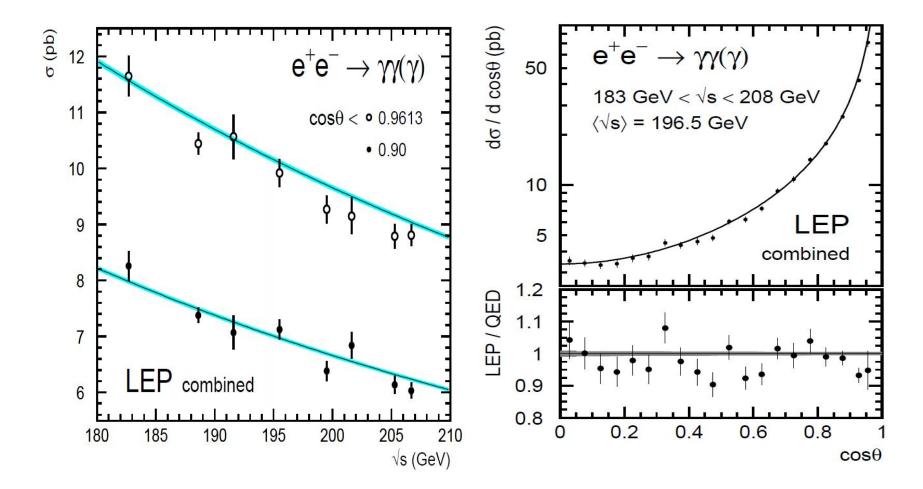

Search for new physics with $ee \rightarrow \gamma\gamma$ at CLIC

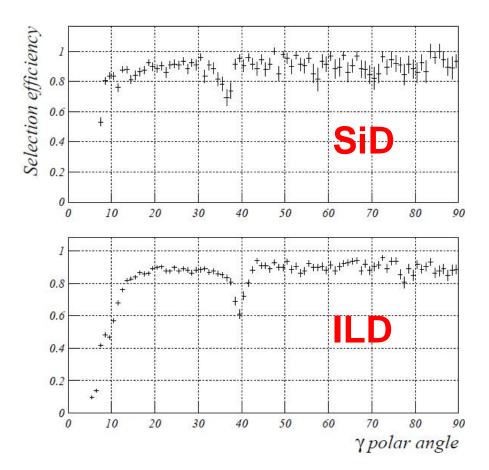
Is electron a point-like particle?



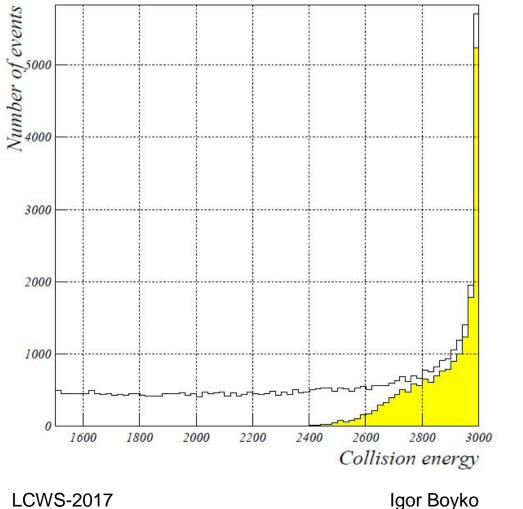
 $e^+e^- \rightarrow \gamma \gamma$

- Simplest annihilation process, easily calculated
- Experimentally very clean, hard back-to-back photons, no tracks
- Provides possibility to test various QED extensions, in particular to probe a finite size of the electron
- Need to measure absolute cross-section and angular spectrum of γγ

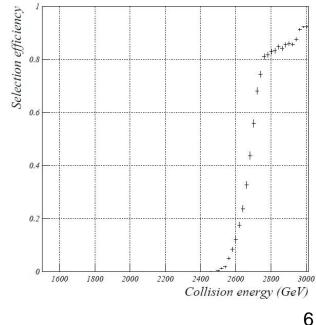
Legacy of LEP


Igor Boyko

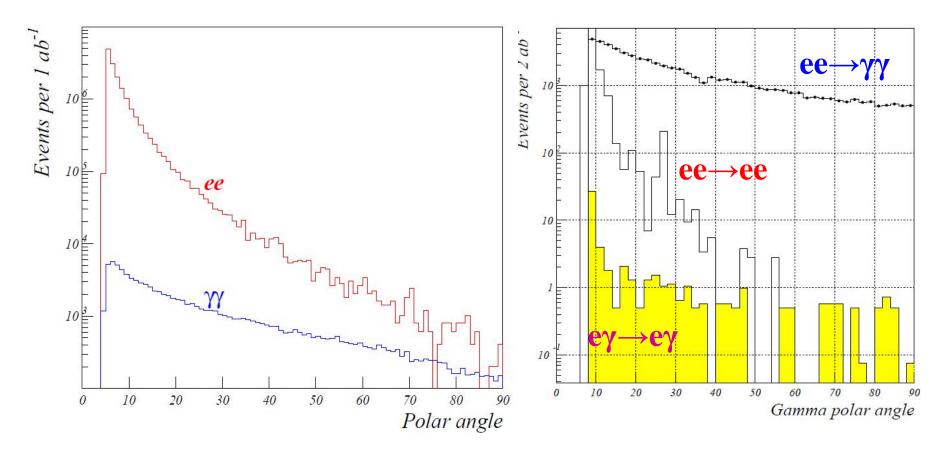
Full simulation study for CLIC


- Simulation of CLIC beams
- Full simulation for two detector options: CLIC_ILD and CLIC_SiD
 - Similar results for the two options
 - Results presented here for CLIC_SiD
 - No result yet for the new model CLICdet
- Assumed 2000 fb⁻¹ at 3 TeV
 - Higher the energy, larger the New Physics reach

Event selection


- Two photons, the most energetic above 1300 GeV, another above 1200 GeV
- No third photon above 50 GeV
- Back-to-back photons: ±10° in θ, ±10° in φ
- Track veto: no tracks with |p|>300 GeV/c within 20° from a photon candidate

Spectrum of collision energy


- Selection cuts ensure nearly nominal collision energy
- Average \sqrt{s} : 2878 GeV

Signal versus ee→ee background

Before selection

After selection

Igor Boyko

Sensitivity to New Physics

- Interpret results in terms of 4 different New Physics models
- All results assuming 2000 fb⁻¹ at 3 TeV, CLIC_SiD detector full simulation
- Systematic errors:
 - Polar angle misalignment by 1 mrad
 - Mistake in residual background level by 15%
- Luminosity precision: considered 3 scenarios
 - "Pessimistic", $\sigma(L)/L=1\%$
 - "Realistic", $\sigma(L)/L=0.5\%$
 - "Optimistic", $\sigma(L)/L=0.2\%$

QED cut-off model

- Everything according to Standard Model, but electron in not point-like
- Charge distribution is exponential, with slope parameter Λ_{QED}
- LEP combined limit: $\Lambda_+>431$ GeV, $\Lambda_->339$ GeV

$$\left(\frac{d\sigma}{d\Omega}\right)_{\Lambda_{\pm}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Born}} \pm \frac{\alpha^2 s}{2\Lambda_{\pm}^4} (1 + \cos^2\theta)$$

QED cut-off: Fit to $1/\Lambda^4_{QED}$

σ(Lumi)	0.2%	0.5%	1%
σ (stat) 10 ⁻⁴ TeV ⁻⁴	2.70	3.13	3.65
σ (syst) Bckg ±15%	0.35	0.36	1.35
σ (syst) θ ±1mrad	0.72	0.45	0.41
Λ _{QED} (95%CL)	6.52 TeV	6.33 TeV	6.01 TeV

Limit on Λ_{QED} equivalent to electron size R<3.1x10⁻¹⁸cm

LCWS-2017

Igor Boyko

eevy contact interaction

- Contact interaction can be introduced with dimension-7 lagrangian, effective scale Λ'
- Adds angular-independent cross-section term
- Combined LEP limit: Λ'>880 GeV

$$\mathscr{L}_{7} = \frac{1}{4} \bar{\psi} (g_{7}^{S} F^{\mu\nu} + i g_{7}^{P} \gamma_{5} \tilde{F}^{\mu\nu}) \psi F_{\mu\nu}$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\Lambda'} = \left(\frac{d\sigma}{d\Omega}\right)_{Born} + \frac{s^{2}}{16} \frac{1}{\Lambda'^{6}}$$

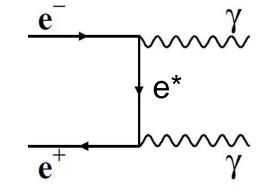
Contact interaction: Fit to $(1/\Lambda')^6$

σ(Lumi)	0.2%	0.5%	1%
σ (stat) 10 ⁻⁶ TeV ⁻⁶	0.0050	0.0068	0.0108
σ (syst) Bckg ±15%	0.0032	0.0030	0.0021
σ (syst) θ ±1mrad	0.0025	0.0023	0.0024
Λ' (95%CL)	20.7 TeV	20.1 TeV	18.9 TeV

Gravity in extra dimensions

- Plank mass (M_s) is in TeV scale. For us it *appears* to be much larger because we *think* that space-time is 4D.
- In fact, there are compactified extra dimensions. ee→γγ spectrum is distorted by exchange of gravitons propagating in the extra dimensions
- LEP combined limit: M_s >868 GeV, M_s >1108 GeV (for $\lambda = \pm 1$)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm M_s} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Born} - \alpha s \; \frac{\lambda}{M_s^4} \; (1 + \cos^2\theta) + \frac{s^3}{8\pi} \; \frac{\lambda^2}{M_s^8} \; (1 - \cos^4\theta)$$

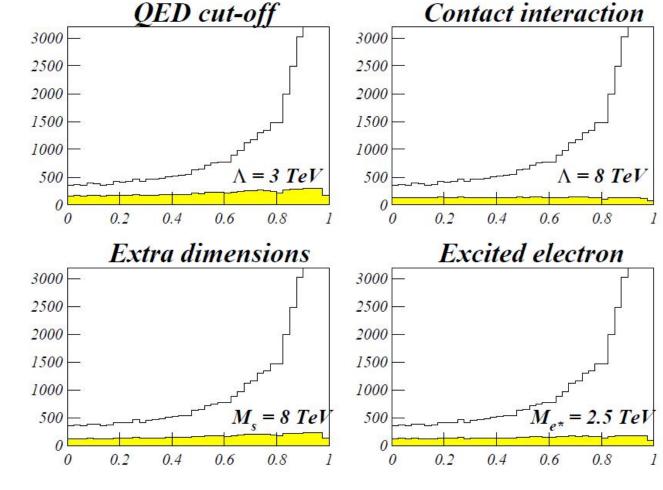

LCWS-2017

Extra dimensions: Fit to λ/M_s^4

σ(Lumi)	0.2%	0.5%	1%
σ (stat) 10 ⁻⁴ TeV ⁻⁴	0.0683	0.0783	0.0889
σ (syst) Bckg ±15%	0.0098	0.0067	0.0303
σ (syst) θ ±1mrad	0.0216	0.0124	0.0034
$M_s/\lambda^{\frac{1}{4}}$	16.3	15.9	15.3
(95%CL)	TeV	TeV	TeV

Excited electron

- e* can be directly discovered at CLIC, if kinematically allowed
- Even if unreachable, it would distort ee→γγ spectrum via tchannel exchange



• LEP combined limit: $M_{e^*}>256GeV$ (assuming $M_{e^*}=\Lambda$) $f_{e} = \frac{e}{\Psi} = \frac{1}{\Psi} + \sigma^{\mu\nu}(1+\gamma^5) \Psi F$

Excited electron: Fit to $1/M_{e^*}^4 = 1/\Lambda^4$

σ(Lumi)	0.2%	0.5%	1%
σ (stat) 10 ⁻⁴ TeV ⁻⁴	7.85	9.06	10.35
σ (syst) Bckg ±15%	0.29	0.33	1.70
σ (syst) θ ±1mrad	1.28	0.38	0.44
M _{e*}	5.03	4.87	4.70
(95%CL)	TeV	TeV	TeV

BSM contributions to cos0 spectrum

LCWS-2017

Igor Boyko

Summary

- Deviations from QED should be looked at highest possible e⁺e⁻ energies
- CLIC will be an ideal place to look for such effects
- We estimated CLIC sensitivity for 4 BSM models
 - QED cut-off 6-6.3 TeV (LEP 400 GeV)
 - Contact interaction 19-21 TeV (LEP 800 GeV)
 - Extra dimensions 15-16 TeV (LEP 1000 GeV)
 - Excited electron 4.7-5.0 TeV (LEP 250 GeV)
- With 2 ab⁻¹ results still not systematics-limited