
Top-level DB design for Big Data
in ATLAS Experiment at CERN
Petya Vasileva, Gancho Dimitrov, Elizabeth Gallas

About Us

2

Petya
A software developer currently
focusing on implementing
applications which help DBAs and
developers in their everyday work.
She is also involved in providing
support for the databases at ATLAS.

Gancho
Has a liaison role between the
CERN/IT database services and
support group and the ATLAS
database developers community.
Main focus is on database schemes
design, data management and
performance tuning.

Elizabeth
A physicist by training and a
database developer by experience:
Working with DBAs to design and
optimize schemas and applications
to suit the needs of large scientific
experiments.

2015 December 2016 March

Outline

Requirements Challenges Technical
solutions Conclusions

3

EventIndex – A catalog of particle collision events

Oracle RDBMS and HW specs

Main database role Post data-taking analysis
Oracle version 11.2.0.4 (DB in force logging mode)
DB nodes 3
DB volume 37 TB
DB schemes 172
HW specs CPU Intel E5-2630 v4 @ 2.2GHz - 20 cores per node

RAM 512 GB
Per host 2 x 10 GigE for storage and cluster access

NetApp NAS storage with 1.5 TB SSD cache

4

EventIndex
Basic information

5

Particle collisions data

EventIndex is a catalogue containing
information about the basic properties of event
data as well as references to its storage
location.

Particle collisions are called Events

Events are grouped into files

Files are grouped into datasets

Datasets

Files

Events

6

Event attributes

• File identifier : GUID (Globally Unique
Identifier)
� GUIDs are usually stored as 128-bit values, and

are commonly displayed as 32 hexadecimal
digits with groups separated by hyphens, such
as:

Event

EVENT
NUMBER

GUID0

BUNCHID

LUMI
BLOCKNGUID1

GUID2

Event Unique
Identifier

Event File
Identifiers

• Event numbers within a dataset are unique
identifiers of particles collision event

GUID example:
21EC2020-3AEA-4069-A2DD-08002B30309D

7

Dataset attributes
A unique dataset name is composed by 6 attributes
Example: data17_900GeV.00340308.physics_CosmicCalo.merge.AOD.f894_m1902

AMI tag

project &
beam

energy
run

number

trigger
stream

processing
step

data type

Dataset

Expected datasets per year > 25 000

8

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 - 5 К 5 К - 50 К 50 К - 500 К 500 К - 5 М 5 М - 100 М 100 М+

7 879
10 342

17 134 15 414

4 944

228N
U

M
B

E
R

 O
F

D
A

TA
SE

TS
NUMBER OF EVENTS

Dataflow

Hadoop

Staging Tables Destination
Tables

GUI

Oracle
Scheduler

Jobs

Import
process

• Data is loaded from a Hadoop system

• All data is dumped into a plain table – no constraints, no indices

• Oracle jobs verify, optimize & copy data to the destination tables

9

Project requirements

q Store large amount of rows – tens of billions per year

q Remove large amount of rows if dataset is obsolete or its content has to be replaced.

q Guarantee uniqueness of events within each dataset

q Ensure fast and consistent data upload of large amount of rows (10s-100s million of rows)

q Crosscheck data with other systems

q Detect rows (events) duplications

q Retrieve file identifiers (GUIDs) in fraction of a second

10

Challenges

1. Large amount of rows require large disk volume plus significant index overhead

2. Achieve high-speed data load & reduce undo and redo generation

3. Automatic handling in case of uniqueness violation

4. Provide simple way for querying events data

5. Remove large amount of rows with minimum DB footprint

6. Have adequate table stats gathering policy

7. Optimize data retrieval & guarantee queries execution plan stability

11

Challenge “1”
Significant amount of disk space

- On average 210 bytes per row

- 1B rows = 200 GB without the index overhead

- 25B rows/year = 5 TB/year without the index overhead

12

Used approach for challenge “1” (1)

Improvement: the AVG row length is reduced from
210 bytes to 130 bytes.

D
A
T
A
S
E
T
S

PARENT
TABLE

DATASET_ID

PROJECT

RUNNUMBER

STREAMNAME

PRODSTEP

DATATYPE

AMITAG

E
V
E
N
T
S

CHILD
TABLE

DATASET_ID

EVENTNUMBER

LUMIBLOCKN

BUNCHID

GUID0

GUID1

GUID2

Idea: study, test and get to acceptable level of data
normalization to minimize data redundancy.

• “Parent table” with dataset definitions and “child
table” having dataset content

• Dataset name uniqueness guaranteed by an
Oracle unique constraint

• Dataset definition gets unique ID (dataset_id)
from a DB sequence object

Unique
Key

Primary
Key

• 80 bytes in the “parent table”

• 130 bytes in the “child table” (vast dataset range: from tens rows to 100s million rows
per dataset)

13

Answer: Yes, by taking advantage of the RAW data type

Store GUIDs of data type RAW

Improvement: AVG length of “child table” row is reduced to 70 bytes

Used approach for challenge “1” (2)
Idea: explore Oracle data types
• The three file identifiers (GUIDs) of each event is with fixed length : 36 chars.
• 3 GUIDs in row = 108 bytes when using Oracle “char” data type

GUID example: 21EC2020-3AEA-4069-A2DD-08002B30309D

GUIDs
type RAW
16 bytes

GUIDs
type CHAR
36 bytes

< E
V
E
N
T
S

CHILD TABLE
DATASET_ID NUMBER(10,0)
EVENTNUMBER NUMBER(10,0)
LUMIBLOCKN NUMBER(10,0)
BUNCHID NUMBER(10,0)
GUID0 CHAR
GUID1 CHAR
GUID2 CHAR

GUID0 RAW
GUID1 RAW
GUID2 RAWHEXTORAW(REPLACE(GUID, '-', ''))

Question: Could we “shorten” the 130 bytes row by using other Oracle data types?

14

Used approach for challenge “1” (3)

• Idea: explore the Oracle Basic and OLTP compression (de-duplication within data
block of 8KB)

q Goal achieved: Disk space reduced significantly

Instead of 200 GB per 1B rows, only 20 GB are needed.

Test with 11 billion rows PCTFREE 0 setting:
Compression AVG space per row Table size

OLTP 19.6 bytes 201 GB
Basic 19 bytes 195 GB

Improvement : AVG length of “child table” row is reduced to 20 bytes.

15

Challenge “2”
Transactions could be large.

How to achieve satisfactory speed?

- The logical unit of data is a “dataset” being a group of unique
identifiers of particles collision event

- Dataset can have from few 10s of events to 100s million events (rows)

16

Approach for challenge “2”

Test with a large transactions (100s millions rows)

Goal: Achieve consistency, high speed in rows insert,
minimum used disk space, minimum undo and redo
footprint on the DB.

Question: OLTP or Basic compression to be used?

E
V
E
N
T
S

STAGING TABLE
DATASET_ID NUMBER(10,0)
EVENTNUMBER NUMBER(10,0)
LUMIBLOCKN NUMBER(10,0)
BUNCHID NUMBER(10,0)
GUID0 CHAR(36	BYTE)
GUID1 CHAR(36	BYTE)
GUID2 CHAR(36	BYTE)

Idea:

1. Insert raw events data into a staging table without any
normalization, use “char” data type for the GUIDs
(AVG row length = 210 bytes), no index overhead. Use
list partitioning for having a dedicated partition per
Dataset.

2. Use PLSQL procedure for loading data from the staging
table to the “child table”.

NO INDEX
NO CONSTRAINTS

LIST PARTITIONED BY DATASET_ID

E
V
E
N
T
S

CHILD TABLE
DATASET_ID NUMBER(10,0)
EVENTNUMBER NUMBER(10,0)
LUMIBLOCKN NUMBER(10,0)
BUNCHID NUMBER(10,0)
GUID0 RAW
GUID1 RAW
GUID2 RAW

17

Test INSERT /*+ append*/ INTO child_table having PK, no FK, no compression
Results:
1. Insert speed 113K rows/sec
2. 1 GB undo used per 54 million rows (used only for the PK index build)

Test INSERT /*+ append*/ INTO child_table not having PK, no FK, no compression
Results:

1. Insert speed 202K rows/sec
2. Undo is not used

Challenge “2”: setup without compression

Test: Bulk insert into the “child table”, no constraints and no
compression

18

Challenge “2”: OLTP compression (1)
Test “Child table” with OLTP compression.

Same result:
1. Insert speed 7K rows/sec
2. 1GB undo per 3 million inserted rows
3. USED_UREC = 2x number of inserted

rows because of the PK

or

INSERT INTO child_table
SELECT … ,

HEXTORAW(REPLACE(GUID0, '-', '')),
HEXTORAW(REPLACE(GUID1, '-', '')),
HEXTORAW(REPLACE(GUID2, '-', ''))

FROM staging_table
WHERE DATASET_ID = …;

Conventional insert
INSERT /*+ append*/ INTO child_table
SELECT … ,

HEXTORAW(REPLACE(GUID0, '-', '')),
HEXTORAW(REPLACE(GUID1, '-', '')),
HEXTORAW(REPLACE(GUID2, '-', ''))

FROM staging_table
WHERE DATASET_ID = …;

Bulk insert

PARENT
TABLE D

A
T
A
S
E
T
S

DATASET_ID PK
PROJECT

UK

RUNNUMBER

STREAMNAME

PRODSTEP
DATATYPE
AMITAG

E
V
E
N
T
S

CHILD TABLE
DATASET_ID FK

PK
EVENTNUMBER

LUMIBLOCKN

BUNCHID

GUID0

GUID1

GUID2

19

Challenge “2”: Basic compression

Test “Child table” with Basic compression.

PARENT
TABLE D

A
T
A
S
E
T
S

DATASET_ID PK
PROJECT

UK

RUNNUMBER

STREAMNAME

PRODSTEP
DATATYPE
AMITAG

E
V
E
N
T
S

CHILD TABLE
DATASET_ID FK

PK
EVENTNUMBER

LUMIBLOCKN

BUNCHID

GUID0

GUID1

GUID2

Test bulk insert (INSERT /*+ append*/ INTO …)
Results:
1. Insert speed 13K rows/sec
2. 1GB undo per 6 million inserted rows
3. USED_UREC = 2x number of inserted

rows because of the PK
4. Compression does not kick in (the AVG

row length is 70 bytes). Why?

Note: for the largest dataset we have of 630 million rows, we would need 105 GB undo
and about 14 hours to complete.

20

Challenge “2”: Basic compression (2)

Question: Why the data compression does not kick in? Why still so much undo
is used?

PARENT
TABLE D

A
T
A
S
E
T
S

DATASET_ID PK
PROJECT

UK

RUNNUMBER

STREAMNAME

PRODSTEP
DATATYPE
AMITAG

E
V
E
N
T
S

CHILD TABLE
DATASET_ID FK

PK
EVENTNUMBER

LUMIBLOCKN

BUNCHID

GUID0

GUID1

GUID2

Results:
1. Insert speed 130K rows/sec
2. 1 GB undo used per 54 million rows

(used only for the PK index build)
3. Compression kicks in and the

average space used per row is 20
bytes

Finding:
When having bulk insert on table with FK and Basic compression, Oracle silently does
conventional insertion, does not compress the data and generates a lot of undo.

Test INSERT /*+ append*/ INTO child_table
having PK, no FK and with Basic compression

21

Challenge “2”: applied solution

Example: to load 100 million rows within a single transaction:
� Elapsed time is about 13-14 min (insert rate 120-130K rows/sec)
� Table segment about 2GB , index segment about 2GB
� Used undo < 2 GB

Compromises:
� No parent-child table relationship enforcement via DB foreign key.
This is acceptable as the data loading is done only by a PLSQL procedure that has the necessary
pre-checks in. Other idea is to try with FK of type “deferred rely”.
� Data load serialization because of the INSERT /*+ append*/ INTO child_table
Only a single session can load data at a given time. This is acceptable because of the achieved high
insert rate. Or potentially we could use parallelism in the bulk insert.

q Goal achieved: data consistency, high speed in rows insert, minimum used disk space,
minimum undo and redo footprint on the DB

22

- Application logic implies that raised “ORA-00001: unique constraint violated” error on
the “child table” must not rollback the transaction, but any rows with duplicated key(s)
have to be stored aside into a separate table.

Challenge “3”
Automatic handling in case of keys uniqueness

violation

23

Tested approach for challenge “3”

Idea: store aside the duplicated rows using the LOG ERRORS INTO ... clause

Actions: Create errorlog table using the DBMS_ERRLOG.CREATE_ERROR_LOG method

Findings: that approach works as a standalone statement only in the SQL scope.

The " LOG ERRORS INTO … REJECT LIMIT UNLIMITED " does not work within a PLSQL proc.
The “ ORA-00001: unique constraint violated “ on the “Child table” PK is returned.

INSERT /*+ append*/ INTO child_table

SELECT … FROM staging_table

LOG ERRORS INTO log_table REJECT LIMIT UNLIMITED;

24

Tested approach for challenge “3” (2)

Idea: use the "ignore_row_on_dupkey_index" hint

ignore_row_on_dupkey_index(tab_name,table_PK_name)
or

ignore_row_on_dupkey_index(tab_name(col1, col2))

Findings:
� That approach works only for datasets with few hundred rows.
� For datasets with thousands of rows, Oracle corrupts the PK index structure.
� Counting rows in a dataset, computes more rows than inserted (details on the next slide).

INSERT /*+ ignore_row_on_dupkey_index(tab_name(col1, col2)) */
INTO child_table
SELECT … FROM staging_table

25

Surprising result with ignore_row_on_dupkey_index…

Test: Find the number of occurrences of the ‘unique’ values

Problem: deletion of rows from the dataset raised an error of corruption in the index

SELECT RUNNUMBER, EVENTNUMBER, count(*)
FROM child_table
WHERE DATASET_ID = …
GROUP BY RUNNUMBER, EVENTNUMBER
HAVING count(*) > 1;
Results:

18395 2295389 2
18395 2296722 3
18395 2296824 3
18395 2252272 4
18395 2284925 2

DELETE from child_table WHERE dataset_id = …

ORA-08102: index key not found, obj# 20667461, file 658, block 77946491 (3)

26

Resolution of challenge “3” (3)

Solution: sequence of actions encoded into a PLSQL procedure

Actions:
1. Check whether the dataset in the staging table has duplicates based on the

destination table PK columns
2. Insert into the “child table” all rows that do not have duplication
3. Insert into a dedicated table all duplicated rows from the staging table
4. Insert into the “child table” a representative row from each group of duplication

q Goal achieved: Duplicated rows are automatically detected and stored separately

27

- GUID data types are of type RAW in order to safe space, however the
application must get the GUID values as string

Challenge “4”
Provide simplification for the GUIDs retrieval

28

Approach for challenge “4”
Idea: Define virtual columns for
the GUIDs on table level ready
to be used in any query.
Advantages: values are
computed on a fly, simplifies
application queries (clearer SQL
code)

CREATE TABLE child_table (
…
, GUID0 RAW(16)
,GUID1 RAW(16)
,GUID2 RAW(16)
,GUID0_CHAR as

(SUBSTR(RAWTOHEX(GUID0),1,8)||'-
'||SUBSTR(RAWTOHEX (GUID0),9,4)||'-
'||SUBSTR(RAWTOHEX (GUID0),13,4)||'-
'||SUBSTR(RAWTOHEX (GUID0),17,4)||'-
'||SUBSTR(RAWTOHEX (GUID0),21,12))
,GUID1_CHAR as

(SUBSTR(RAWTOHEX(GUID1),1,8)||'-
'||SUBSTR(RAWTOHEX (GUID1),9,4)||'-
'||SUBSTR(RAWTOHEX (GUID1),13,4)||'-
'||SUBSTR(RAWTOHEX (GUID1),17,4)||'-
'||SUBSTR(RAWTOHEX (GUID1),21,12))
,GUID2_CHAR as

(SUBSTR(RAWTOHEX(GUID2),1,8)||'-
'||SUBSTR(RAWTOHEX (GUID2),9,4)||'-
'||SUBSTR(RAWTOHEX (GUID2),13,4)||'-
'||SUBSTR(RAWTOHEX (GUID2),17,4)||'-
'||SUBSTR(RAWTOHEX (GUID2),21,12))

q Goal achieved: Shorter and
simpler SQL queries

EXAMPLE:
SELECT GUID0_CHAR, GUID1_CHAR, GUID0_CHAR
FROM child_table

29

- Rows deletion from compressed already data takes considerable time and
moreover generate considerable amount of undo and redo.

- Delete of 10s or 100s of millions rows takes hours or it may not succeed because
of the needed significant undo.

Challenge “5”
Any obsolete dataset (small or large) has to be

removed from the database

30

Tested approach for challenge “5”

Idea: do not delete row by row, but scratch a complete dataset in a
straightforward way: partition the “child table” in a way appropriate
for simple partition removal.

Best approach: LIST partitioning

CREATE TABLE child_table (
DATASET_ID NUMBER(10,0),
...
CONSTRAINT cons_name PRIMARY KEY (..) using index COMPRESS 1
LOCAL
) pctfree 0 COMPRESS BASIC tablespace &&m_tbs
PARTITION BY LIST(DATASET_ID)
(PARTITION DATASET_ZERO VALUES(0));

LIST PARTITIONED BY DATASET_ID

E
V
E
N
T
S

CHILD
TABLE

DATASET_ID
PK

EVENTNUMBER

LUMIBLOCKN

BUNCHID

GUID0

GUID1

GUID2

31

List partitioning: an operational challenge

Caution: List partitioning is appropriate, but is an operational challenge as
partitions must be pre-created for each new partition key value.

• This is a burden as new datasets have to be registered any time in the system.

In-house created solution:

• Partition is automatically created for the staging and the final child tables whenever a
new dataset (partition key value) is created into the “parent” table.

• “After insert” row level trigger fires and executes a PLSQL procedure responsible for
ALTER TABLE … ADD PARTITION

• Each partition creation action is logged into a dedicated logging table

32

Partition removal setup

Setup:

• Staging table: as the nature of the data is transient, partitions are removed
automatically on chosen interval via an Oracle scheduler job

• Child table: datasets with flag ‘obsolete’ are removed automatically by a scheduler job:
relevant partition is dropped.

Result: The operation is very efficient as table and index partitions are removed
without a need for expensive undo and redo.

q Goal achieved: Obsolete data is automatically & efficiently removed.

33

- Gather statistics on very large table is time and resource consuming
- What level of statistics are enough for the use cases we have?

Challenge “6”
Statistics gathering on table with billions of

rows

34

Stats gathering

Problem: The Oracle auto stats gathering is not appropriate for the
partitioned “child table” with billions of rows because:

1. By default it gathers stats on partition level and on global level
2. It may decide to compute histograms for some of the columns
3. New stats may appear at any time

Solution: Better to have customized settings for the stats gathering on
certain tables because :

� DBAs and developers know best what and when has to be updated
� Partition level stats lead to undesired execution plan which changes when using

bind variables.

Remark: Seen behavior of CBO choosing full partition scan, because of tiny partition
segment, instead of PK unique scan. Reusing such plan on partition with 100s
millions of rows is a disaster.

35

Customized stats gathering
Setup:

1. Global table stats only

2. Forbid histograms

3. Percent of the table content to be considered for computation

4. Degree of parallelism in the stats gathering

5. Lock statistics

6. Gather statistics with scheduler job monthly with “force=true” option.

exec DBMS_STATS.SET_TABLE_PREFS(‘owner’, ‘table’, ‘GRANULARITY’, ‘GLOBAL’);

exec DBMS_STATS.SET_TABLE_PREFS(‘owner’, ’table’, ‘METHOD_OPT’ , ‘FOR ALL COLUMNS SIZE 1’);

exec DBMS_STATS.SET_TABLE_PREFS(‘owner’, ’table’, ‘ESTIMATE_PERCENT’ , 1);

exec DBMS_STATS.SET_TABLE_PREFS(’owner', ‘table', 'DEGREE', 2);

exec DBMS_STATS.LOCK_TABLE_STATS(’owner’,‘table’);

36

More about stats

Oracle computes stats on the virtual columns

Question: Virtual columns do not take space but AVG_COL_LEN is computed for them.
Their AVG_COL_LEN is added to the row length AVG_ROW_LEN. Why?

Findings: In our case with the “child table” data, Oracle stats gathering comes up with
AVG_ROW_LEN = 180 bytes (while in reality on average each row takes 20 bytes)
because of the compression and “raw” data type columns and the virtual columns on top
of them.

q Goal achieved: Sufficient level of statistics by customized setup is in place

Stats gathering
Row length
180 bytes

Reality
Row length
20 bytes

37

- Main use case: give me the GUIDs (file identifiers) for a list of protons collision
events [1….thousands events] from list of LHC runs [1..tens or hundreds runs]

Note: Run number is part of the dataset name

Challenge “7”
Performance of data retrieval

&
Queries execution plan stability

38

Query with long IN list

Question: How to compose a SQL statement that could have hundreds of IN list
values?

Caution:

1. Having long IN list with hundreds of literals makes difficult SQL statement parsing
and execution plan stability is at risk.

2. Long IN list with bind variables is not good option as well

3. The length of the IN list is not known.

SELECT GUID0, GUID1, GUID2
FROM parent_table pt, child_table ct
WHERE pt.dataset_id = ct.dataset_id AND
(RUNNUMBER, EVENTNUMBER) IN
((279685, 569724665) , (279685, 994915396),
(279685, 1058293500), (…, …), …);

39

Instead of IN list … use temporary table

Idea: instead of composing long IN list with values, the client session inserts
values into an Oracle temporary table, joins it with the other tables, gets the
result and commits (in order to clean the TMP data).

Idea: simplify the JOIN between the three tables (“dataset parent table”,
“dataset child table”, TMP table), by encapsulating the query into a read-only
view object.

CREATE GLOBAL TEMPORARY TABLE tmp_table
(run_id NUMBER(10),
event_id NUMBER(10))
ON COMMIT DELETE ROWS;

CREATE OR REPLACE VIEW ...
AS SELECT … FROM parent_table, child_table, tmp_table
WHERE ...
WITH READ ONLY;

40

Advantages of using view objects

1. Simplifies the application queries

2. Certain complexity is hidden for the client applications

3. Only the needed columns are exposed to the client applications

4. Instructions (hints) can be specified in the view definition. Such instructions are good
for ensuring execution plan stability.

Example : We want Oracle to choose access path via index range scan, and we do not
want index partition fast full scan.

INDEX_RS_ASC(table_alias(datasetID,eventID)) NO_INDEX_FFS(table_alias(datasetID, eventID))

41

q Goal achieved: High performance and stable execution plans delivered

Data retrieval performance

Performance tests with
100 users show AVG < 2s for

requests of 2000 run-event pairs

42

In production

11 B 16 B 18 B 22 B 23 B 31 B 39 B 42 B 48 B

71 B

112 B 120 B

Jan Mar May July Sept Nov Jan Mar May July Sept Nov
2016 2017

17,403 18,683 20,039 21,417 22,319 24,024 26,293 26,629 27,071

43,282

55,455 56,695

System overview
TABLE
2,5 TB

INDEX
2,2 TB

43

Total number of rows (events)

Total number of datasets

Conclusions

q Information about the ATLAS particle collision events is well
structured and stored in efficient way in ORACLE RDBMS
q Serious challenges are addressed in proper way
q The system is simple, robust and reliable
q The database handles seamlessly tens of billions rows per

year

44

Thank you!
gancho@cern.ch, petya@cern.ch, elizabeth.gallas@physics.ox.ac.uk

