

Database and application design

20/11/2017 Database and application design 2

Katarzyna Dziedziniewicz-Wojcik

IT-DB

Agenda

• Database design

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 3

Agenda

• Database design

• Schema design

• Integrity constraints

• Best practices

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 4

“It’s a Database, not a Data Dump”

• Database is an integrated collection of

logically related data

• You need a database to:

• Store data…

• … and be able to efficiently process it in order to

retrieve/produce information!

20/11/2017 Database and application design 5

Design goals
 Store data and…

 Avoid unnecessary redundancy
 Storage is not unlimited

 Redundant data is not logically related

 Retrieve information easily and efficiently
 Easily – does not necessarily mean with a simple query

 Efficiently – using built-in database features

 Be scalable for data and interfaces
 Performance is in the design!

 Will your design scale to predicted workload (thousands of
connections)?

20/11/2017 Database and application design 6

Conceptual design
 Process of constructing a model of the information used in

an enterprise

 Is a conceptual representation of the data structures

 Is independent of all physical considerations

• Input: database requirements

• Output: conceptual model

20/11/2017 Database and application design 7

• The Entity-Relationship model (ER) is most
common conceptual model for database design:
 Describes the data in a system and how data is related

 Describes data as entities, attributes, and relationships

 Can be easily translated into many database
implementations

 Oracle SQL Developer Data Modeler does it for free

20/11/2017 Database and application design 8

Conceptual design in practice

20/11/2017 Database and application design 9

Let’s get real
• Assume you have to design a database for a

university/college and want to handle
enrollments

• You have the courses taught, each course has
a title and a regular timeslot each week

• Each course has many students who study the
course

• Each student attends many courses

20/11/2017 Database and application design 10

Modeling relationships - example
• Many – to – many (M:N)

• A student can be registered on any number of courses (including

zero)

• A course can be taken by any number of students (including

zero)

• Logical model – normalized form:

20/11/2017 Database and application design 11

Student

student_id

* last_name

* first name

o date_of_birth

Course

course_id

* course_name

* start_date

* end_date

Course_enrollment

student_id

course_id

* enrollment_date

Normalization
• Objective – validate and improve a logical design, satisfying

constraints and avoiding duplication of data

• Normalization is a process of decomposing relations with
anomalies to produce smaller well-structured tables:
• First Normal Form (1NF)

• Second Normal Form (2NF)

• Third Normal Form (3NF)

• Other: Boyce/Codd Normal Form (BCNF), 4NF ...

• Usually the 3NF is appropriate for real-world applications

20/11/2017 Database and application design 12

First Normal Form (1NF)

• All table attributes values must be atomic

(multi-values not allowed)

• Eliminate duplicative columns from the same

table

• Create separate tables for each group of related

data and identify each row with a unique column

(the primary key)

20/11/2017 Database and application design 13

14

CNAME SNAME

Calculus Smith, Burton

Physics 1 Simpson, Thompson

CNAME SNAME1 SNAME2

Calculus Smith Burton

CID SID

123 456

123 497

SID Name Surname

456 Alan Smith

497 Thomas Burton

X
20/11/2017 Database and application design

CID CNAME

123 Calculus

124 Physics 1

Second Normal Form (2NF)

• 1NF

• No attribute is dependent on only part of the primary

key, they must be dependent on the entire primary key

• Example:

• partial dependency – an attribute is dependent on part of the

primary key, but not all of the primary key

20/11/2017 Database and application design 15
Violation of the 2NF!

Student(SID, CID, SNAME, CNAME, GRADE)

SID SNAME CID CNAME GRADE

456 Smith 123 Calculus A

456 Smith 221 Physics B

456 Smith 222 Database Management B

497 Burton 123 Calculus A

497 Burton 127 OO Programming A

497 Burton 222 Database Management B

Normalization to 2NF
• For each attribute in the primary key that is

involved in partial dependency – create a new table

• All attributes that are partially dependent on that

attribute should be moved to the new table

16

Student(SID, CID, SNAME, CNAME, GRADE)

Student(SID, SNAME) Class(CID, CNAME)

20/11/2017 Database and application design

Third Normal Form (3NF)

• 2NF

• No transitive dependency for non-key attributes

• Any non-key attribute cannot be dependent on

another non-key attribute

17

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

Violation of the 3NF!

20/11/2017 Database and application design

Normalization to 3NF

• For each non-key attribute that is transitive

dependent on a non-key attribute, create a

table

18

Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

Class(CID, CNAME, CLEVEL, ROOMID)

Room(ROOMID, CAPACITY)

20/11/2017 Database and application design

Agenda

• Database design

• Schema design

• Integrity constraints

• Best practices

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 19

Primary keys
• Role: Enforce entity integrity

• Attribute or set of attributes that uniquely identifies an entity
instance

• Every entity in the data model must have a primary key that:
• is a non-null value

• is unique

• it does not change or become null during the table life time (time
invariant)

• Use the shortest possible types for PK columns

2020/11/2017 Database and application design

Foreign keys
• Role: maintains consistency between two tables in a relation

• The foreign key must have a value that matches a primary
key in the other table or be null

• An attribute in a table that serves as primary key of another
table

• Use foreign keys!
• foreign keys with indexes on them improve performance of

selects, but also inserts, updates and deletes

• indexes on foreign keys prevent locks on child tables

2120/11/2017 Database and application design

Not the best approach

23 April 2013 Introduction to Oracle 22

Integrity Checks
• Use DB enforced integrity checks

• Blindingly fast

• Foolproof

• Increases system self-documentation

• NOT NULL

• Client side integrity checks
• Not a substitute for server side checks

• Better user experience

• Pre-validation reduces resource usage on server

2320/11/2017 Database and application design

Agenda

• Database design

• Schema design

• Integrity constraints

• Best practices

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 24

Schema design
• Column types and sizing columns

• VARCHAR2(4000) is not the universal column type
• high memory usage on the client

• it makes data dump, not database

• use proper data types, it:
• Increases integrity

• Increases performance

• Might decrease storage needs (IO is time)

• Put “nullable” columns at the end of the table

2520/11/2017 Database and application design

Schema design
• Estimate future workload

• Read intensive?

• Write intensive?

• Transaction intensive?

• Mixture? – estimate the amount of each type

• Design indexes knowing the workload
• What will users query for?

• Minimize number of indexes using proper column order in the indexes – use multicolumn
indexes

• Create views, stored procedures (PL/SQL) to retrieve the data in the most efficient way –
easier to tune in a running system

• What is the update/insert/delete pattern?
• Create indexes on foreign keys

2620/11/2017 Database and application design

Indexes
• Less known but worth mentioning:

• Local indexes vs global indexes
• Local indexes

• Stay valid through partition exchange

• If not prefixed with partition key columns each partition must be searched

• Global indexes
• Can be ranged partitioned differently than table

• Can enforce uniqueness

• Range/interval partitioning only

• Function based index/virtual column index
• Built on function or complex calculation

• create index users_Idx on users (UPPER(name));

• Speeds up case insensitive searches

- select * from users where UPPER(name)=‘SMITH’;

2720/11/2017 Database and application design

Partitioning

• Benefits:
• Administration

• Moving smaller objects if necessary, easier deletion of
history, easier online operations on data

• Performance

• Use of local and global indexes, less contention in RAC
environment

• Partition pruning – scanning only needed partitions

2820/11/2017 Database and application design

Interval partitioning

• Automatic partition creation

• Only 1st partition created manually

• Based on dates and number

• Extension of range partitioning

• Migration to intervals is advised

29

… 201720152014

Table jobs with execution date

20/11/2017 Database and application design

List partitioning

• Based on a discrete value

• Check constraint on the key column is advisable

• In Oracle 11g requires manual partition creation

• Automatic creation in 12c

30

… SMBEPBE

Table employee with department

20/11/2017 Database and application design

Existing tables vs partitoning

• In 12c simple and online

• alter table …modify partition by range..

• In 11g

• Still possible

• Using dbms_redefinition set of commands

• Last step requires application downtime

• Contact your DBA

3120/11/2017 Database and application design

IOTs
• Suppose we have an application retrieving documents uploaded

by given users, list’s content and size are dynamic
• In traditional table rows will be scattered, read index then data block

• If the table was created as IOT:
• create table myIOT (…) organization index;

• Reads index blocks only

• Also useful in:
• Association tables in many to many relationships

• Logging applications (parameter_id and timestamp as PK)

3220/11/2017 Database and application design

Compression
• Table compression

• Reduces data size by 2 to 10 times

• Simple compression
• Only for direct inserts (archival, read only data)

• create table as select (…) compress;

• Insert append

• Advanced compression
• Works with read/write workloads

• Index compression
• Simple, can vastly improve query performance

• Low cardinality columns should only be compressed

• Compression depends on selectivity
• create index employe_Idx on employees (deptID, groupId, supervisorID) (…) compress 1;

3320/11/2017 Database and application design

Views

• Use views to simplify queries

• Don’t build up multiple view layers

• Oracle optimizer might come up with suboptimal

execution plan

3420/11/2017 Database and application design

Materialized views
• Materialized views are a way to

• Snapshot precomputed and aggregated data

• Improve performance

• Real-life example
• Web page presenting a report

• Multiple users accessing web page

• Hundreds of request from the web server per second

… try a materialized view to store that report

• RESULT_CACHE hint
• Invalidated after DML on underlying objects

• Refresh your views only when needed
• ‘on commit’ refreshes are very expensive

3520/11/2017 Database and application design

Denormalization
• Denormalized DB and Non-normalized DB are not the

same thing

• Reasons against
• Acceptable performance of normalized system

• Unacceptable performance of denormalized system

• Lower reliability

• Reasons for
• No calculated values

• Non-reproducible calculations

• Multiple joins

36

Function based columns

Materialized views

20/11/2017 Database and application design

Denormalization
• 1st step: Talk to your DBAs

• Main issues
• Keeping redundant data correct

• Identifying reasonable patterns

• Correct order of operations

• Patterns
• FETCH

• Copy item’s price from ITEMS to ORDER_LINES

• AGGREGATE
• Put the order_price in ORDERS

• EXTEND
• Keep extended_price (price*quantity) in ORDER_LINES

• http://database-programmer.blogspot.com/2008/10/argument-for-
denormalization.html

3720/11/2017 Database and application design

Agenda

• Database design

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 38

PL/SQL – tips & tricks
• Query parse types

• Hard parse
• Optimizing execution plan of a query

• High CPU consumption

• Soft parse
• Reusing previous execution plan

• Low CPU consumption, faster execution

• Reduce the number of hard parses

• Put top executed queries in PL/SQL packages/procedures/functions

• Put most common queries in views

• It also makes easier to tune bad queries in case of problems

3920/11/2017 Database and application design

PL/SQL – tips & tricks

• Reduce the number of hard parses

• Use bind variables

• Instead of:

select ... from users where user_id=12345

• Use:

select ... from users where user_id=:uid

• Using bind variables protects from sql injection

4020/11/2017 Database and application design

PL/SQL – tips & tricks
• Beware of bind variables peeking

• Optimizer peeks at bind variable values before doing hard parse of a
query, but only for the first time

• Suppose we have huge table with jobs, most of them already processed
(processed_flag = 'Y'):

• using bind variable on processed_flag may change query behavior, depending on
which query is processed first after DB startup (with bind variable set to 'Y' or 'N')

• On a low cardinality column which distribution can significantly vary in time
– do not use bind variable only if doing so will result in just a few different
queries, otherwise use bind variables

4120/11/2017 Database and application design

PL/SQL – tips & tricks
• Use PL/SQL as an API

• Provide abstraction layer

• Make tuning easier

• Restrict functionality

• Reduce the number of hard parses

• Prepare once, execute many

• Use prepared statements

• Dynamic SQL executed thousands of times – consider dbms_sql
package instead of execute immediate

• Use bulk inserts whenever possible

4220/11/2017 Database and application design

PL/SQL – tips & tricks
• Stored procedures vs materialized views

• Use SPs when refresh on each execution is needed

• Use fully qualified names
• Instead of:

select ... from table1 ...

• Use:

select ... from schema_name.table1 ...

• Known bugs – execution in a wrong schema

4320/11/2017 Database and application design

Agenda

• Database design

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 44

Writing robust applications
• Use different level of account privileges

• Application owner (full DDL and DML)

• Writer account (grant read/write rights to specific
objects)

• Reader account (grant read rights)

• Directly grant object rights or use roles
• Caution – roles are switched off in PL/SQL code, one

must set them explicitly.

4520/11/2017 Database and application design

Writing robust applications
• Use connection pooling

• Connect once and keep a specific number of
connections to be used by several client threads
(pconnect in OCI)

• Test if the connection is still open before using it,
otherwise try reconnecting

• Log connection errors, it may help DBAs to resolve
any potential connection issues

4620/11/2017 Database and application design

Writing robust applications
• Error logging and retrying

• Trap errors

• Check transactions for errors, try to repeat failed
transactions, log any errors (including SQL that
failed and application status – it might help to
resolve the issue)

• Instrumentalization
• Have ability to generate trace at will

• More information in Performance Tuning talks

4720/11/2017 Database and application design

Writing robust applications
• Design, test, design, test ...

• Try to prepare a testbed system – workload generators, etc.

• Do not test changes on a live production system

• IT-DB provides test and integration system (preproduction)
with the same Oracle setup as on production clusters
• contact Oracle.Support to obtain accounts and ask for

imports/exports

4820/11/2017 Database and application design

Questions?

4920/11/2017 Database and application design

