

Database and application design

20/11/2017 Database and application design 2

Katarzyna Dziedziniewicz-Wojcik

IT-DB

Agenda

• Database design

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 3

Agenda

• Database design

• Schema design

• Integrity constraints

• Best practices

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 4

“It’s a Database, not a Data Dump”

• Database is an integrated collection of

logically related data

• You need a database to:

• Store data…

• … and be able to efficiently process it in order to

retrieve/produce information!

20/11/2017 Database and application design 5

Design goals
 Store data and…

 Avoid unnecessary redundancy
 Storage is not unlimited

 Redundant data is not logically related

 Retrieve information easily and efficiently
 Easily – does not necessarily mean with a simple query

 Efficiently – using built-in database features

 Be scalable for data and interfaces
 Performance is in the design!

 Will your design scale to predicted workload (thousands of
connections)?

20/11/2017 Database and application design 6

Conceptual design
 Process of constructing a model of the information used in

an enterprise

 Is a conceptual representation of the data structures

 Is independent of all physical considerations

• Input: database requirements

• Output: conceptual model

20/11/2017 Database and application design 7

• The Entity-Relationship model (ER) is most
common conceptual model for database design:
 Describes the data in a system and how data is related

 Describes data as entities, attributes, and relationships

 Can be easily translated into many database
implementations

 Oracle SQL Developer Data Modeler does it for free

20/11/2017 Database and application design 8

Conceptual design in practice

20/11/2017 Database and application design 9

Let’s get real
• Assume you have to design a database for a

university/college and want to handle
enrollments

• You have the courses taught, each course has
a title and a regular timeslot each week

• Each course has many students who study the
course

• Each student attends many courses

20/11/2017 Database and application design 10

Modeling relationships - example
• Many – to – many (M:N)

• A student can be registered on any number of courses (including

zero)

• A course can be taken by any number of students (including

zero)

• Logical model – normalized form:

20/11/2017 Database and application design 11

Student

student_id

* last_name

* first name

o date_of_birth

Course

course_id

* course_name

* start_date

* end_date

Course_enrollment

student_id

course_id

* enrollment_date

Normalization
• Objective – validate and improve a logical design, satisfying

constraints and avoiding duplication of data

• Normalization is a process of decomposing relations with
anomalies to produce smaller well-structured tables:
• First Normal Form (1NF)

• Second Normal Form (2NF)

• Third Normal Form (3NF)

• Other: Boyce/Codd Normal Form (BCNF), 4NF ...

• Usually the 3NF is appropriate for real-world applications

20/11/2017 Database and application design 12

First Normal Form (1NF)

• All table attributes values must be atomic

(multi-values not allowed)

• Eliminate duplicative columns from the same

table

• Create separate tables for each group of related

data and identify each row with a unique column

(the primary key)

20/11/2017 Database and application design 13

14

CNAME SNAME

Calculus Smith, Burton

Physics 1 Simpson, Thompson

CNAME SNAME1 SNAME2

Calculus Smith Burton

CID SID

123 456

123 497

SID Name Surname

456 Alan Smith

497 Thomas Burton

X
20/11/2017 Database and application design

CID CNAME

123 Calculus

124 Physics 1

Second Normal Form (2NF)

• 1NF

• No attribute is dependent on only part of the primary

key, they must be dependent on the entire primary key

• Example:

• partial dependency – an attribute is dependent on part of the

primary key, but not all of the primary key

20/11/2017 Database and application design 15
Violation of the 2NF!

Student(SID, CID, SNAME, CNAME, GRADE)

SID SNAME CID CNAME GRADE

456 Smith 123 Calculus A

456 Smith 221 Physics B

456 Smith 222 Database Management B

497 Burton 123 Calculus A

497 Burton 127 OO Programming A

497 Burton 222 Database Management B

Normalization to 2NF
• For each attribute in the primary key that is

involved in partial dependency – create a new table

• All attributes that are partially dependent on that

attribute should be moved to the new table

16

Student(SID, CID, SNAME, CNAME, GRADE)

Student(SID, SNAME) Class(CID, CNAME)

20/11/2017 Database and application design

Third Normal Form (3NF)

• 2NF

• No transitive dependency for non-key attributes

• Any non-key attribute cannot be dependent on

another non-key attribute

17

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

Violation of the 3NF!

20/11/2017 Database and application design

Normalization to 3NF

• For each non-key attribute that is transitive

dependent on a non-key attribute, create a

table

18

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

Class(CID, CNAME, CLEVEL, ROOMID)

Room(ROOMID, CAPACITY)

20/11/2017 Database and application design

Agenda

• Database design

• Schema design

• Integrity constraints

• Best practices

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 19

Primary keys
• Role: Enforce entity integrity

• Attribute or set of attributes that uniquely identifies an entity
instance

• Every entity in the data model must have a primary key that:
• is a non-null value

• is unique

• it does not change or become null during the table life time (time
invariant)

• Use the shortest possible types for PK columns

2020/11/2017 Database and application design

Foreign keys
• Role: maintains consistency between two tables in a relation

• The foreign key must have a value that matches a primary
key in the other table or be null

• An attribute in a table that serves as primary key of another
table

• Use foreign keys!
• foreign keys with indexes on them improve performance of

selects, but also inserts, updates and deletes

• indexes on foreign keys prevent locks on child tables

2120/11/2017 Database and application design

Not the best approach

23 April 2013 Introduction to Oracle 22

Integrity Checks
• Use DB enforced integrity checks

• Blindingly fast

• Foolproof

• Increases system self-documentation

• NOT NULL

• Client side integrity checks
• Not a substitute for server side checks

• Better user experience

• Pre-validation reduces resource usage on server

2320/11/2017 Database and application design

Agenda

• Database design

• Schema design

• Integrity constraints

• Best practices

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 24

Schema design
• Column types and sizing columns

• VARCHAR2(4000) is not the universal column type
• high memory usage on the client

• it makes data dump, not database

• use proper data types, it:
• Increases integrity

• Increases performance

• Might decrease storage needs (IO is time)

• Put “nullable” columns at the end of the table

2520/11/2017 Database and application design

Schema design
• Estimate future workload

• Read intensive?

• Write intensive?

• Transaction intensive?

• Mixture? – estimate the amount of each type

• Design indexes knowing the workload
• What will users query for?

• Minimize number of indexes using proper column order in the indexes – use multicolumn
indexes

• Create views, stored procedures (PL/SQL) to retrieve the data in the most efficient way –
easier to tune in a running system

• What is the update/insert/delete pattern?
• Create indexes on foreign keys

2620/11/2017 Database and application design

Indexes
• Less known but worth mentioning:

• Local indexes vs global indexes
• Local indexes

• Stay valid through partition exchange

• If not prefixed with partition key columns each partition must be searched

• Global indexes
• Can be ranged partitioned differently than table

• Can enforce uniqueness

• Range/interval partitioning only

• Function based index/virtual column index
• Built on function or complex calculation

• create index users_Idx on users (UPPER(name));

• Speeds up case insensitive searches

- select * from users where UPPER(name)=‘SMITH’;

2720/11/2017 Database and application design

Partitioning

• Benefits:
• Administration

• Moving smaller objects if necessary, easier deletion of
history, easier online operations on data

• Performance

• Use of local and global indexes, less contention in RAC
environment

• Partition pruning – scanning only needed partitions

2820/11/2017 Database and application design

Interval partitioning

• Automatic partition creation

• Only 1st partition created manually

• Based on dates and number

• Extension of range partitioning

• Migration to intervals is advised

29

… 201720152014

Table jobs with execution date

20/11/2017 Database and application design

List partitioning

• Based on a discrete value

• Check constraint on the key column is advisable

• In Oracle 11g requires manual partition creation

• Automatic creation in 12c

30

… SMBEPBE

Table employee with department

20/11/2017 Database and application design

Existing tables vs partitoning

• In 12c simple and online

• alter table …modify partition by range..

• In 11g

• Still possible

• Using dbms_redefinition set of commands

• Last step requires application downtime

• Contact your DBA 

3120/11/2017 Database and application design

IOTs
• Suppose we have an application retrieving documents uploaded

by given users, list’s content and size are dynamic
• In traditional table rows will be scattered, read index then data block

• If the table was created as IOT:
• create table myIOT (…) organization index;

• Reads index blocks only

• Also useful in:
• Association tables in many to many relationships

• Logging applications (parameter_id and timestamp as PK)

3220/11/2017 Database and application design

Compression
• Table compression

• Reduces data size by 2 to 10 times

• Simple compression
• Only for direct inserts (archival, read only data)

• create table as select (…) compress;

• Insert append

• Advanced compression
• Works with read/write workloads

• Index compression
• Simple, can vastly improve query performance

• Low cardinality columns should only be compressed

• Compression depends on selectivity
• create index employe_Idx on employees (deptID, groupId, supervisorID) (…) compress 1;

3320/11/2017 Database and application design

Views

• Use views to simplify queries

• Don’t build up multiple view layers

• Oracle optimizer might come up with suboptimal

execution plan

3420/11/2017 Database and application design

Materialized views
• Materialized views are a way to

• Snapshot precomputed and aggregated data

• Improve performance

• Real-life example
• Web page presenting a report

• Multiple users accessing web page

• Hundreds of request from the web server per second

… try a materialized view to store that report

• RESULT_CACHE hint
• Invalidated after DML on underlying objects

• Refresh your views only when needed
• ‘on commit’ refreshes are very expensive

3520/11/2017 Database and application design

Denormalization
• Denormalized DB and Non-normalized DB are not the

same thing

• Reasons against
• Acceptable performance of normalized system

• Unacceptable performance of denormalized system

• Lower reliability

• Reasons for
• No calculated values

• Non-reproducible calculations

• Multiple joins

36

Function based columns

Materialized views

20/11/2017 Database and application design

Denormalization
• 1st step: Talk to your DBAs

• Main issues
• Keeping redundant data correct

• Identifying reasonable patterns

• Correct order of operations

• Patterns
• FETCH

• Copy item’s price from ITEMS to ORDER_LINES

• AGGREGATE
• Put the order_price in ORDERS

• EXTEND
• Keep extended_price (price*quantity) in ORDER_LINES

• http://database-programmer.blogspot.com/2008/10/argument-for-
denormalization.html

3720/11/2017 Database and application design

Agenda

• Database design

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 38

PL/SQL – tips & tricks
• Query parse types

• Hard parse
• Optimizing execution plan of a query

• High CPU consumption

• Soft parse
• Reusing previous execution plan

• Low CPU consumption, faster execution

• Reduce the number of hard parses

• Put top executed queries in PL/SQL packages/procedures/functions

• Put most common queries in views

• It also makes easier to tune bad queries in case of problems

3920/11/2017 Database and application design

PL/SQL – tips & tricks

• Reduce the number of hard parses

• Use bind variables

• Instead of:

select ... from users where user_id=12345

• Use:

select ... from users where user_id=:uid

• Using bind variables protects from sql injection

4020/11/2017 Database and application design

PL/SQL – tips & tricks
• Beware of bind variables peeking

• Optimizer peeks at bind variable values before doing hard parse of a
query, but only for the first time

• Suppose we have huge table with jobs, most of them already processed
(processed_flag = 'Y'):

• using bind variable on processed_flag may change query behavior, depending on
which query is processed first after DB startup (with bind variable set to 'Y' or 'N')

• On a low cardinality column which distribution can significantly vary in time
– do not use bind variable only if doing so will result in just a few different
queries, otherwise use bind variables

4120/11/2017 Database and application design

PL/SQL – tips & tricks
• Use PL/SQL as an API

• Provide abstraction layer

• Make tuning easier

• Restrict functionality

• Reduce the number of hard parses

• Prepare once, execute many

• Use prepared statements

• Dynamic SQL executed thousands of times – consider dbms_sql
package instead of execute immediate

• Use bulk inserts whenever possible

4220/11/2017 Database and application design

PL/SQL – tips & tricks
• Stored procedures vs materialized views

• Use SPs when refresh on each execution is needed

• Use fully qualified names
• Instead of:

select ... from table1 ...

• Use:

select ... from schema_name.table1 ...

• Known bugs – execution in a wrong schema

4320/11/2017 Database and application design

Agenda

• Database design

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 44

Writing robust applications
• Use different level of account privileges

• Application owner (full DDL and DML)

• Writer account (grant read/write rights to specific
objects)

• Reader account (grant read rights)

• Directly grant object rights or use roles
• Caution – roles are switched off in PL/SQL code, one

must set them explicitly.

4520/11/2017 Database and application design

Writing robust applications
• Use connection pooling

• Connect once and keep a specific number of
connections to be used by several client threads
(pconnect in OCI)

• Test if the connection is still open before using it,
otherwise try reconnecting

• Log connection errors, it may help DBAs to resolve
any potential connection issues

4620/11/2017 Database and application design

Writing robust applications
• Error logging and retrying

• Trap errors

• Check transactions for errors, try to repeat failed
transactions, log any errors (including SQL that
failed and application status – it might help to
resolve the issue)

• Instrumentalization
• Have ability to generate trace at will

• More information in Performance Tuning talks

4720/11/2017 Database and application design

Writing robust applications
• Design, test, design, test ...

• Try to prepare a testbed system – workload generators, etc.

• Do not test changes on a live production system

• IT-DB provides test and integration system (preproduction)
with the same Oracle setup as on production clusters
• contact Oracle.Support to obtain accounts and ask for

imports/exports

4820/11/2017 Database and application design

Questions?

4920/11/2017 Database and application design

