

tZq evidence @13TeV ATLAS/CMS comparison

Lidia Dell'Asta

with Mara Senghi Soares, Jeremy Andrea and Muhammad Alhroob

Outline

- Theory cross section
- Event selection
- Background estimation
- Analysis strategy
- Fitting strategy

LHC Top WG Meeting - 02/03.11.2017

Introduction

<u> TOPQ-2016-14</u>	CMS-PAS-TOP-16-020
(submitted to PLB)	■35.9 fb ⁻¹
□36.1 fb ⁻	Significance obs(exp):
Significance obs(exp):	3.7 (3.1)σ
4.2 (5.4)σ	u = 1.31
□µ = 0.75	+0.35-0.33 (stat.)
± 0.21 (stat.)	$+0.31_{-}0.25$ (syst)
± 0.17 (syst.)	· 0.31-0.23 (syst.)
± 0.05 (th.)	
$\Box \sigma(tZq) = 600$	■σ(tllq) = 123
± 170 (stat.)	+33-31 (stat.)
± 140 (syst.) fb	+29-23 (syst.)

Trying to make a comparison between the two analyses.

Where does the difference between the cross sections come from?

Is there any significant difference in the analysis strategy?

Disclaimer: not a lot of public plots to compare the two.

Signal samples & theory cross section

Signal MC: LO rescaled to NLO.

Theory cross section:
Z boson is forced to be on shell,
no cuts are applied,
4-flavour scheme.

 $\Box \sigma_{NLO}(tZq) = 800 \text{ fb}$ $\Box \pm 6/7\% \text{ scale}$

▶ Tau leptonic decays included.

Different scale choice between ATLAS and CMS.

```
    ▶ Theory paper <u>https://arxiv.org/abs/1302.3856</u>
    ▶ σ<sub>NLO</sub>(tZq) ~ 820 fb.
```

Signal MC: NLO.

- Theory cross section:
 - Z boson can be off shell/γ* is also included,
 - ■m_{||} > 30 GeV,
 - 5-flavour scheme (4FS for MC generation).

■ σ_{NLO}(tllq) = 94 fb ■ ±2% scale ■ ±2.5% PDF

Lidia Dell'Asta

Signal samples & theory cross section

	FS	Scale	Cuts	x-sec (fb)	notes
tllq	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	-	94	CMS default
tllq	4	$\mu = \frac{\overline{1}}{2} \Sigma \sqrt{E^2 - p_z^2}$	_	76	4 vs 5 FS 20% effect
tllq	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	m⊪ > 80 GeV	89	
tZ(→ll)q	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	-	86	effect of missing contributions from off-shell/ γ^{\ast} and extra diagrams
tZq	4	$\mu = 4\sqrt{m_b^2 + p_{T,b}^2}$	-	800	ATLAS default
tZq	4	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	-	690	scale I 5% effect
tZq	5	$\mu = \frac{1}{2} \Sigma \sqrt{E^2 - p_z^2}$	-	860	4 vs 5 FS 20% effect

▶ Need to converge on a common setup.

- ▷ Include or not γ^* contribution \rightarrow current thinking is to include it
- ▶ If including γ^* , need to fix an m(II) requirement $\rightarrow 30$ GeV seems reasonable from the experimental side
- ▶ Whether to use 4FS or 5FS \rightarrow current thinking is 5FS (expected to be more precise for inclusive XS)
- \triangleright Which scale to use \rightarrow theory guidance appreciated

Lidia Dell'Asta

Trigger

□ single lepton triggers

□ exactly three □ $p_T(lep) > 28/25/15 \text{ GeV}$ □ ≥ 1 OSSF pair □ $|m_{||} - m_Z| < 10 \text{ GeV}$

Dets

exactly two p_T(jet) > 30 GeV l b-tagged (77% WP, 1% mistag)

□m_T(W) > 20 GeV

```
Trigger
   OR of 1/2/3 lepton triggers
exactly three
   ■p<sub>⊤</sub>(lep) > 25 GeV
   ■≥ I OSSF pair
   ■|m<sub>||</sub> - m<sub>7</sub>| < 15 GeV
Jets
   two or three
   ■p<sub>T</sub>(jet) > 30 GeV
   I b-tagged (83% WP, 10% mistag)
```


▶ TRIGGER & LEPTON p_T

- For ATLAS the 28 GeV cut on the 1st lepton p_T is driven by the trigger threshold. Not a killer though. The 1st lepton is quite hard.
- Keeping the 3rd lepton p_T lower increases the Z+jet contamination, giving a better handle on this bkg when training the NN.

```
Trigger
                                                          Trigger
    □ single lepton triggers
                                                              OR of 1/2/3 lepton triggers
exactly three
                                                             exactly three
    □p<sub>T</sub>(lep) > 28/25/15 GeV
                                                              ■p<sub>⊤</sub>(lep) > 25 GeV
    \Box \geq I OSSF pair
                                                             ■≥ I OSSF pair
    \Box |m_{||} - m_{7}| < 10 \text{ GeV}
                                                              ■|m<sub>||</sub> - m<sub>7</sub>| < 15 GeV
Dets
                                                         ets
    □exactly two
                                                              Itwo or three
    \Box p_T(jet) > 30 \text{ GeV}
                                                              ■p<sub>T</sub>(jet) > 30 GeV
    □ I b-tagged (77% WP, 1% mistag)
                                                              I b-tagged (83% WP, 10% mistag)
\Box m_{T}(W) > 20 \text{ GeV}
```

▶ m_{II}

• Keeping the m_{\parallel} window cut wider increases the tt contribution.

▶ n_{jets}

- Connected with LO vs NLO signal MC (LO does not take into account large fraction of signal in the 3 jets bin)
- Having 3 jets might create ambiguity in defining the forward jet.
- \triangleright Likely increases tt fake contribution.

Background estimation

- It t and Z+jets non-prompt lepton backgrounds estimated separately.
- □tt: data/MC SF from OSOF
 region
 □shape from MC.
- Z+jets: Fake Factor method
 e/µ treated separately
 binned in p_T of W lepton
 FF:TTT/LTT in region with m_T(W) < 20 GeV
 applied to LTT data.
 Uncertainty:
 30/40% normalisation.

- All "NPL" (non-prompt leptons) sources estimated together.
- "templates" from data with LTT leptons.
- e/µ treated separately.
- "2 step normalisation"
 - fit m_T(W) in the Objet CR and get first normalisation factors for all channels.
 - NPL e and µ yields: two free parameters independent of each other in the fit.
 - Uncertainty:
 - shape uncertainty based on changing isolation requirements.

Background estimation

Channel Nun	nber of events Real data	CMS
tZq	26 ± 8	32.3 ± 5.0
tt + tW Z + jets	$\begin{array}{c} 17 \pm 7 \\ 34 \pm 11 \end{array}$	91.3 ± 12.1
$\begin{array}{l}\text{Diboson}\\ t\overline{t}V + t\overline{t}H + tWZ\end{array}$	$\begin{array}{r} 48 \pm 12 \\ 19 \pm 3 \end{array}$	186.4 ± 11.5 34.8 ± 2.5
Total	143 ± 11	

▶ Signal \rightarrow tZq = tZq

▶ Fakes \rightarrow tt+tW + Z+jets = NPL

▷ Diboson \rightarrow Diboson = ZZ + WZ+c/b/light

 $b top \rightarrow t\bar{t}V + t\bar{t}H + tWZ = tWZ + t\bar{t}H + t\bar{t}W + t\bar{t}Z$

	ATLAS		CMS	
Signal	26	18%	32	9%
Fakes	51	35%	91	26%
Diboson	48	33%	186	54%
top	19	13%	35	10%

	Process	eee	eeµ	μμе	μμμ	All channels	$\frac{N^{\text{obs}}}{N^{\text{pred}}}$
	tZq	5.0±1.5	6.6±1.9	8.5±2.5	12.3±3.6	32.3±5.0	_
	tīZ	3.7±0.7	4.7 ± 0.9	6.1 ± 1.2	8.0±1.5	22.4±2.2	0.9±0.2
CMS	tĪW	$0.3{\pm}0.1$	0.3 ± 0.1	$0.7{\pm}0.2$	0.6±0.2	$1.9{\pm}0.3$	1.0±0.2
CMS	ZZ	4.8 ± 1.3	3.2±0.9	9.0±2.5	7.8±2.2	24.7±3.6	1.3 ± 0.3
nost-fit values	WZ+b	$3.0{\pm}0.9$	$3.4{\pm}1.1$	$4.6{\pm}1.4$	5.5±1.7	16.6±2.6	1.0±0.2
	WZ+c	9.0±2.4	13.7 ± 3.7	$18.0{\pm}4.9$	24.2±6.5	64.8±9.3	1.0±0.2
	WZ+light	12.2±1.6	16.6 ± 2.0	$22.4{\pm}2.8$	29.1±3.4	80.3±5.1	$0.7{\pm}0.1$
	tīH	$0.6{\pm}0.2$	0.9 ± 0.3	$1.0{\pm}0.3$	$1.5{\pm}0.4$	$4.0{\pm}0.6$	1.0±0.2
	tWZ	$1.0{\pm}0.3$	1.3 ± 0.4	$1.7{\pm}0.5$	2.4±0.7	6.5±1.0	1.0±0.2
	NPL: electrons	19.2 ± 3.1	0.6 ± 0.1	$17.9{\pm}2.8$	_	37.7±4.2	_
	NPL: muons	_	7.2±2.3	31.1±9.9	15.3±4.9	53.6±11.3	_
	Total	58.8±4.8	58.4 ± 5.5	120.9±12.4	106.6±10.1	344.8±17.6	
	Data	56	58	104	125	343	
				' . .	· · ·	i I	'

Lidia Dell'Asta

ATLAS

03.11.2017

Lidia Dell'Asta

03.11.2017

Multivariate analysis

Training with signal and all backgrounds (tt excluded, fakes included)

IO variables

- List in the paper
- Most discriminating: η(jet_{forward}) and p_T(jet_{forward}).

- Training with signal and all backgrounds (excluding fakes because of lack of stat.)
- Two BDTs for the 1bj and 2bj SRs.
- Various variables used for training.
 - Including MEM (Matrix Element Method) as input variables.

I 0% significance improvement.

Signal Regions, Fitting and Systematics

Fitting O_{NN} in SR (all channels summed together).

Fitting I2 regions simultaneously.

- 🔳 eee, eeµ, eµµ, µµµ.
- BDT in Ibjet (signal region).
- BDT in 2bjet (to control tTZ).
- ■m_T(W) in 0bjet (to control WZ+jets).

Not enough information about systematic uncertainties.

Conclusions

Comparison of tZq results from ATLAS and CMS.

▶ <u>MC signal samples</u> @LO for ATLAS and @NLO for CMS.

- Theory cross section calculations compatible but with several differences (tZq vs tllq, 4 vs 5 FS, scale choice).
 - Need to converge to a common approach.
- Some different approaches for the <u>event selection</u> (e.g. lepton p_T cuts, number of jets, b-tagging WP) and <u>background estimation</u>.
 Visible effect on the background composition in the SR.
- ▶ <u>Multivariate analysis</u> (NN for ATLAS and BDT for CMS).
 - Main difference coming from the use of fakes in training.

Different way of <u>fitting</u> NN/BDT output distributions.

BackUp

Signal samples & Theory Cross Section

Signal samples & Theory Cross Section

Changing the scale choice.

Changing the scale choice + 5 FS.

Summary:

Process p p > t Z j \$\$ W+ W- [QCD] ; p p > t~ Z j \$\$ W+ W- [QCD] Run at p-p collider (6500.0 + 6500.0 GeV) Total cross-section: 8.573e-01 +- 4.8e-03 pb Ren. and fac. scale uncertainty: +2.1% -1.5% PDF uncertainty: +1.3% -1.3% Number of events generated: 10000 Parton shower to be used: PYTHIA8 Fraction of negative weights: 0.32 Total running time : 21m 24s Checks by ATLAS

860 fb

Variable	Definition
$ \eta({ m j}) $	Absolute value of untagged jet η
$p_{\mathrm{T}}(\mathrm{j})$	Untagged jet $p_{\rm T}$
m_t	Reconstructed top-quark mass
$p_{\mathrm{T}}(\ell^{W})$	$p_{\rm T}$ of the lepton from the W-boson decay
$\Delta R(\mathrm{j},Z)$	ΔR between the untagged jet and the Z boson
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	Transverse mass of W boson
$p_{\mathrm{T}}(t)$	Reconstructed top-quark $p_{\rm T}$
$p_{\mathrm{T}}(b)$	Tagged jet $p_{\rm T}$
$p_{\mathrm{T}}(Z)$	$p_{\rm T}$ of the reconstructed Z boson
$ \eta(\ell^W) $	Absolute value of η of the lepton coming from the W-boson decay

Multivariate analysis - CMS

35.9 fb⁻¹ (13 TeV)

Lidia Dell'Asta

Signal and control regions - ATLAS

Common selections						
Exactly 3 leptons with $ \eta < 2.5$ and $p_{\rm T} > 15$ GeV $p_{\rm T}(\ell_1) > 28$ GeV, $p_{\rm T}(\ell_2) > 25$ GeV, $p_{\rm T}(\ell_3) > 15$ GeV $p_{\rm T}({\rm jet}) > 30$ GeV $m_{\rm T}(\ell_{\rm W}, \nu) > 20$ GeV						
SR	Diboson VR / CR	$t\overline{t}$ VR	$t\overline{t}$ CR			
≥ 1 OSSF pair	≥ 1 OSSF pair	≥ 1 OSSF pair	≥ 1 OSDF pair			
$ m_{\ell\ell} - m_Z < 10 \mathrm{GeV}$	$ m_{\ell\ell} - m_Z < 10 \mathrm{GeV}$	$ m_{\ell\ell} - m_Z > 10 \text{ GeV}$	No OSSF pair			
2 jets, $ \eta < 4.5$	1 jet, $ \eta < 4.5$	2 jets, $ \eta < 4.5$	2 jets, $ \eta < 4.5$			
1 <i>b</i> -jet, $ \eta < 2.5$		1 <i>b</i> -jet, $ \eta < 2.5$	1 <i>b</i> -jet, $ \eta < 2.5$			
	VR/CR: $m_{\rm T}(\ell_W, \nu) > 20/60~{\rm GeV}$					

Uncertainties - ATLAS

Source

b-tagging

Leptons

 $E_{\rm T}^{\rm miss}$

Jets

03.11.2017