. Absolute statistical uncertainties are indicated in parenthesis. We also quote the NLO QCD+EW $t\bar{t}W^- + t\bar{t}W^+$ combined cross sections where correlation effects have been consistently included in the estimate of the corresponding uncertainties. Collider energy and cross sections are in TeV and femtobarn, respectively.

Process	\sqrt{s}	$\sigma_{ m QCD}^{ m NLO}$	$\sigma_{ m QCD+EW}^{ m NLO}$	$K_{ m QCD}$	$\delta_{\mathrm{EW}}[\%]$	Scale[%]	PDF[%]	$\alpha_S[\%]$
$t ar{t} Z$	13	841.3(1.6)	839.3(1.6)	1.39	-0.2	+9.6% -11.3%	+2.8% - 2.8%	+2.8% - 2.8%
$t\bar{t}W^+$	13	412.0(0.32)	397.6(0.32)	1.49	-3.5	+12.7% - 11.4%	+2.0% $-2.0%$	+2.6% $-2.6%$
$t ar{t} W^-$	13	208.6(0.16)	203.2(0.16)	1.51	-2.6	+13.3% -11.7%	+2.1% - 2.1%	+2.9% - 2.9%
$t\bar{t}W^- + t\bar{t}W^+$	13	620.6(0.36)	600.8(0.36)	1.50	-3.2	+12.9% -11.5%	+2.0% $-2.0%$	+2.7% $-2.7%$

- Values for fixed scale μ = m_t + m_v /2 (replacing by a dynamic scale μ = H_T /2 shifts cross-sections by -7%, within unc. quoted)
- For ttW production, QCD+EW corrections as well as the NLO scale uncertainties are slightly more pronounced than for ttZ.
- Scale variations range from 10 to 13% and represent the dominant source of uncertainty.
- * Experiments are using these cross-section values to normalise their samples, but currently available MC simulated do not include EW corrections.
- * tt+Z values include on-shell contribution only, but experiments include off-shell $tt\gamma^* \rightarrow II$ and thus some approximations are made to derive a tt+II K-factor.

*	Precision of exp.	measurements	close to theory unc.
---	-------------------	--------------	----------------------

•	Δσ/σ (%), Obs.Sign.	tt+Z	tt+W		
•	CMS	14%, 9.9σ	15%, 5.5σ		
	2015+2016	(stat~syst. unc.)	(stat~syst. unc.)		

tt+Z and tt+W cross-sections predictions

Recent developments reported in YR4:

* NLO QCD+EW corrections to tt+H/Z/W

Table 40: Inclusive $t\bar{t}V$ cross sections at NLO QCD and NLO QCD+EW accuracy for $\sqrt{s}=13\,$ TeV. NLO QCD+EW results represent the best predictions and should be used in experimental analyses. Scale, PDF, and α_s uncertainties are quoted in per cent. Absolute statistical uncertainties are indicated in parenthesis. We also quote the NLO QCD+EW $t\bar{t}W^- + t\bar{t}W^+$ combined cross sections where correlation effects have been consistent included in the estimate of the corresponding uncertainties. Collider energy and cross sections for the large for the la

Process	\sqrt{s}	σ _{QCD} ^{NLO} 841.3(1.6) 412.0(0.32) 208.6/3 NE	$\sigma_{ m QCD+EW}^{ m NLO}$	$K_{ m QCD}$	$\delta_{\rm EW}$ [%]	cross	sections	PDI	F[%]	α_S	[%]
$t \bar{t} Z$	13	841.3(1.6)	839.3(1.6)	, II (+NNLL	_ч.6%	$-\ 11.3\%$	+2.8%	-2.8%	+2.8%	-2.8%
$t\bar{t}W^+$	13	412.0(0.32)	307 Decel	nt NLS	-3.5	+12.7%	$-\ 11.4\%$	+2.0%	-~2.0%	+2.6%	-~2.6%
$t\bar{t}W^-$	13	208 6/ NE	Mii Kos	1.51	-2.6	+13.3%	$-\ 11.7\%$	+2.1%	-~2.1%	+2.9%	-~2.9%
$t\bar{t}W^- + t\bar{t}W^+$	13	6	600.8(0.36)	1.50	-3.2	+12.9%	$-\ 11.5\%$	+2.0%	-~2.0%	+2.7%	-~2.7%

- Values for fixed scale μ = m_t + m_v /2 (replacing by a dynamic scale μ = H_T /2 shifts cross-sections by -7%, within unc. quoted)
- For ttW production, QCD+EW corrections as well as the NLO scale uncertainties are slightly more pronounced than for ttZ.
- Scale variations range from 10 to 13% and represent the dominant source of uncertainty.
- * Experiments are using these cross-section values to normalise their samples, but currently available MC simulated do not include EW corrections.
- * tt+Z values include on-shell contribution only, but experiments include off-shell ttγ*→II and thus some approximations are made to derive a tt+II K-factor.

*	Precision	of exp.	measurements close to theory unc.	
---	-----------	---------	-----------------------------------	--

•	Δσ/σ (%), Obs.Sign.	tt+Z	tt+W		
•	CMS	14%, 9.9σ	15%, 5.5σ		
	2015+2016	(stat~syst. unc.)	(stat~syst. unc.)		

The program of *tt+X* production at the LHC is well underway

BUT entering regime of results being systematically limited (bkg. and signal modelling)

- → one of the main focus of the LHCHiggs tt+H/t+H XS subgroup
- implementation of the latest theoretical developments is crucial to reduce unc.
- will continue comparing with data to further tune and improve the MC generators

tt+bb process is of interest for both Higgs and Top WGs

→ try to exploit possible synergies between tt+H and tt+bb measurements

Many developments from theory side:

4F scheme preferable for NLO+PS simulations of tt + b-jet production

- Many studies summarized in the YR4
- Studies ongoing to understand significant matching/shower scale dependence and to provide reliable theoretical uncertainties
- Three 4F generators being compared: Sherpa, MG5aMC@NLO, Powheg

From the experimental side:

- provide unfolded measurements (and Rivet routines)
- start generating full MC samples (including top quark decays, detector simulation, etc.)
 - can be quite CPU consuming (possibilities to share LHE files?)
- start testing "matching of 5F tt+jets and tt+bb 4F" samples

THANKS FOR YOUR ATTENTION

BACK-UP

How to merge 4F and 5F samples?

PROPOSAL:

tt+bb 4F for tt + b-jet categories tt+X(jets) 5F for tt+light and c-jets

- \Rightarrow smooth matching of $t\bar{t} + X$ and $t\bar{t}b\bar{b}$ samples
- ullet using smearing function of leading b-jet p_T , such as

$$\xi(p_{T,b}) = \begin{cases} 0 & \equiv \operatorname{pure} t\bar{t} + 0b & \text{for} \quad p_{T,b} < p_{T,\min} \\ \frac{1}{2} \left[1 - \cos \left(\pi \frac{p_{T,b} - p_{T,\min}}{p_{T,\max} - p_{T,\min}} \right) \right] & \text{for} \quad p_{T,\min} < p_{T,b} < p_{T,\max} \\ 1 & \equiv \operatorname{pure} t\bar{t} + \geq 1b & \text{for} \quad p_{T,b} > p_{T,\max} \end{cases}$$

- with transition region in the vicinity of experimental b-jet threshold, e.g. $[p_{T,\min}, p_{T,\max}] = [15, 25] \text{ GeV}$
- same matching procedure should be used in ATLAS and CMS for a transparent comparison and combination of EXP results

Comparisons tt+bb 4F and tt+jets NLOmultileg 5F (CMS)

- Comparison between MG5aMC@NLO+Pythia8 (FxFx merged) 5FNS tt+0/1/2 jets and 4FNS tt+bb
- ightharpoonup Require 1 b-gen-jet not from Top decay in $p_T \geq 20.0 ext{GeV}$, $|\eta| < 2.4$
- b-gen-jets defined through jet-flavour-clustering (ghost hadrons)

tt+Z/W modelling

ATLAS: tt+II, $tt+Z(\rightarrow qq)$, $tt+Z(\rightarrow vv)$, tt+W

tt+II (includes off-shell $tt\gamma^* \rightarrow II$ production with $m_{II}>1$ GeV for OSSF matrix element leptons)

Nominal: MadGraph5_aMC@NLO($\mu_R = \mu_F = H_T/2$, $\mu_Q = \xi \sqrt{\hat{s}}$, NNPDF3.0)+MadSpin+Py8 (A14 tune)

- Alternative MC generator: vs. Sherpa LOmultileg or MG5_aMC@NLO LOmultileg (N_p<=2)
- Tune variations: A14 eigentunes for Pythia8
- Scale choice & PDF set: using multiple event weights

CMS: tt+II, $tt+Z(\rightarrow qq)$, $tt+Z(\rightarrow vv)$, tt+W

tt+II (includes off-shell $tt\gamma^* \rightarrow II$ production with $m_{II} > 10$ GeV for OSSF matrix element leptons)

Nominal: MadGraph5 aMC@NLO (LOmultileg MLMmatching, NNPDF3.0)+MadSpin+Pythia8

- Alternative MC generator:
 - ttZ: MadGraph5_aMC@NLO NLOmode vs. LOmultileg_MLMmatching
 - ttZ: MadGraph5_aMC@NLO NLOmode vs. LOmultileg_MLMmatching
- Scale choice & PDF set: using multiple event weights

Other samples: tt+photon, tZq, tWZ, tHq, tWH

• tt+photon:

MG5 aMC@NLO+Py8 (LO mode),

including photons radiated from the top quarks as well as from their decay products

(Note: MadSpin was NOT used since it does NOT include photon radiation in top decay products)

ATLAS cuts at generation level: $p_{\tau}(\gamma) > 15$ GeV, dR(lep, γ)>0.2 and dR(jet, γ)>0.2 CMS cuts at generation level: $p_T(\gamma) > 13$ GeV, dR(lep, $\gamma) > 0.3$ and dR(jet, $\gamma) > 0.3$

tZa

ATLAS: MG5 aMC@NLO (LO mode)+Py6, Perugia2012, 4 FS → moving to NLO & Py8 CMS: MG5 aMC@NLO (NLO mode)+Py8, 4 FS

• tWZ

ATLAS: MG5 aMC@NLO (NLO mode)+Py8, 5FS, interference w. ttH removed with DR1 & DR2 [arXiv: 1607.05862, ATL-PHYS-PUB-2016-020]

CMS: MG5 aMC@NLO (LO mode)+Py8, 5FS

 $|\mathcal{M}_{\text{tot}}|^2 = \underbrace{[\mathcal{M}_{\text{sr}}]^2 + 2Re(\mathcal{M}_{\text{sr}} \cdot \mathcal{M}_{\text{dr}})} + |\mathcal{M}_{\text{dr}}|^2$

• tHa

ATLAS: MG5 aMC@NLO+Py8/HW++ (LO mode), 4 FS

CMS: MG5 aMC@NLO+Py8(LO mode), 4 FS

• tWH

ATLAS: MG5 aMC@NLO (NLO mode)+HWpp, A14, 5 FS, interference with ttH removed with DR1 CMS: MG5 aMC@NLO+Py8(LO mode)+Py8, 5FS

NLO QCD+PS matched setups used in both experiments.

ATLAS

Nominal: MadGraph5_aMC@NLO* ($\mu_R = \mu_F = H_T/2$, $\mu_Q = \xi \sqrt{\hat{s}}$, NNPDF3.0)+MadSpin+Py8 (A14 tune)

- Showering & hadronization: compared to MG5_aMC@NLO+MadSpin+HWpp (UE-EE5 tune)
- Tune variations: A14 eigentunes for Pythia8
- Scale choice & PDF set: using multiple event weights
- → Currently also studying (no official samples available yet):
 - Powheg+Pythia8
 - Sherpa(NLO)+OpenLoops

CMS

Nominal is different for ttH(bb) and ttH(multilepton, $\gamma\gamma$) to be consistent with main background in each of the channels:

ttH(bb): Powheg+Pythia8 ($h_{damp} \sim 1.58*m_{t_i}$ CUETP8M2 tune) [as used for tt+jets] ttH(multilepton, $\gamma\gamma$): MadGraph5_aMC@NLO(NLO)+MadSpin+Pythia8 [as used for tt+W/Z]

• Scale choice & PDF set: using multiple event weights

^{*} Caveat of MadGraph5_aMC@NLO (NLO mode): ~25% of events having negative weights

tt+H modelling: studies at particle/parton level (ATLAS)

tt+H ($tt\rightarrow$ lep+jets, $H\rightarrow$ bb), Parton shower and hadronisation

ATL-PHYS-PUB-2016-005

ttH p_T

* MG5 aMC@NLO+Pythia8 prediction: slightly more events with six jets (number of expected jets for the selected channel tt+H with $tt\rightarrow lep+jets$, $H\rightarrow bb$). In addition, jets transverse momenta is harder.

* Visible effects in low region of tt+H p_T spectrum due to different showering and hadronisation model (Py8/HWpp), larger than A14 Var3c (ISR) variations.

* Scale choice: main effect from μ_R , cross-section varies 9%, shape effect <1%

tt+H modelling: YR4 studies

Yellow Report4, arXiv:1610.07922

Five NLO QCD+PS setups were compared:

- * S- MC@NLO.: Sherpa(NLO)+OpenLoops +Sherpa PS
- * MG5 aMC@NLO (fixed NLO)+Pythia8
- * PowHel(fixed NLO)+Pythia8
- * Powheg(fixed NLO)+Pythia8
- * HERWIG7 using OpenLoops+MG5 aMC@NLO+Herwig7

using

5F scheme

$$\mu_{\rm R}$$
= $\mu_{\rm F}$ = $\mu_0=(E_{\rm T}(t)E_{\rm T}(\bar{t})E_{\rm T}(H))^{1/3}$, where $E_{\rm T}=\sqrt{M^2+p_{\rm T}^2}$ $\mu_{\rm Q}$ = $H_{\rm T}/2$ with $H_{\rm T}=E_{\rm T}(t)+E_{\rm T}(\bar{t})+E_{\rm T}(H)$ for samples with Sherpa and MG5_aMC@NLO

for Powheg $h = H_{\rm T}/2$ in the definition of $h_{\rm damp} = h^2/(h^2 + p_{\rm T}^2)$ PDF set: NLO PDF4LHC15_30

Uncertainty band: scale variations (factor 2 up/down)

- → Discrepancies in PowHel for nBjets<4</p>
- → Discrepancies for nBJets>4 mainly of parton-shower origin
- → Kinematic distributions are quite compatible for nBJets=4

