

A never-ending database migration

Charles Delort IT-DB

November 20, 2017

Table of Contents

Years ago, decisions were made

A few years later

PostgreSQL Foreign Data Wrappers

First step of Migration

Apiato

Job Scheduling

A never-ending database migration November 20, 2017 3/39

Years ago, decisions were made

A few years later

PostgreSQL Foreign Data Wrappers

First step of Migration

Apiato

Job Scheduling

A never-ending database migration November 20, 2017 4/39

Years ago, decisions were made

DISCLAIMER

The whole application is very small compared to what you probably have

I The first version of DB On Demand was built using an Oracle database back-end
(a schema in ITCORE like any other you can obtain in the Oracle services)

I Integration with FIM is done via triggers and schema object sharing between the
FIM schema and the db_ondemand schema.

I The database schema was designed to be simple:
I Very few tables
I but also: no ids and complex multi-column keys (including Foreign Keys)

A never-ending database migration November 20, 2017 5/39

Years ago, decisions were made

I Instance metadata was not stored in the DB but in an LDAP server, which is used
as source of truth for many internal IT-DB tools.

I The LDAP schema was designed for Oracle-centric information, and hard to extend
or modify

I This led to duplicated information as some items were needed in both places
I Duplicated data sources means you have to enforce consistency, which can get

tricky

I Some PL/SQL was taking care of application logic a bit "behind the scenes"
I Different clients accessing directly the database. Database changes require

deploying new client versions at the same time if there are breaking changes.
I Scheduled tasks on the Oracle Scheduler

A never-ending database migration November 20, 2017 6/39

The DB On Demand Infra (then)

A never-ending database migration November 20, 2017 7/39

Years ago, decisions were made

A few years later

PostgreSQL Foreign Data Wrappers

First step of Migration

Apiato

Job Scheduling

A never-ending database migration November 20, 2017 8/39

A few years later

We had the following picture:
I A successful and expanding service :)

but also:
I A database design nobody on the team had worked on (with additional

"evolution").
I Some application logic in the database (PL/SQL)
I Dependency with other Oracle schemas/DBs (e.g: DB links)
I Dependency on vendor specific features (e.g: Scheduler)

A never-ending database migration November 20, 2017 9/39

A few years later

With the experience of running the server for a few years and having migrated from
Quattor to Puppet and extended the platform to support.
We wanted:

I A Single point of access for ALL the service info
I Based on either PostgreSQL or MySQL
I A better schema for service extensions (i.e: new systems supported, clusters,

etc.)
I Avoid hard migration, if possible.

A never-ending database migration November 20, 2017 10/39

Years ago, decisions were made

A few years later

PostgreSQL Foreign Data Wrappers

First step of Migration

Apiato

Job Scheduling

A never-ending database migration November 20, 2017 11/39

PostgreSQL Foreign Data Wrappers

PostgreSQL extensions enabling the PostgreSQL server to interact with different
remote data stores, from other SQL databases to NoSQL systems to flat files:

-- Run as administrator

CREATE EXTENSION oracle_fdw;

CREATE SERVER <server_name> FOREIGN DATA WRAPPER oracle_fdw

OPTIONS (dbserver '<server_name>');

GRANT USAGE ON FOREIGN SERVER <server_name> TO <dbuser>;

CREATE USER MAPPING FOR <dbuser> SERVER <server_name>

OPTIONS (user '<oracle_username>', password '<oracle_password>');

A never-ending database migration November 20, 2017 12/39

PostgreSQL Foreign Data Wrappers

CREATE SCHEMA IF NOT EXISTS fdw;

-- CREATION OF FOREIGN TABLES

-- DOD_COMMAND_DEFINITION
CREATE FOREIGN TABLE fdw.dod_command_definition (

command_name varchar(64) NOT NULL,
type varchar(64) NOT NULL,
exec varchar(2048),
category varchar(20)

)
SERVER oradb
OPTIONS (

schema 'DBONDEMAND_TEST',
table 'DOD_COMMAND_DEFINITION'

);
ALTER FOREIGN TABLE fdw.dod_command_definition ALTER COLUMN command_name OPTIONS (key 'true');

A never-ending database migration November 20, 2017 13/39

PostgreSQL Foreign Data Wrappers

-- VIEWS FOR BACKWARD COMPATIBILITY

CREATE OR REPLACE VIEW public.dod_instances AS

SELECT * FROM fdw.dod_instances;

CREATE OR REPLACE VIEW public.dod_command_definition AS

SELECT * FROM fdw.dod_command_definition;

CREATE OR REPLACE VIEW public.dod_command_params AS

SELECT * FROM fdw.dod_command_params;

A never-ending database migration November 20, 2017 14/39

PostgreSQL Foreign Data Wrappers

postgres@dbod-dbod01:dbod> describe dod_command_definition;
+--------------+-------------------------+-------------+---------------+
| Column | Type | Modifiers | FDW Options |
|--------------+-------------------------+-------------+---------------|
command_name	character varying(64)	not null	(key 'true')
type	character varying(64)	not null	(key 'true')
exec	character varying(2048)		
category	character varying(20)		(key 'true')
+--------------+-------------------------+-------------+---------------+
Server: itcore_dbod
FDW Options: (schema 'DBONDEMAND', "table" 'DOD_COMMAND_DEFINITION')

+--------------+-------------------------+-------------+
| Column | Type | Modifiers |
|--------------+-------------------------+-------------|
command_name	character varying(64)	
type	character varying(64)	
exec	character varying(2048)	
category	character varying(20)	
+--------------+-------------------------+-------------+
Time: 0.009s

A never-ending database migration November 20, 2017 15/39

Years ago, decisions were made

A few years later

PostgreSQL Foreign Data Wrappers

First step of Migration

Apiato

Job Scheduling

A never-ending database migration November 20, 2017 16/39

First step of Migration

I With the FDW in place we started to model the new schema around the FDW
version of the old one

Decoupling direct access to what we’ll call the database INNER schema using an
additional schema with views

I INNER schema
I API schema: accessed by clients, interacts with the INNER schema via VIEWS

and stored procedures

I We could maintain "legacy" components talking with the old database
I All new developments now using the new one

A never-ending database migration November 20, 2017 17/39

The DB On Demand Infra (now)

A never-ending database migration November 20, 2017 18/39

Years ago, decisions were made

A few years later

PostgreSQL Foreign Data Wrappers

First step of Migration

Apiato

Job Scheduling

A never-ending database migration November 20, 2017 19/39

Two use cases, One API: Apiato

I REST API, written in Python using Tornado
I Used by DB On Demand and the CERN Nile Streaming service (Apache Kafka)

I Single point of entry for any component to service data (database)
I Wraps interactions with 3rd party APIs (Rundeck, StorageAPI, FIM, ...)
I Clients: Web Interface, Puppet (using custom Facts), Instance Actuators

A never-ending database migration November 20, 2017 20/39

Apiato: Overview

A never-ending database migration November 20, 2017 21/39

Apiato: Design choices

I Needs to support different use cases with the same core components
I The application code and the inner database schema are common for all

instances
I DBOD/Nile specific implementations are defined in the API database schema,

which is then exposed with PostgREST.

I PostgREST is a standalone web server that turns your PostgreSQL database
directly into a RESTful API

A never-ending database migration November 20, 2017 22/39

Apiato: Design choices

I When the Nile team started using Apiato they didn’t have any legacy codebase to
maintain compatibility with, so they started using directly the new database model
from the first moment.

I The Nile team continued developing new features (improving cluster support in
the database model) while the DBOD continued working in improving deployment
and cutting dependencies with the old stack.

A never-ending database migration November 20, 2017 23/39

What is PostgREST

I Connects to a DB and exposes a CRUD REST API to a database schema

postgrest.conf

The standard connection URI format, documented at
https://www.postgresql.org/docs/current/static/libpq-connect.html#AEN45347
db-uri = "postgres://user:pass@host:5432/dbname"

The name of which database schema to expose to REST clients
db-schema = "api"

The database role to use when no client authentication is provided.
Can (and probably should) differ from user in db-uri
db-anon-role = "anon"

I JWT support
I Latest versions generate Swagger docs for the API

A never-ending database migration November 20, 2017 24/39

What is PostgREST

create table api.todos (
id serial primary key,
done boolean not null default false,
task text not null,
due timestamptz

);
insert into api.todos (task) values

('finish tutorial 0'), ('pat self on back');

curl http://localhost:3000/todos

[{
"id": 1,
"done": false,
"task": "finish tutorial 0",
"due": null

},
{
"id": 2,
"done": false,
"task": "pat self on back",
"due": null

}]

A never-ending database migration November 20, 2017 25/39

What is PostgREST

Warning

I Using a direct REST API to interact with the DB involves some decisions
I Transactions need to be encapsulated in stored procedures or managed on the

application side

A never-ending database migration November 20, 2017 26/39

Apiato: DB Schemas

postgres> \c dbod
You are now connected to database "dbod" as user "postgres"
Time: 0.011s
postgres@dbod-dbod01:dbod> \dn
+------------------+---------+
| Name | Owner |
|------------------+---------|
api	dbod
fdw	dbod
password_checker	dbod
public	dbod
+------------------+---------+
SELECT 4
Time: 0.003s
postgres@dbod-dbod01:dbod>

A never-ending database migration November 20, 2017 27/39

Apiato: Example of instance metadata

{
"active": true,
"attributes": {

"buffer_pool_size": "1G",
"eos_archive": "true",
"eos_backup": "true",
"notifications": "true",
"port": "5500"

},
"basedir": "/usr/local/mysql/mysql-5.7.15",
"class": "REF",
"db_name": "pinocho",
"db_type": "MYSQL",
"hosts": [

"db-gc505"
],
"id": 20,
"logdir": "/ORA/dbs02/PINOCHO/mysql",
"socket": "/var/lib/mysql/mysql.sock.pinocho.5500",
"state": "RUNNING",
"username": "icoteril",

A never-ending database migration November 20, 2017 28/39

Apiato Example of instance metadata

"version": "5.7.15",
"volumes": [

{
"file_mode": "0755",
"group": "mysql",
"instance_id": 20,
"mount_options": "rw,bg,hard,nointr,tcp,vers=3,noatime,timeo=600,rsize=65536,wsize=65536",
"mounting_path": "/ORA/dbs02/PINOCHO",
"owner": "mysql",
"server": "dbnash5141"

},
{
"file_mode": "0755",
"group": "mysql",
"instance_id": 20,
"mount_options": "rw,bg,hard,nointr,tcp,vers=3,noatime,timeo=600,rsize=65536,wsize=65536",
"mounting_path": "/ORA/dbs03/PINOCHO",
"owner": "mysql",
"server": "dbnash5111"

}
]

}

A never-ending database migration November 20, 2017 29/39

An example: Configuration with Puppet

We use a Puppet custom fact ($::dbod_instances) which queries the Apiato cluster
in each Puppet run on any given server and fetches the set of metadata for all the
instances hosted in that particular server.
Customization according to the instance metadata is then applied:

Operate on dbod_instances fact
if (is_hash($::dbod_instances)) {
$defaults = {

require => [
Class['::dbod::certificates'],
Class['::dbod::users'],
],

}
create_resources(dbod::instance, $::dbod_instances, $defaults)

}

A never-ending database migration November 20, 2017 30/39

Years ago, decisions were made

A few years later

PostgreSQL Foreign Data Wrappers

First step of Migration

Apiato

Job Scheduling

A never-ending database migration November 20, 2017 31/39

Job Scheduling

We have some kind of feature lock in with the Oracle DBMS scheduler:
I Scheduled instance tasks (backups, cleanups)
I Internal operations like FIM syncing, instance expiration notifications, etc.

We are looking at two alternatives:
I Rundeck
I pg_cron (Another PostgreSQL extension)

-- run as superuser:

CREATE EXTENSION pg_cron;

-- optionally, grant usage to regular users:

GRANT USAGE ON SCHEMA cron TO <user>;

A never-ending database migration November 20, 2017 32/39

Job Scheduling on PostgreSQL

-- Delete old data on Saturday at 3:30am (GMT)
SELECT cron.schedule('30 3 * * 6',

$$DELETE FROM events WHERE event_time < now() - interval '1 week'$$);
schedule

42

-- Vacuum every day at 10:00am (GMT)
SELECT cron.schedule('0 10 * * *', 'VACUUM');
schedule

43

-- Stop scheduling a job
SELECT cron.unschedule(43);
unschedule

t

A never-ending database migration November 20, 2017 33/39

Rundeck

I A workflow manager for operations supporting many different executors (e.g: local
executables, Kerberos SSH, HTTP, etc.), job scheduling, ACL, REST API
interactions, ...

I We use Apiato to generate a dynamic list of Rundeck targets, as well as to
interact with the Rundeck API.

A never-ending database migration November 20, 2017 34/39

Job Scheduling with Rundeck

A never-ending database migration November 20, 2017 35/39

Summary

Issues we overcame during the migration:
I Avoid hard migration: postgres FDW
I Replace DBMS Scheduler: Rundeck and/or pgcron
I Avoid duplication and remove hidden application logic from the database:

Redesign our application

A never-ending database migration November 20, 2017 36/39

Where are we now. Next steps

I We are in the middle of merging the Nile clustering development into the main
Apiato branch.

I After that change is done and rolled out, only the integration with the FIM service
and the Job Scheduling will rely on the legacy oracle model.

I In contact with the FIM team in order to have an API to interact with FIM. Ideally
this will also allow us to stream line the instance request process.

A never-ending database migration November 20, 2017 37/39

A note on PostgreSQL extensions on DBOD

I Extensions require DB superuser role to be loaded.
I If you need to use an extension please let us know with a SNOW Request.
I We distribute extensions compiled and packaged with the server binaries.
I If they are not loaded they don’t affect the database server at all.

A never-ending database migration November 20, 2017 38/39

www.cern.ch

	Years ago, decisions were made
	A few years later
	PostgreSQL Foreign Data Wrappers
	First step of Migration
	Apiato
	Job Scheduling

