Constraining the SMEFT in the top sector at the LHC

Gauthier Durieux (DESY)

for the current authors:

J.A.Aguilar Saavedra, C.Degrande, F.Maltoni, E.Vryonidou, C.Zhang

with input and feedback from:

D.Barducci, V.Cirigliano, W.Dekens, J.de Vries, C.Englert, J.Kamenik, E.Mereghetti, L.Moore, F.Riva, J.Santiago, M.Schulze, M.Trott, C.White, A.Wulzer J.Zupan,

and EFT enthusiasts from ATLAS and CMS

Timeline

Spring: TH brainstorming

June: first ideas on paper, presentation, first feedback, new contributions

Summer: re-thinking and implementation,

UFO as mediator between TH and EXP teams

Mid-October: v0 put together

November $-\epsilon$: 10⁺ pages of feedback received, overall agreement on principles,

interesting suggestions, questions raised, clarifications requested

Today: open discussion

November $+\epsilon$: implementation in v1 and release

1

Content

For v1

- guiding principles
- an example of EFT analysis strategy
- flavour assumptions
- corresponding degrees of freedom
- indicative direct constraints
- UFO implementation and benchmarks

[many from TopFitter]

Foreseen

- FCNCs
- NLO QCD
- indirect constraints, from EDMs, flavour, etc.

..

- theory uncertainties
- unstable tops

...

[Los Alamos/Nikhef contrib.]

[sugg. by M.Schulze]

Still Warsaw as reference basis, still only operators involving tops, but:

Previous approach

- attempt to determine the d.o.f. relevant for given processes
- hierarchize their contributions (QCD vs. EW, m_b/m_t or PDF suppressions...)
- !! model dependent
- !! observable/phase-space dependent
- !! not fitting the global EFT scheme

Now more general and phenomenological

- all tree-level contributions on the same footing
- 2. hierarchies derive from existing constraints for each observable O^k
- 3. compute higher orders in SM couplings where necessary

Implications

- ► Give up, for now, on the stating which d.o.f. is relevant in which process.
- Recommend to determine the EFT dependence observable-by-observable.
 - · Naive hierarchies are upset in too many instances.
 - Use MC for instance. Some benchmarks given, notably for total rates.
 - · The picture will become clearer/more specific with time.
- The d.o.f. relevance in a measurement may change as constraints are collected!

Implications

- ► Give up, for now, on the stating which d.o.f. is relevant in which process.
- Recommend to determine the EFT dependence observable-by-observable.
 - · Naive hierarchies are upset in too many instances.
 - Use MC for instance. Some benchmarks given, notably for total rates.
 - · The picture will become clearer/more specific with time.
- The d.o.f. relevance in a measurement may change as constraints are collected!
 - ⇒ Measurement should be re-interpretable!
 - in an evolving global EFT picture
 - with more sophisticated predictions
 - with less restrictive assumptions
 (e.g. about flavour, non-top operators, etc.)

An example of EFT analysis strategy

An example of EFT analysis strategy

Warning: dangerous territory for a theorist!

- · to show how EFT challenges could be addressed
- · to fix ideas on what are useful outputs from a TH perspective

Choose a (particle-level) fiducial volume close enough to the detector level for unfolding to be very model independent.

Check it!

- → allows re-interpretation without full simulation
- \longrightarrow greatly facilitates multi-dimensional EFT analyses

An example of EFT analysis strategy

For O^k observables

total rate, binned p_T , η , m_{xy} , etc. distributions, binned MVA output, ratios, asymmetries, *optimal* observables,...

Unfold

unfold the data ⇒ under SM hypothesis

Provide

- observable definitions (code if non-standard)
- stat. uncertainties
- systematics breakdown

 $(\rightarrow$ re-interpretable in any model)

Global EFT interpretation

- Compute EFT predictions to the particle level

- Obtain and release likelihoods in the full $\{C_i\}$ space
 - ≡ global constraints
 to combine with other measurements

- also quote individual constraints
 - information about sensitivity and the magnitude of approximate degeneracies
- quote both the linear and quadratic dim-6 approx.
 - \rightarrow information about the importance of higher powers of dim-6 coeff.
- quote limits as functions of **E**_{cut}
 - → valid interpretation for models with lower scales

[Contino et al '16]

 \rightarrow perturbativity possibly ensured by minimal E_{cut}

$$\sum_{n} \sum_{1} \cdots \sum_{2} \cdots \sum_{n} \left[\operatorname{cst} \frac{C_{i} E_{\operatorname{cut}}^{2}}{(4\pi \Lambda)^{2}} \right]^{n}$$

Degrees of freedom

Flavour assumptions

(not applicable for top FCNCs, treated separately)

Lepton sector (not critical)

- · rather loose $U(1)_{l_1+e_1} \times U(1)_{l_2+e_2} \times U(1)_{l_3+e_3}$ aka flavour diagonality
- · could easily be restricted to $U(3)_{l+e}$, or even $U(3)_l \times U(3)_e$

Quark sector (baseline and variants) to effectively reduce the huge number of four-quark operators

Baseline
$$U(2)_q \times U(2)_u \times U(2)_d$$

 \equiv SM flavour symmetry in the limit $y_{u,d,s,c} \to 0$, $V_{\text{CKM}} \to \mathbb{I}$ forces the first two generations to appear as $\sum_{i=1,2} \bar{q}_i q_i$, $\bar{u}_i u_i$, $\bar{d}_i d_i$

Extended to $U(2)_{q+u+d}$

[sugg. by J.A.Aguilar Saavedra]

- · allows light right-handed charged currents $\sum_{i=1,2} \bar{u}_i d_i$
- · allows light chirality flipping currents $\sum_{i=1,2} \bar{q}_i u_i$, $\bar{q}_i d_i$

Restricted to top-philic scenario

[sugg. by A.Wulzer]

- · assumes NP generates all operators with tops and bosons
- · then project that over-complete set on the Warsaw basis with EOM, etc.

d.o.f. and constraints

E. (0.1.f)

	Delicilliaik	exteriaea	restricted
four heavy quarks	9		5
two light and two heavy quarks	14	+10+10 CPV) =
two heavy quarks and two leptons	$(8 + 3 \text{ CPV}) \times 3$		}3
two heavy quarks and bosons	9 + 6 CPV		9+6 CPV

henchmark

extended

restricted

[many from TopFitter]

 $[\Lambda = 1 \text{ TeV}]$

10

	-heavy (9 d.o.f.)	Indicative direct limits
c_{QQ}^1		
c_{QQ}^8	$\equiv 8C_{qq}^{3(3333)}$	
$!c_{QQ}^+$	$\equiv C_{qq}^{1(3333)} + C_{qq}^{3(3333)}$	$[-2.92, 2.80]$ ($E_{cut} = 3$ TeV) [4]
c_{Qt}^1	$\equiv C_{qu}^{1(3333)}$	$[-4.97, 4.90]$ $(E_{cut} = 3 \text{ TeV})$ [4]
c_{Qt}^8	$\equiv C_{qu}^{8(3333)}$	$[-10.3, 9.33]$ ($E_{cut} = 3 \text{ TeV}$) [4]
c_{Qb}^1	$\equiv C_{qd}^{1(3333)}$	
c_{Qb}^8	$\equiv C_{qd}^{8(3333)}$	
c_{tt}^1	$\equiv C_{uu}^{(3333)}$	$[-2.92, 2.80] (E_{cut} = 3 \text{TeV}) [4]$
c_{tb}^1	$\equiv C_{ud}^{1(3333)}$	
c_{tb}^8	$\equiv C_{ud}^{8(3333)}$	
Two-	light-two-heavy (14 d.o.f.)	
$c_{Qq}^{3,1}$ $c_{Qq}^{3,8}$ $c_{Qq}^{1,1}$	$\equiv C_{qq}^{3(ii33)} + \frac{1}{6}(C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)})$	[-0.66, 1.24] [5], [-3.11, 3.10] [4]
$c_{Qq}^{3,8}$	$\equiv C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$	[-6.06, 6.73] [4]
$c^{1,1}$	$= C^{1(ii33)} + 1C^{1(i33i)} + 1C^{3(i33i)}$	[-3 13 3 15] [4]

UFO implementation

- ▶ 90⁺ d.o.f. of the extended flavour scenario
- ▶ LO for now

Benchmark dependences

e.g. linear contributions (S_i^k) to total rates:

[permil of the SM rate, $\Lambda=1$ TeV

		$pp o t\bar{t}$	$pp o t \bar t b \bar b$	$pp \rightarrow t\bar{t}t\bar{t}$	$pp \rightarrow t\bar{t} e^+ \nu$	$pp \rightarrow t\bar{t} e^+e^-$	$pp \rightarrow t\bar{t} \gamma$	$pp \rightarrow t\bar{t} h$
M		$5.2 \times 10^{2} \text{ pb}$	2.3 pb	0.0099 pb	0.02 pb	0.016 pb	1.5 pb	0.4 pb
$\begin{array}{c} 1 & QQ\\ QQ\\ QQ\\ QQ\\ 1\\ 1\\ 2\\ 3\\ 3\\ 2\\ 4\\ 3\\ 3\\ 2\\ 4\\ 3\\ 3\\ 2\\ 4\\ 3\\ 3\\ 2\\ 4\\ 3\\ 3\\ 1\\ 4\\ 4\\ 1\\ 1\\ 4\\ 1\\ 1\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	cQQ1	-0.25	-1.5	-1×10^{2}		-1.6	-0.66	-0.71
800	сQQ8	-0.16	-2.5	-32		-0.91	-0.49	-0.28
Dt.	cQt1	-0.15	-4.3	1×10^{2}		-0.77	-0.19	-0.56
Š Ot	cQt8	-0.053	-1.5	-39		-0.18	-0.094	-0.15
ľ Ob	cQb1	-0.0055	0.53	-0.051		-0.014	-0.0069	-0.029
)h	cQb8	0.14	3.2	0.12		0.35	0.16	0.57
t.	ctt1			-1.6×10^{2}				
b	ctb1	-0.0096	0.36	-0.056		-0.02	-0.023	-0.04
b	ctb8	0.14	2.9	0.11		0.26	0.3	0.58
3,8 Эа	cQq83	2.6	2	5	-84	-19	<u> </u>	16
,8)a	cQq81	12	20	24	2.6×10^{2}	-19 73 73 11 14 17 12	% ∗	73
a	ctq8	12	21	27	2.6×10^{2}	-811	54	73
u	cQu8	7.2	12	18		11,	42	44
<i>u</i>	ctu8	7.5	11	15	.0	14	23	44
)d	cQd8	5	8.3	11	N	17	6.8	28
d	ctd8	4.8	7.2	10	Α.	12	14	28
,1)a	cQq13	3.3	5.3	5.1	1.1×10^{2}	22	11	19
,1)a	cQq11	0.82	0.19	-7.9	-6.1	-4.8	2.8	6.2
a	ctq1	0.67	2.7	-8.3	8.7	0.66	3.5	4.9
n Du	cQu1	0.58	1.9	-5.1		1.5	2.8	4.2
u	ctu1	1.1	0.86	-4		2.3	3.5	6.9
)d	cQd1	-0.2	0.17	-4		-0.67	-0.27	-1.4
d	ctd1	-0.38	-1.2	-4.9		-0.94	-1.2	-2.1
	ctn	-2.1×10^{-5}	-23	-87	-0.034	-0.0093	-2.9×10^{-5}	-1.2×10^{2}

UFO implementation

- ▶ 90⁺ d.o.f. of the extended flavour scenario
- ▶ LO for now

Benchmark dependences

e.g. quadratic contributions (S_{ij}^k) to total rates:

	•						•	'n	,																	
ϵ_{00}^1	c*00	£101	4	c_{Ob}^{1}	r _o	$c_{\rm in}^1 = -c_{\rm in}^1$	e _a	않	61.X	4	6	d,	4,	de	r21.1	e ^{1,1} Qe	cl.	$\epsilon_{Q_0}^1$	ϵ_{2a}^1	c ² _{Od}	c _u	Chy.	0.00044	c3.0	0.00053	
0.107	-1.3 × 10.4	-2.8 × 10 ⁻¹¹	1.4 × 10 *** 0.0035					1.															-7.8×10^{-21}	-0.016	-9.6×10^{-21}	
	0.0081	-2.8 × 10 · · · · · · · · · · · · · · · · · ·	6.5 × 10 ⁻¹⁸					1.															-7.8 × 10 · · · · · · · · · · · · · · · · · ·	-0.019 -0.0097	-9.6 × 10	
		0.037	0.0081					1.														1	5 × 10 ⁻²¹	-0.012	1.2 × 10 ⁻²⁰	
			0.0081	0.037	6.2×10^{-10}	0.016	1.4×10^{-10}	10														1	-0.00024	-0.012	-9.5 × 10 ⁻⁵	
					0.0081	- 1.4 × 10 °		10															-2.3×10^{-21}		-8.6 × 10 ⁻²²	
								1 -																		
						- 0.037	6.5×10^{-10}	1 -															-9.8×10^{-5}		-0.00024	
							0.0081	1 -															-8.5×10^{-22}		-2.1×10^{-21}	
-								1.2							9.8×10^{-17}	5.9×10^{-17}	3×10^{-16}						-9×10^{-10}		-2.9×10^{-10}	
								1 -	1.2						5.9×10^{-17}	9.4×10^{-17}	1.4×10^{-17}						-1.3×10^{-10}		-2.9×10^{-20}	
								1 -		1.2					2.7×10^{-18}	1.3×10^{-17}	9.3×10^{-17}						-2.9×10^{-20}		-7.4×10^{-20}	
								1 .			0.74	0.2						6.1×10^{-17}	7.9×10^{-18}				2.2×10^{-10}		7×10^{-20}	
								1 .				0.76						8.2×10^{-14}	5.7×10^{-17}	- 17			7×10^{-20}		2.1×10^{-19}	
								1 .					0.47	0.13						3.7×10^{-17} 5.4×10^{-18}	5.1×10^{-18} 3.7×10^{-17}		-6.6×10^{-20} -2.4×10^{-20}		-2.4×10^{-20} -7×10^{-20}	
								1.						0.47	5.5					5.4 × 10 · 10	3.4 × 10 ° 11					
								1.							0.5	6.8	0.33						-0.096		-0.032 -0.0035	
								1.								5.5							-0.011 -0.0034		-0.0035	
								1.									5.4	3.3	0.91				-0.0034 0.024		-0.011 0.008	
								1.										3.3	3.4				0.006		0.024	
								10											3.4	2.1	0.6	1	-0.008		-0.0027	
								10																	-0.005	
-	-	-		-				1 -	-	-	-	-	-	-	-		-				7	3.9 × 10°	-		-	-
								1 -															0.0012	-0.00069	0.00098	
								1 -																0.032	-0.00064	2
								1 :												100	~ 1				0.0012	
								1 .												₩	1					
								1 :												\sim	. 1					
								1.												\sim	、 」					
								10											T. 1	\cdot		1				
								10											- 11			1				
								10										/	-,,							
								1 -										• ~	1,			1 -				
								1 -									•									
								1 -									_ \		-							
-	-	_	_	-	_			1 .	-	-	-	-	-	-	-	-	-				-		-	-	-	
								1 .								- 4	1	•								
								1 -									\sim									
								1 -								K 1	`									
								1 -								v										
								1.								_										
								1 -																		
								1 -																		
								1.														1 .				
								Ι.														Ι.				
								T.														1				
								1														1				
-	_	_				-		++	-		-	-	-	-	_	_	_	_	_	_	_	-	_	_	_	-
								10																		
								10																		
								1.														1 -				
								1 -																		
								1 -																		
								1 -																		
								1 -																		
								1 -																		
								1 -																		
								1 .																		
								1 -														1 -				

[pb, $pp \rightarrow t\bar{t}$, $\Lambda = 1 \text{ TeV}$]

That's it for the overview!

Thanks for all the contributions and feedback!

The floor is open for discussion!

Watch for v1!