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“It’s a Database, not a Data Dump”

• Database is an integrated collection of 

logically related data

• You need a database to:

• Store data…

• … and be able to efficiently process it in order to 

retrieve/produce information!
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Design goals
 Store data and…

 Avoid unnecessary redundancy
 Storage is not unlimited

 Redundant data is not logically related

 Retrieve information easily and efficiently
 Easily – does not necessarily mean with a simple query

 Efficiently – using built-in database features

 Be scalable for data and interfaces
 Performance is in the design!

 Will your design scale to predicted workload (thousands of 
connections)?
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Conceptual design
 Process of constructing a model of the information used in 

an enterprise

 Is a conceptual representation of the data structures

 Is independent of all physical considerations

• Input: database requirements

• Output: conceptual model
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• The Entity-Relationship model (ER) is most 
common conceptual model for database design:
 Describes the data in a system and how data is related

 Describes data as entities, attributes, and relationships

 Can be easily translated into many database 
implementations

 Oracle SQL Developer Data Modeler does it for free
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Conceptual design in practice
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Let’s get real
• Assume you have to design a database for a 

university/college and want to handle 
enrollments

• You have the courses taught, each course has 
a title and a regular timeslot each week

• Each course has many students who study the 
course

• Each student attends many courses
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Modeling relationships - example
• Many – to – many (M:N)

• A student can be registered on any number of courses (including 

zero)

• A course can be taken by any number of students (including 

zero)

• Logical model – normalized form:
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Student

# student_id

* last_name

* first name

o date_of_birth

Course

# course_id

* course_name

* start_date

* end_date

Course_enrollment

# student_id

# course_id

* enrollment_date



Normalization
• Objective – validate and improve a logical design, satisfying 

constraints and avoiding duplication of data

• Normalization is a process of decomposing relations with 
anomalies to produce smaller well-structured tables:
• First Normal Form (1NF)

• Second Normal Form (2NF)

• Third Normal Form (3NF)

• Other: Boyce/Codd Normal Form (BCNF), 4NF ...

• Usually the 3NF is appropriate for real-world applications
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First Normal Form (1NF)

• All table attributes values must be atomic 

(multi-values not allowed)

• Eliminate duplicative columns from the same 

table

• Create separate tables for each group of related 

data and identify each row with a unique column 

(the primary key)
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CNAME SNAME

Calculus Smith, Burton

Physics 1 Simpson, Thompson

CNAME SNAME1 SNAME2

Calculus Smith Burton

CID SID

123 456

123 497

SID Name Surname

456 Alan Smith

497 Thomas Burton

X
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CID CNAME

123 Calculus

124 Physics 1



Second Normal Form (2NF)

• 1NF

• No attribute is dependent on only part of the primary 

key, they must be dependent on the entire primary key

• Example:

• partial dependency – an attribute is dependent on part of the 

primary key, but not all of the primary key
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Violation of the 2NF!

Student(SID, CID, SNAME, CNAME, GRADE)

SID SNAME CID CNAME GRADE

456 Smith 123 Calculus A

456 Smith 221 Physics B

456 Smith 222 Database Management B

497 Burton 123 Calculus A

497 Burton 127 OO Programming A

497 Burton 222 Database Management B



Normalization to 2NF
• For each attribute in the primary key that is 

involved in partial dependency – create a new table

• All attributes that are partially dependent on that 

attribute should be moved to the new table
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Student(SID, CID, SNAME, CNAME, GRADE)

Student(SID, SNAME) Class(CID, CNAME)
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Third Normal Form (3NF)

• 2NF

• No transitive dependency for non-key attributes

• Any non-key attribute cannot be dependent on 

another non-key attribute
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Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

Violation of the 3NF!
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Normalization to 3NF

• For each non-key attribute that is transitive 

dependent on a non-key attribute, create a 

table
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Class(CID, CNAME, CLEVEL, ROOM, CAPACITY)

Class(CID, CNAME, CLEVEL, ROOMID)

Room(ROOMID, CAPACITY)
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Primary keys
• Role: Enforce entity integrity

• Attribute or set of attributes that uniquely identifies an entity 
instance

• Every entity in the data model must have a primary key that:
• is a non-null value

• is unique 

• it does not change or become null during the table life time (time 
invariant)

• Use the shortest possible types for PK columns
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Foreign keys
• Role: maintains consistency between two tables in a relation

• The foreign key must have a value that matches a primary 
key in the other table or be null

• An attribute in a table that serves as primary key of another 
table

• Use foreign keys!
• foreign keys with indexes on them improve performance of 

selects, but also inserts, updates and deletes

• indexes on foreign keys prevent locks on child tables
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Not the best approach
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Integrity Checks
• Use DB enforced integrity checks

• Blindingly fast

• Foolproof

• Increases system self-documentation 

• NOT NULL

• Client side integrity checks
• Not a substitute for server side checks

• Better user experience

• Pre-validation reduces resource usage on server
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Schema design
• Column types and sizing columns

• VARCHAR2(4000) is not the universal column type
• high memory usage on the client

• it makes data dump, not database

• use proper data types, it:
• Increases integrity

• Increases performance

• Might decrease storage needs (IO is time)

• Put “nullable” columns at the end of the table
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Schema design
• Estimate future workload

• Read intensive?

• Write intensive?

• Transaction intensive?

• Mixture? – estimate the amount of each type

• Design indexes knowing the workload
• What will users query for?

• Minimize number of indexes using proper column order in the indexes – use multicolumn
indexes

• Create views, stored procedures (PL/SQL) to retrieve the data in the most efficient way –
easier to tune in a running system

• What is the update/insert/delete pattern?
• Create indexes on foreign keys
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Indexes
• Less known but worth mentioning:

• Local indexes vs global indexes
• Local indexes 

• Stay valid through partition exchange

• If not prefixed with partition key columns each partition must be searched

• Global indexes
• Can be ranged partitioned differently than table

• Can enforce uniqueness 

• Range/interval partitioning only

• Function based index/virtual column index
• Built on function or complex calculation 

• create index users_Idx on users (UPPER(name));

• Speeds up case insensitive searches

- select * from users where UPPER(name)=‘SMITH’;
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Partitioning

• Benefits:
• Administration

• Moving smaller objects if necessary, easier deletion of 
history, easier online operations on data

• Performance 

• Use of local and global indexes, less contention in RAC 
environment

• Partition pruning – scanning only needed partitions
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Interval partitioning

• Automatic partition creation

• Only 1st partition created manually

• Based on dates and number

• Extension of range partitioning

• Migration to intervals is advised

29

… 201720152014

Table jobs with execution date
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List partitioning

• Based on a discrete value

• Check constraint on the key column is advisable

• In Oracle 11g requires manual partition creation

• Automatic creation in 12c

30

… SMBEPBE

Table employee with department
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Existing tables vs partitoning

• In 12c simple and online

• alter table …modify partition by range..

• In 11g

• Still possible

• Using dbms_redefinition set of commands

• Last step requires application downtime

• Contact your DBA 
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IOTs
• Suppose we have an application retrieving documents uploaded 

by given users, list’s content and size are dynamic
• In traditional table rows will be scattered, read index then data block

• If the table was created as IOT:
• create table myIOT (…) organization index;

• Reads index blocks only

• Also useful in:
• Association tables in many to many relationships

• Logging applications (parameter_id and timestamp as PK) 
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Compression
• Table compression

• Reduces data size by 2 to 10 times

• Simple compression
• Only for direct inserts (archival, read only data)

• create table as select (…)  compress;

• Insert append

• Advanced compression
• Works with read/write workloads

• Index compression
• Simple, can vastly improve query performance

• Low cardinality columns should only be compressed

• Compression depends on selectivity
• create index employe_Idx on employees (deptID, groupId, supervisorID) (…) compress 1;
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Views

• Use views to simplify queries

• Don’t build up multiple view layers

• Oracle optimizer might come up with suboptimal 

execution plan
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Materialized views
• Materialized views are a way to

• Snapshot precomputed and aggregated data

• Improve performance

• Real-life example
• Web page presenting a report

• Multiple users accessing web page

• Hundreds of request from the web server per second

… try a materialized view to store that report

• RESULT_CACHE hint
• Invalidated after DML on underlying objects

• Refresh your views only when needed
• ‘on commit’ refreshes are very expensive 
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Denormalization
• Denormalized DB and Non-normalized DB are not the 

same thing

• Reasons against
• Acceptable performance of normalized system

• Unacceptable performance of denormalized system

• Lower reliability

• Reasons for
• No calculated values 

• Non-reproducible calculations

• Multiple joins

36

Function based columns

Materialized views
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Denormalization
• 1st step: Talk to your DBAs

• Main issues
• Keeping redundant data correct

• Identifying reasonable patterns

• Correct order of operations

• Patterns
• FETCH

• Copy item’s price from ITEMS to ORDER_LINES

• AGGREGATE
• Put the order_price in ORDERS

• EXTEND
• Keep extended_price (price*quantity) in ORDER_LINES

• http://database-programmer.blogspot.com/2008/10/argument-for-
denormalization.html
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PL/SQL – tips & tricks
• Query parse types

• Hard parse
• Optimizing execution plan of a query

• High CPU consumption

• Soft parse
• Reusing previous execution plan

• Low CPU consumption, faster execution

• Reduce the number of hard parses

• Put top executed queries in PL/SQL packages/procedures/functions

• Put most common queries in views

• It also makes easier to tune bad queries in case of problems
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PL/SQL – tips & tricks

• Reduce the number of hard parses

• Use bind variables

• Instead of:

select ... from users where user_id=12345

• Use:

select ... from users where user_id=:uid

• Using bind variables protects from sql injection
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PL/SQL – tips & tricks
• Beware of bind variables peeking

• Optimizer peeks at bind variable values before doing hard parse of a 
query, but only for the first time

• Suppose we have huge table with jobs, most of them already processed 
(processed_flag = 'Y'):

• using bind variable on processed_flag may change query behavior, depending on 
which query is processed first after DB startup (with bind variable set to 'Y' or 'N')

• On a low cardinality column which distribution can significantly vary in time 
– do not use bind variable only if doing so will result in just a few different 
queries, otherwise use bind variables
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PL/SQL – tips & tricks
• Use PL/SQL as an API 

• Provide abstraction layer

• Make tuning easier

• Restrict functionality

• Reduce the number of hard parses

• Prepare once, execute many

• Use prepared statements

• Dynamic SQL executed thousands of times – consider dbms_sql
package instead of execute immediate

• Use bulk inserts whenever possible
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PL/SQL – tips & tricks
• Stored procedures vs materialized views

• Use SPs when refresh on each execution is needed

• Use fully qualified names
• Instead of:

select ... from table1 ...

• Use:

select ... from schema_name.table1 ...

• Known bugs – execution in a wrong schema

4320/11/2017 Database and application design



Agenda

• Database design

• PL/SQL tips and tricks

• Robust application design

20/11/2017 Database and application design 44



Writing robust applications
• Use different level of account privileges

• Application owner (full DDL and DML)

• Writer account (grant read/write rights to specific 
objects)

• Reader account (grant read rights)

• Directly grant object rights or use roles
• Caution – roles are switched off in PL/SQL code, one 

must set them explicitly.
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Writing robust applications
• Use connection pooling

• Connect once and keep a specific number of 
connections to be used by several client threads 
(pconnect in OCI)

• Test if the connection is still open before using it, 
otherwise try reconnecting

• Log connection errors, it may help DBAs to resolve 
any potential connection issues
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Writing robust applications
• Error logging and retrying

• Trap errors

• Check transactions for errors, try to repeat failed 
transactions, log any errors (including SQL that 
failed and application status – it might help to 
resolve the issue)

• Instrumentalization
• Have ability to generate trace at will

• More information in Performance Tuning talks
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Writing robust applications
• Design, test, design, test ...

• Try to prepare a testbed system – workload generators, etc.

• Do not test changes on a live production system

• IT-DB provides test and integration system (preproduction) 
with the same Oracle setup as on production clusters
• contact Oracle.Support to obtain accounts and ask for 

imports/exports
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Questions?
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