

CERN IT Monitoring: migration to *big data* technologies

Luca Magnoni, for the MONIT team

21/11/2017

MONIT @ CERN Database Tutorial

CERN IT Monitoring: what we do

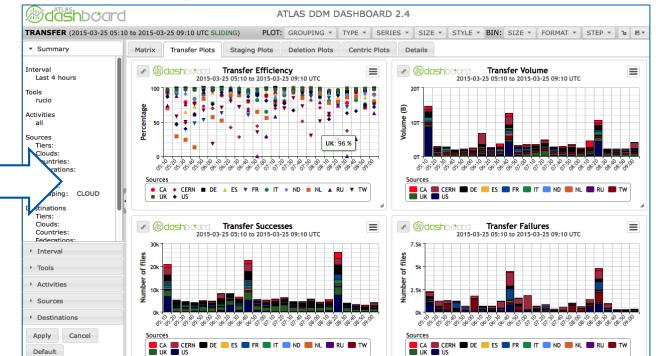
- Provide a common infrastructure to Measure, Collect, Transport, Visualize, Process and Alarm
 - Metrics and Logs
 - for <u>CERN Data Centres</u>, <u>IT</u> and <u>WLCG</u> <u>Services</u>
- http://cern.ch/monitdocs

Some Monitoring Numbers

- ~ 100 Data Producers
- ~ 3 TBs / day
- ~ 80 KHz average rate, spikey workload
- > 100 user dashboards

Migration stories

- Old monitoring tools and services are (being) moved to the new common infrastructure
 - Data centre monitoring from Lemon to Collectd
 - System and Service Logs integration
 - WLCG/Experiments Dashboards replacement
 - relational part was here

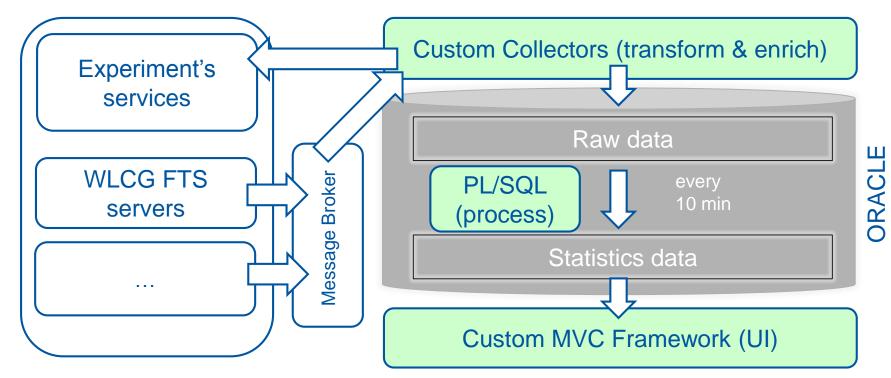


Dashboard example

{\"unique_id\":\"30fbed9e-975b-11e4-9717-5b82e4a9beef-4ef6f2e\", \"file_lfn\":\"/store/mc/Fall13dr/QCD_Pt-80to120_Tune4C_13TeV_pythia8/GEN-SIM-

RAW/castor_tsg_PU40bx25_POSTLS16 2_V2-v1/20000/6C4FDD71-1884-E311-9FC2-90E6BA0D09A2.root\".

\"file_size\":\"4034966171\", \"start_time\":\"1426860046\", \"end_time\":\"1426863860\", \"read_bytes\":\"0\", \"read_operations\":\"0\", \"read_min\":\"0\", \"read_max\":\"0\", \"read_average\":\"0.000000\", \"read_sigma\":\"0.000000\", \"read_single_bytes\":\"0\", \"read_single_operations\":\"0\", \"read_single_min\":\"0\",



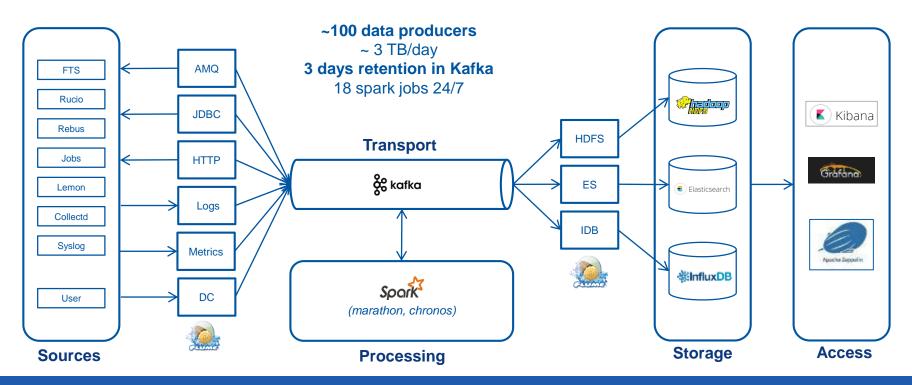
Dashboard workflow

- Data gathering
 - from experiment's DB, message-brokers, HTTP endpoints, etc.
- Validation and Transformation
 - formatting, filtering, extraction, enrichment
- Processing
 - statistics computation, time-based aggregations
- Visualization
 - custom web dashboards

Old Oracle-based solution

21/11/2017

MONIT @ CERN Database Tutorial


A common architecture

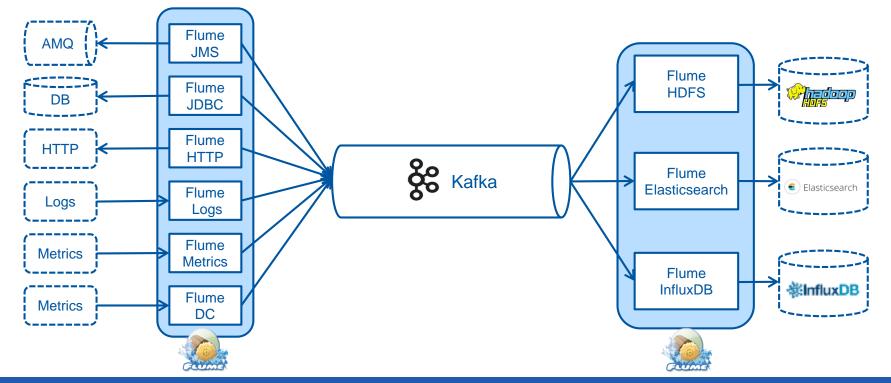
Common Technologies

- Collectd for measuring
- Flume as collection agent
- Kafka as transport layer
- **Spark** as processing framework
- HDFS as cold storage
- Elasticsearch and InfluxDB as hot storage
- Kibana, Grafana, Zeppelin to explore and visualize

The MONIT Architecture

21/11/2017

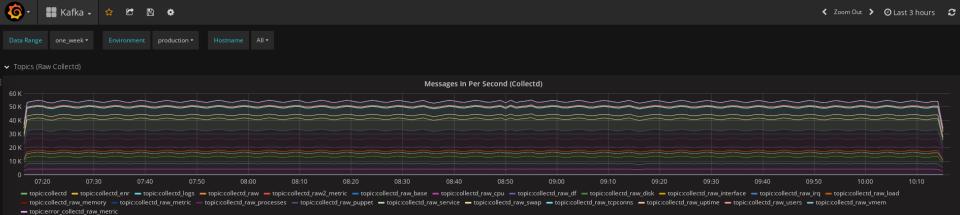
MONIT @ CERN Database Tutorial


Data Collection and Transport

Apache Flume as collector agent

- One tool, many input/output options
- Push and pull models
- Guaranteed delivery (transactions)
- Horizontal scalability
- Support data interceptor/morphlines
 - ensures common data format

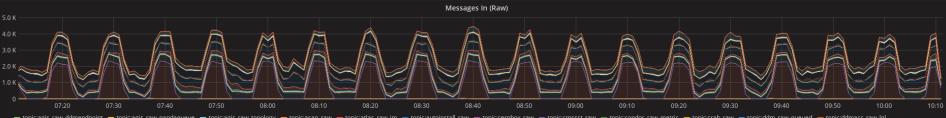
Apache Flume as collector agent


21/11/2017

MONIT @ CERN Database Tutorial

Apache Kafka

- Fault-Tolerant / Distributed / High-Throughput messaging-like system
- Decouple producers and consumers
- Reliable data buffer (72 hours)
 - proved useful in many situations
- Solid core of the the transport layer


Topics (Raw Logs)

topic:fs-agent_logs_bringonline — topic:fts-agent_logs_httpd-access — topic:fts-agent_logs_httpd-access — topic:fts-agent_logs_thtpd-access — topic:fts-agent_logs_logs — topic:fts-agent_logs_rest — topic:fts-agent_logs_server — topic:fts-agent_logs_thtpd-access = topic:fts-agent_lo

- topic:loadbalancer_logs - topic:logstash_logs - topic:runig_logs - topic:runig_logs - topic:runid_logs - t

A note on data access latency

- HDFS has access latency
 - i.e. no access to fresh data
- Kafka enables on-the-fly access to all monitoring information
- Plays a key role in serving data for the processing layer

Processing

The need for data processing

Data enrichment

• Enrich monitoring metrics with data from multiple sources (i.e. join)

Data transformation

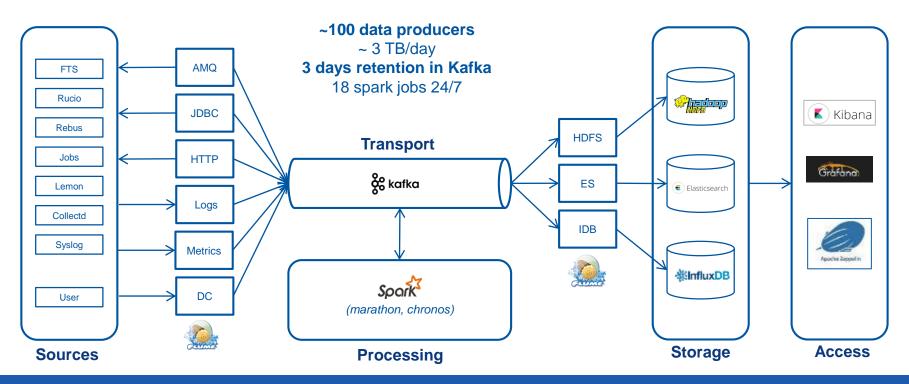
- Compute status of systems/services based on other metrics
- Data aggregation over time or other dimensions (e.g. compute a cumulative metric for a set of machines hosting the same service)

Data correlation

• Detect anomalies and failures correlating data from multiple sources (e.g. datacentre topology-aware alarms)

The needs of data processing

- Reliable and scalable job execution (Spark)
- Job orchestration (Mesos/Marathon/Hadoop)
- Lightweight deployment (Docker)



Apache Spark

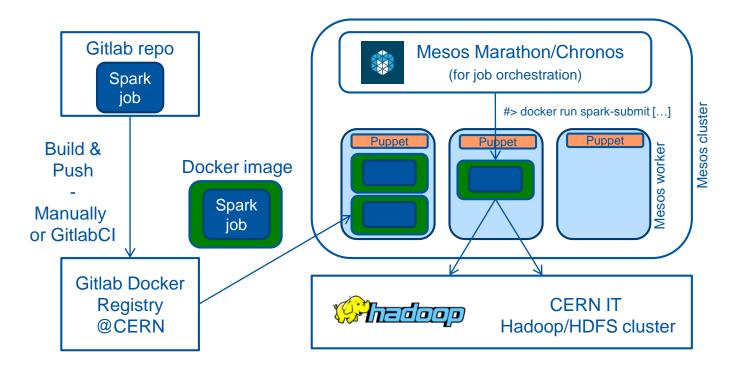
- Modern distributed processing framework
 - It runs on Hadoop/YARN, Mesos or standalone clusters
- Evolves the MapReduce paradigm
 - rich directives
 - promotes in-memory/iterative computation
- Supports Batch and Stream processing

Apache Spark for Monitoring

21/11/2017

A note on Stream & Batch analysis

- Different processing workflows
 - fast low-latency streaming / slow high-volume batch
 - typically on different frameworks too
- It's a *big data* difference
 - DB is both "hot" and "cold" access
- From user's perspective, it can be inconvenient
 - code duplication
 - things should "just work the same" on fresh and historical data



Spark Structured Streaming

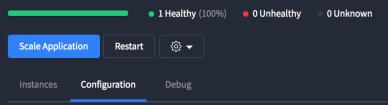
- Promoted stable in Spark 2.2.0
- Dataframe/Dataset can be both static and streaming
 - processing logic/code is the same
- Major simplification
 - many built-in features, resulting in simpler jobs
- In practice, allows the same job to process the same way data from Kafka and HDFS

Monitoring Processing Platform

21/11/2017

MONIT @ CERN Database Tutorial

Job Deployment and Orchestration


- Mesos cluster
 - Distributed and fault-tolerant execution of commands on workers
- Marathon for long-living processes (e.g. streaming jobs)
 - Start/stop/restart/scale a process
 - Useful web UI for operation/monitoring
- Chronos for recurrent execution (e.g. batch jobs)
 - Support job DAGs (e.g. jobs triggered by the completion of other jobs)
- Native support for containers (e.g. Docker)
 - command is executed launching a container from an image
- Gitlab CI pipeline on merges:
 - Build Software build / Build Docker image and push to gitlab registry
- Technology independent solution (e.g. support Spark and other)

MARATHON	Applications Deployments				Search all applications	<u> </u>
STATUS Running 15	Applications				Create Group	Create Application
Deploying	Name 🛥	CPU	Memory S	Status 😧	Running Instances	lealth 😧
Suspended 8	castor	2.0	4 GiB		2 of 2	
	monitoring	0.0	0 B		0 of 0	
HEALTH	punch	0.0	0 B		0 of 0	
Healthy 15	😥 chronos	5.0	5 GiB		10 of 10	
Unknown	eos-reports-to-es	0.5	2 GiB		lof1	
RESOURCES	Spark-atlasjm-enrichment	1.0	4 GiB		1 of 1	
Volumes	Spark-ddm-recovery	0.0	0 B	🚫 Suspended	0 of 0	
	Spark-ddm-structure-streaming	2.0	4 GiB		lof1	
	⊗ spark-ddm-structure-streaming-cluster	0.0	0 B	🚫 Suspended	0 of 0	
	Spark-ddm-structure-streaming2	0.0	0 B	🚫 Suspended	0 of 0	
	Spark-dip-aggregation	0.0	0 B	🚫 Suspended	0 of 0	
	Spark-fts-config-enrichment	0.5	2 GiB		1 of 1	

spark-ddm-structure-streaming

○ Running (1 of 1 instances)

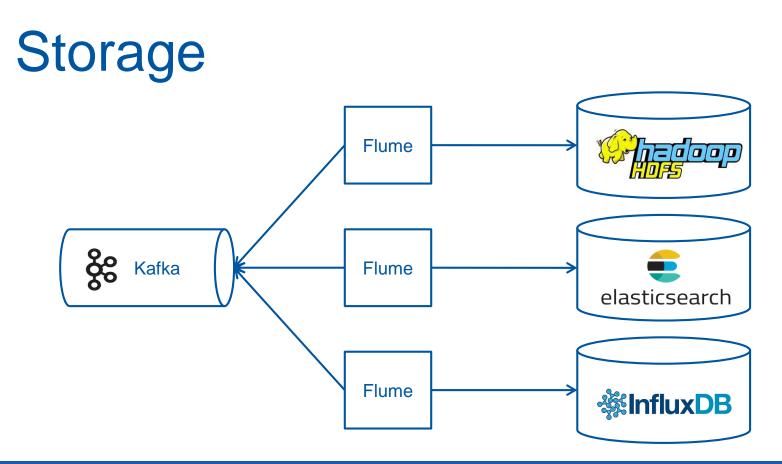
Current Version - 16/11/2017, 10:57:36

R

ID	/spark-ddm-structure-streaming		💊 Edit				
Command	/usr/lib/spark/bin/spark-submitdriver-class-path /monit/spark-ddm-aggregation/spark-ddm-aggregation-assembly-1.1.jardriver-java-options "-XX:+UseG1GC"conf						
	spark.streaming.unpersist=trueconf park.serializer="org.apache.spark.serializer.KryoSerializer"principal monitops@CERN.CHdriver-memory 3gkeytab /etc/monit/monitops.keytab						
	packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.1.1 class ch.cern.monitoring.DDMAggregationApplication master local[*] conf spark.ui.port=\$PORT0 / monit/spark-ddm-						
	aggregation/spark-ddm-aggregation-assembly-1.1.jartime-window "1 minute"watermark "7 hours"output-topic ddm_agg_transfercheckpoint						
	hdfs://analytix/project/monitoring/checkpoint/spark-ddm-aggregationinput-brokers-url "monit-kafka.cern.ch:9092"output-brokers-url "monit-kafka.cern.ch:9092"starting-offset latest						
	output-mode updatelog-level INFO						
Constraints	Unspecified						
Dependencies	Unspecified						
Labels	Unspecified						
Resource Roles							
Container	<pre>{ "type": "DOCKER", "volumes": [{ "containerPath": "/etc/hadoop/conf", "hostPath": "/etc/hadoop/conf", "mode": "RO" }, { "containerPath": "/usr/lib/spark", "hostPath": "/usr/lib/spark2", "mode": "RO" }, { "containerPath": "/usr/lib/spark", "hostPath": "/usr/lib/spark2", "mode": "RO" } // ******************</pre>	<pre>"docker": { "image": "gitlab-registry.cern.ch/monitoring/spark-ddm:stable", "network": "HOST", "portMappings": [], "privileged": false, "parameters": [{</pre>					

User model: ~ *server-less*

- User care only for the processing logic
 - PL/SQL is a ~ AWS Lambda ...
- Monitoring infrastructure provides a faulttolerant and fully-orchestrated processing environment
 - Docker for job encapsulation
 - Mesos for orchestration
 - CERN IT Hadoop for execution



A note on data processing

- 18 running jobs
 - 14 streaming (24/7), 4 batch (~ daily)
- 4 developed by users
- User-contract defined by monitoring data schema
- Kafka-only interaction proved a good choice
- Prefer idempotent operations
 - Use document ID (or time) to allow deduplication

Storage

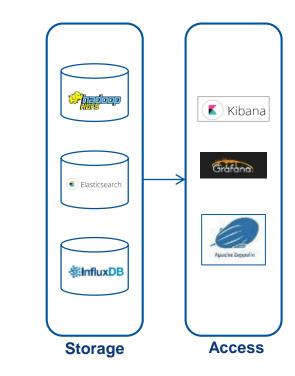
21/11/2017

MONIT @ CERN Database Tutorial

Storage

- HDFS for long-term archive
 - Data kept ~ forever (limited to resources)
- Elasticsearch (ES) for data exploration and discovery
 - Data kept for 1 month
- InfluxDB for time-series dashboards
 - Automatic down-sampling, aggregated data kept for ~ 5 years

Storage workflow

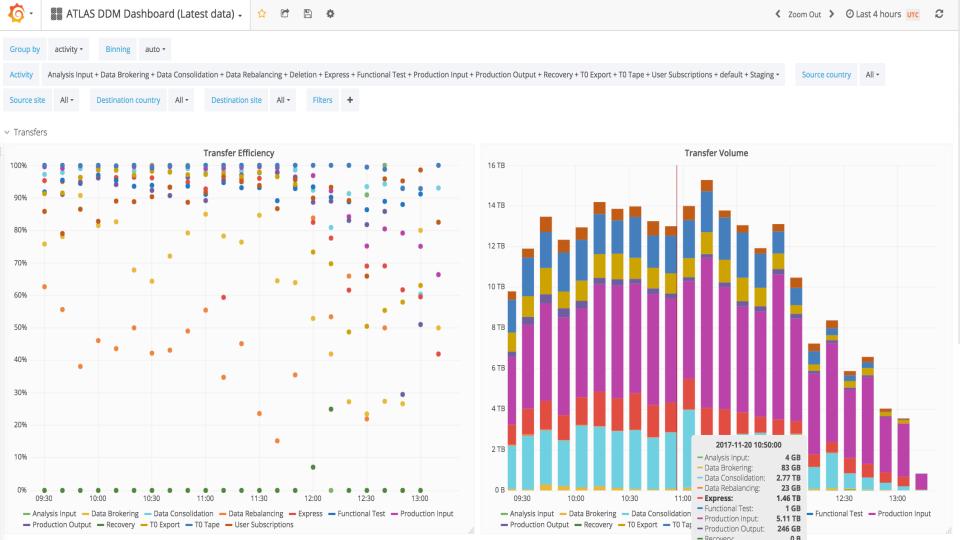

- All data in HDFS
 - /project/monitoring/archive/*/*/2017/11/21/...
 - Compressed JSON (daily compaction in 512 MB files)
 - Parquet for Collectd data
- Selected data sets in InfluxDB and/or ES
 - Using common monitoring schema metadata to route where data is written
 - InfluxDB: from IT DBOD service, several instances
 - More on InfluxDB for Monitoring @ DBOD Workshop
 - ES: two instances from IT Central ES service

Visualization

Technologies

- Grafana for user dashboards
- Kibana for data exploration
- Zeppelin for interactive notebooks

Grafana


- Open-source platform for dashboards
- Support multiple backends
 - e.g. Elasticsearch and InfluxDB
- Advanced visualization features
 - Template / Ad-hoc filters / Autocompletion
 - Advanced query syntax
 - Alarms

monit-grafana.cern.ch

- CERN SSO integrated
- Access to all MONIT data
- Possibility to create custom views mixing metrics/sources
 - e.g. service and data centre monitoring
- Users have control
 - Organizations with roles (Editor, View, ...)
 - Used by WLCG experiments, service managers, etc.

Wrap Up

On CERN IT Hadoop

- Very positive feedback on the service
 - Prompt support, collaboration and expertise
 - More *batch* use cases are coming from monitoring users
- Whish List
 - Faster software-release cycle (e.g. Spark) ?
 - Cluster monitoring may be useful for users
 - More visual analytics / Tableau-like software?

Summary

- *Big data* technologies offer a number of new ways to gather, process, store data
 - Build a stack, take the best from each
- Mainstream technologies evolve fast
 - Stay at speed, profit from community
- CERN IT monitoring relies on several of those technologies for its production workflow

Reference and Contacts

- Docs: cern.ch/monitdocs
- Support: cern.ch/monit-support

