

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

SERGIO SÁNCHEZ CRUZ (CMS) RUI ZHANG (ATLAS) LHC TOP WG meeting, 2-3 November 2017

COMPARISON OF ATLAS AND CMS TW RESULTS AT 13 TEV

- ► It is an excellent probe of the V_{tb} matrix element
- It can be sensitive to the b pdfs
- It is the main background in $t\bar{t}$ precision measurements
- Its production interferes with $t\bar{t}$ production at NLO
 - Two configurations to subtract overlaping diagrams: diagram subtraction and removal

HISTORICAL ASPECTS OF TW PRODUCTION

- Both collaborations have performed measurements of the tW cross-section at 7, 8 and 13 TeV
- In this presentation I will focus on the latest results by CMS and ATLAS at 13 TeV
- These results correspond to
 - ► CMS-PAS-TOP-17-018
 - ATLAS arXiv:1612.07231

RUN I RESULTS: TW AT 7 AND 8 TEV

CMS measurement at 7 and 8 TeV

- Event selection:
 - Two opposite-charge leptons
 - Analysis regions defined: 1j1b, 2j1b and 2j2b
- Signal extracted with ML fit to each (ee, $\mu\mu$ and $e\mu$) channels
- BDT trained to discriminate signal from background
- Results:
 - 7 TeV: 4.0 σ , $\sigma_{tW} = 16 \pm 5$ pb
 - 8 TeV: 6.1 σ , $\sigma_{tW} = 23.4 \pm 5.4$ pb

RUN I RESULTS: TW AT 7 AND 8 TEV

ATLAS measurement at 7 TeV

- ► Analysis regions defined: 1-jet, 2-jet, ≥3-jets
- 3 BDTs trained to discriminate signal from background

ATLAS measurement at 8 TeV

- Analysis regions defined: 1j1b, 2j1b, 2j2b
- 3 BDTs trained to discriminate signal from background
- Results:
 - ▶ 7 TeV: 3.3σ , $\sigma_{tW} = 16.8 \pm 2.9 \pm 4.9$ pb
 - ▶ 8 TeV: 7.7 σ , $\sigma_{tW} = 23.0 \pm 1.3 \pm 3.5 \pm 1.1 \text{ pb}$

Overview of the ATLAS and CMS analyses at $\sqrt{s}=$ 13 TeV

- Both analyses focus in the dilepton channel
- ► $t\bar{t}$ is the main background \Rightarrow both analyses utilize differences in the (n_j, n_b) spectrum
- Further discrimination is obtained by exploiting dedicated BDTs
- Signal is extracted by performing a likelihood fit
- ATLAS uses 2015 (3.2 fb⁻¹) dataset in ee, μμ and eμ channels
- ► CMS analysis is performed in the 2016 dataset (35.9 fb⁻¹) in the eµ channel (ten times the luminosity)

Regions

OBJECT SELECTION

- Both analyses use a similar object selection
- ► However, minor differences are present

CMS

Triggers

Single and double lepton paths

Lepton selection

- Leading lepton $p_T > 25 \text{ GeV}$
- ► Sub-leading lepton p_T > 20 GeV
- No veto on events with a third lepton

Jet selection

► Using jets with p_T > 30 GeV

ATLAS Triggers

Single lepton paths

Lepton selection

- Leading lepton $p_T > 25 \text{ GeV}$
- ► Sub-leading lepton p_T > 20 GeV
- ► Reject events with third lepton with p_T > 20 GeV

Jet selection

► Using jets with p_T > 25 GeV

EVENT SELECTION

> There are some differences in the event selection of both analyses

CMS

- ► Events with an electron and a muon (m_{eµ} > 20 GeV)
- Three regions defined: 1j1b, 2j1b, 2j2b
- No additional cuts are applied on top of the definition of the signal / control regions

ATLAS

- Events with two leptons (signal extracted without splitting in channels)
- Three regions defined: 1j1b, 2j1b, 2j2b
- ► E^{miss}_T and m_{ℓℓ} cuts for Drell-Yan rejection

Cuts in ATLAS analysis			
Different flavor	$E_{ m T}^{ m miss} >$ 50 GeV	if $m_{\ell\ell} <$ 80 GeV	
	$E_{ m T}^{ m miss}$ > 20 GeV	if $m_{\ell\ell} >$ 80 GeV	
Same flavor	$E_{ m T}^{ m miss}$ > 40 GeV	always	
	veto	if $m_{\ell\ell} <$ 40 GeV	
	$4 E_{ m T}^{ m miss} > 5 m_{\ell\ell}$	if 40 GeV $< m_{\ell\ell} <$ 81 GeV	
	veto	if 81 GeV $< m_{\ell\ell} <$ 101 GeV	
	$2E_{\mathrm{T}}^{\mathrm{miss}}$ + $E_{\mathrm{T}}^{\mathrm{miss}}$ >300 GeV	if $m_{\ell\ell} > 101 \text{ GeV}$	

BACKGROUND ESTIMATION

- Both analyses predict backgrounds using MC simulations
- Both use POWHEG-BOX for tW (v1) and $t\bar{t}$ (v2)
- Parton showers are modelled with Pythia8 in CMS analysis, Pythia 6 is used by ATLAS
- CMS assesses systematic uncertainties of DY and fake estimation through data-driven techniques
- ATLAS validates their modeling in 1j0b and 2j0b regions

- Signal extraction is performed using a maximum likelihood fit to 1j1b, 2j1b and 2j2b regions
- Both analyses exploit BDTs in 2j1b and 1j1b regions to discriminate signal from background
- Both use the 2j2b region to constrain $t\bar{t}$
- CMS additionally uses the subleading jet p_T distribution in the 2j2b region to further constrain systematic uncertainties

SIGNAL EXTRACTION (II)

1J1B REGION

- Even in the 1j1b region $t\bar{t}$ contribution is still large
- Both analyses employ dedicated BDTs to discriminate signal from $t\bar{t}$
- Discriminating BDT in the 1j1b is fed with kinematic variables
- ► CMS additionally looks for additional low momentum (p_T > 20 GeV) jets

Sergio Sánchez Cruz

SIGNAL EXTRACTION (III)

2J1B REGION

- BDTs are also utilized in the 2j1b region to distinguish separate signal from background
- CMS exploits angular correlation variables between the leptons, jets and E^{miss} as well as the p_T of the subleading jet
- ATLAS additionally uses transverse momenta and masses of systems formed by leptons, jets and E^{miss}_T

SYSTEMATIC UNCERTAINTIES (EXPERIMENTAL)

Both experiments handle experimental uncertainties in a similar fashion

Experimental systematics			
CMS	ATLAS		
b-tagging efficency	b-tagging		
	lat Engrave Cools		
Jet Energy Scale	Jet Energy Scale		
Jet Energy Resolution	Jet Energy Resolution		
	E ^{miss} soft terms		
Trigger efficiency	Lepton efficiency		
Muon efficiency	energy and		
Electron efficiency	resolution		
Pile-up			

Modelling systematics			
	CMS	ATLAS	
Matrix element	Normalization and factor- ization scales varied up and down by a factor 2	PowHeg+Pythia vs aMC@NLO + Herwig†	
Parton Shower, hadronization, underlying event	UE: variation of Pythia pa- rameters ME/PS matching: varia- tion of h_{damp} Color reconnection	PowHeg+Pythia vs PowHeg+Herwig†	
ISR/FSR	PS scale used for ISR/FSR varied up and down by a factor of two	Idem as CMS (tW†) (only one nuisance)	
pdf	Root-mean-square of 100 NNPDF3.0 pdfs	Difference between PDF4LHC15 and CT10†	
Diagram subtrac- tion and removal	Yes	Yest	
Extrapolation to full phase space	Yes	No	

 $_{\mbox{Page 14}} \mbox{ + Comparison performed in fast simulation}$

RESULTS CMS

- $\sigma_{tW} = 63.1 \pm 1.8(\text{stat}) \pm 6.0(\text{syst}) \pm 2.1(\text{lumi}) \text{ pb.}$
- ▶ tW cross-section measured with a precision of the order of 10%
- Measurement consistent with Standard Model expectation

•
$$\sigma_{tW}^{SM} = 71.7 \pm 1.8 \text{ (scale) } \pm 3.4 \text{ (pdf) pb}$$

RESULTS ATLAS

- Signal is extracted from the ee, $\mu\mu$ and $e\mu$ channels (without splitting in classes)
- ► $\sigma_{tW} = 94 \pm 10$ (stat.) $^{+28}_{-22}$ (syst.) ± 2 (lumi.) pb
- Uncertainty of the order of 30%
- Measurement consistent with Standard Model expectation

COMPARISON OF SYSTEMATIC UNCERTAINTIES

Source	Uncertainty (%)
Trigger efficiencies	2.7
Muon efficiencies	3.1
Electron efficiencies	3.2
Jet energy scale	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistagging rate	0.2
Pileup	3.3
$t\bar{t} \mu_R$ and μ_F scale	2.5
tW μ_R and μ_F scale	0.9
Underlying event	0.4
ME/PS matching	1.8
Initial state radiation	0.8
Final state radiation	0.8
Color reconnection	2.0
PDF	1.5
DR-DS	1.3
VV normalization	0.4
Drell-Yan normalization	1.1
Non-W/Z leptons normalization	1.6
ttV normalization	0.1
MC statistics	1.6
Full phase space extrapolation	2.9
Total systematic	0.5
(excluding integrated luminosity)	9.5
Integrated luminosity	3.3
Statistical	2.8
Total	10.5

- CMS is dominated by experimental uncertainties: lepton efficiencies, jet energy scale, pile-up
- ATLAS is uncertainty dominated by jet energy scale and matrix element generator

Source	$\Delta \sigma_{Wt} / \sigma_{Wt} [\%]$
Jet energy scale	21
Jet energy resolution	8.6
$E_{\rm T}^{\rm miss}$ soft terms	5.3
b-tagging	4.3
Luminosity	2.3
Lepton efficiency, energy scale and resolution	1.3
NLO matrix element generator	18
Parton shower and hadronisation	7.1
Initial-/final-state radiation	6.4
Diagram removal/subtraction	5.3
Parton distribution function	2.7
Non-tī background normalisation	3.7
Total systematic uncertainty	30
Data statistics	10
Total uncertainty	31

DIFFERENTIAL TW CROSS-SECTION

- ATLAS has released a measurement of the differential cross-section
- Same event selection as in the total cross-section analysis
- ► Using 2016 dataset (36.1 fb⁻¹)
- Signal enriched region is constructed in the 1j1b region, using the BDT > 0.3 region
- Showing E(b), many other variables available

CONCLUSIONS

- \blacktriangleright Both CMS and ATLAS have measured tW production cross-section at $\sqrt{s}=$ 13 TeV
- Guiding principle of both analyses is similar: three regions 1j1b, 2j1b and 2j2b
- However many details on the dataset and event selection as well as the BDTs discriminators are different
- Modelling uncertainties are assessed in different ways by the two collaborations

Thanks for your attention! Questions?

Back-up

► Break-down of systematics table in the 8 TeV CMS analysis

Systematic uncertainty	$\Delta \sigma$ (pb)	$\Delta \sigma / \sigma$	Notes
ME/PS matching thresholds	3.3	14%	Matching threshold $2 \times$ and $1/2 \times$ nominal 20 GeV value in t simulation
Renormalization/factorization scale	2.9	12%	Scale value 2× and 1/2× nominal value of $m_t^2 + \sum p_T^2$ in t and tW simulation
Top-quark mass	2.2	9%	$m_{\rm t}$ varied in tW and t $\bar{\rm t}$ simulation by $\pm 2 {\rm GeV}$
Fit statistical	1.9	8%	Remaining uncertainty in fit when all other systematic uncertainties are removed
Jet energy scale	0.9	4%	Jet energy scale varied up/down
Luminosity	0.7	3%	2.6% uncertainty in the measured luminosity
Z+jets data/simulation scale factor	0.6	3%	Varying scale factors used for correcting Z+jets E ^{miss} simulation
tW DR/DS scheme	0.5	2%	Difference between DR and DS scheme used for defining tW signal
tī cross section	0.4	2%	Uncertainty in the cross section of tt production
Lepton identification	0.4	2%	Uncertainty in scale factors for lepton efficiencies between data/simulation
PDF	0.4	2%	From choice of PDF
Jet energy resolution	0.2	1%	Energy resolution for jets varied up/down
b-tagging data/simulation scale factor	0.2	<1%	Variations in scale factors
tt spin correlations	0.1	$<\!1\%$	Difference between tt simulation with/without spin correlations
Pileup	0.1	$<\!1\%$	Varying effect of pileup
Top-quark $p_{\rm T}$ reweighting	0.1	<1%	Uncertainty due to differences in top quark p_T between data and $t\bar{t}$ simulation
E ^{miss} modeling	0.1	$<\!1\%$	Uncertainty in amount of unclustered E _T ^{miss}
Lepton energy scale	0.1	$<\!1\%$	Uncertainty in energy of leptons
Total	5.5	24%	

Break-down of systematics table in the 8 TeV ATLAS analysis

Uncertainty	Impact on $\hat{\mu}$ [%]
Statistical	±5.8
Luminosity	±4.7
Theory modelling	
ISR/FSR	+8.2 -9.4
Hadronisation	±1.7
NLO matching method	±2.5
PDF	±0.6
DR/DS	+2.2 -4.8
Detector	
Jet	+9.0 -9.9
Lepton	±3.0
$E_{\mathrm{T}}^{\mathrm{miss}}$	±5.5
b-tag	±1.0
Background norm.	+2.9 -2.6
Total	+16 -17

Several uncertainties get constrained in the fit: JES, FSR, ISR, pdfs

ACKNOWLEDGEMENTS

 Work partially supported by Programa Severo Ochoa del Principado de Asturias