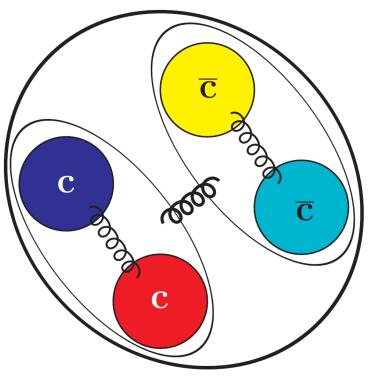


Heavy Tetraquarks

Vinícius Rodrigues Debastiani


Instituto de Física Corpuscular, Universidad de Valencia - CSIC (Spain)

Hadron spectroscopy phenomenology workshop, CERN

vinicius.rodrigues@ific.uv.es

07/11/2017

T_{4c} : The All-Charm Tetraquark

V. R. Debastiani and F. S. Navarra, A non-relativistic model for the \$[cc][\bar{c}\bar{c}]\$ tetraquark, arXiv:1706.07553 [hep-ph].

T_{4c} : The choice

- Few works on literature
 - None using diquark-antidiquark potential model including Pwave systematic treatment of spin-dependent interactions
- Mass \sim 6 GeV
 - > Energy Gap between $c\bar{c}$ and X Y Z (~3-4.5 GeV)
- Could be detected with current technology
 ➢ Might decay mainly in *c̄* pairs or leptons
- Restrictions due to Pauli Exclusion Principle
 Less possibilities on quantum numbers
- Equal masses in 2-body systems
 - Simplifies spin-dependent interactions

T_{4c} : History

- First proposed by Y. Iwasaki in 1975
 - Y. Iwasaki, "A Possible Model for New Resonances-Exotics and Hidden Charm," Prog. Theor. Phys. 54, 492 (1975).
 - Y. Iwasaki, "How to Find η_c and a Possible State $c\bar{c}$ $c\bar{c}$," Phys. Rev. D 16, 220 (1977).
- First study with diquark-antidiquark by K. T. Chao in 1981
 - K. T. Chao, "The (cc)-(\overline{cc}) (Diquark anti-Diquark) States in e^+e^- Annihilation," Z. Phys. C 7, 317 (1981).
- Four-body model in 1982
 - J. P. Ader, J. M. Richard and P. Taxil, "Do Narrow Heavy Multi-Quark States Exist?," Phys. Rev. D 25, 2370 (1982).
 - J. l. Ballot and J. M. Richard, "Four Quark States In Additive Potentials," Phys. Lett. B 123, 449 (1983).
- Potential model and MIT bag in 1985
 - L. Heller and J. A. Tjon, "On Bound States of Heavy $Q^2 \overline{Q}^2$ Systems," Phys. Rev. D 32, 755 (1985).
- Chromomagnetic interaction in 1992
 - B. Silvestre-Brac, "Systematics of $Q^2 \bar{Q}^2$ systems with a chromomagnetic interaction," Phys. Rev. D 46, 2179 (1992).
 - B. Silvestre-Brac and C. Semay, "Systematics of L = 0 $q^2 \bar{q}^2$ systems," Z. Phys. C 57, 273 (1993).

T_{4c} : Recent Works

- Four-body harmonic oscilator Hamiltonian:
 - R. J. Lloyd and J. P. Vary, "All charm tetraquarks," Phys. Rev. D 70, 014009 (2004).
- Hyperspherical harmonic formalism:
 - N. Barnea, J. Vijande and A. Valcarce, "Four-quark spectroscopy within the hyperspherical formalism," Phys. Rev. D 73, 054004 (2006).
- Lattice: tetraquark and meson molecule with $J^{PC} = 1^{--}$ around 6.4 GeV
 - T. W. Chiu et al. [TWQCD Collaboration], "Y(4260) on the lattice," Phys. Rev. D 73, 094510 (2006).
- Production (Single Parton Scattering):
 - A. V. Berezhnoy, A. K. Likhoded, A. V. Luchinsky, A. A. Novoselov, "Double J/psi-meson Production at LHC and 4c-tetraquark state", Phys. Rev. D 84, 094023 (2011),
 - A. V. Berezhnoy, A. V. Luchinsky, A. A. Novoselov, "Heavy tetraquarks production at the LHC", Phys. Rev. D 86, 034004 (2012).
- Bethe-Salpeter formalism
 - W. Heupel, G. Eichmann, C. S. Fischer, "Tetraquark Bound States in a Bethe-Salpeter Approach", Phys. Lett. B 718, 545 (2012).

*T*_{4*c*} : 2016 and 2017

- Production: (Double Parton Scattering):
 - F. Carvalho, E. R. Cazaroto, V. P. Gonçalves, F. S. Navarra, "Tetraquark Production in Double Parton Scattering", Phys. Rev. D 93, no. 3, 034004 (2016).

• QCD SUM RULES:

- W. Chen, H. X. Chen, X. Liu, T. G. Steele, S. L. Zhu, "Hunting for exotic doubly hidden-charm/bottom tetraquark states", Phys. Lett. B 773, 247 (2017).
- Z. G. Wang, ``Analysis of the QQQQ tetraquark states with QCD sum rules," Eur. Phys. J. C 77, no.
 7, 432 (2017).
- Color-Magnetic model (S-wave):
 - J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, "Heavy-flavored tetraquark states with the $QQ\bar{Q}\bar{Q}$ configuration", arXiv:1605.01134 [hep-ph].
- Estimates from meson and baryon masses, production and decays
 - M. Karliner, S. Nussinov and J. L. Rosner $QQ\bar{Q}\bar{Q}$ states: masses, production, and decays, Phys. Rev. D 95, no. 3, 034011 (2017).
- Stability check

J. M. Richard, A. Valcarce and J. Vijande, ``String dynamics and metastability of all-heavy tetraquarks," Phys. Rev. D 95, no. 5, 054019 (2017).

Diquarks

• Internal clusters, color state: $|q\overline{q}\rangle: 3\otimes\overline{3} = 1\oplus 8$

- SU(3) color symmetry of QCD $|qq\rangle: 3 \otimes 3 = \overline{3} \oplus 6$ $|\overline{qq}\rangle: \overline{3} \otimes \overline{3} = 3 \oplus \overline{6}$

- Factorization of many-body problem:
 - Baryons: diquark-quark
 - Explain missing resonances
 - Tetraquarks: diquark-antidiquark
 - Heavy-light systems for X Y Z exotics:

 $[Qq] - [\overline{Q}\overline{q}], \ Q \in (c,b), \ q \in (u,d,s)$

The Model

- Nonrelativistic:
 - Cornell-like Potential
 - Schrödinger equation
- Allows clear manipulation of:
 - Wavefunctions
 - Quantum numbers
 - Spin-dependent interactions
 - Radial and orbital excitations
- Successfull reproduction of Charmonium spectrum
- First step to guide:
 - Experimental searches
 - More precise models

$$(\hbar = c = 1)$$
$$\left[\frac{1}{2\mu} \left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2}\right) + V^{(0)}(r)\right] y(r) = E y(r)$$

$$V^{(0)} = V_V^{(0)} + V_S^{(0)}$$

$$V^{(0)}(r) = \kappa_s \frac{\alpha_s}{r} + br$$

$$3 \otimes \overline{3} \longrightarrow 1 : \kappa_s = -4/3$$
$$3 \otimes 3 \longrightarrow \overline{3} : \kappa_s = -2/3$$

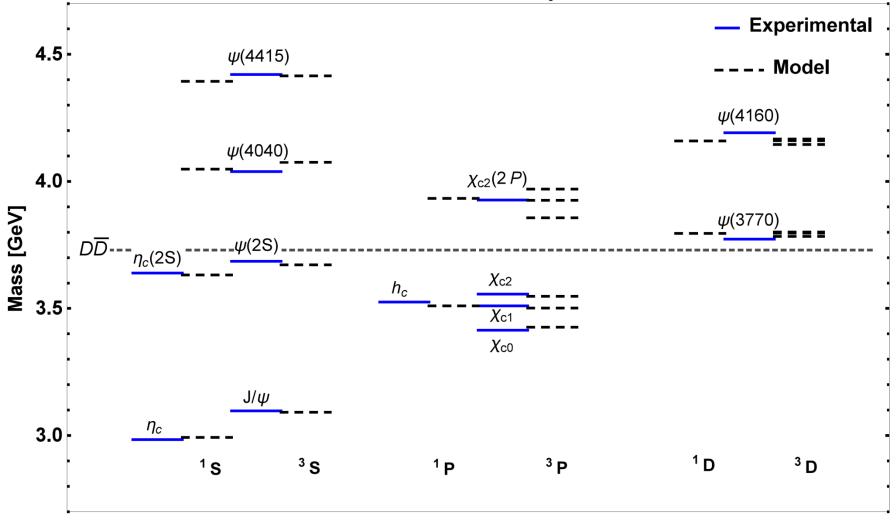
$$M(c\bar{c}) = 2m_c + E_{c\bar{c}} + \langle V_{Spin}^{(1)} \rangle_{c\bar{c}}$$

A good description of charmonium spectrum can be obtained with

Spin-spin as zeroth-order smeared by a Gaussian (new parameter σ).

$$V^{(0)}(r) = \kappa_s \frac{\alpha_s}{r} + br - \frac{8\pi\kappa_s\alpha_s}{3m_c^2} \left(\frac{\sigma}{\sqrt{\pi}}\right)^3 e^{-\sigma^2 r^2} S_1 \cdot S_2$$

Spin-orbit and Tensor as first-order pertubative corrections.


$$V^{(1)}(r) = \left(-\frac{3\kappa_s\alpha_s}{2m^2}\frac{1}{r^3} - \frac{b}{2m^2}\frac{1}{r}\right) L \cdot S + -\frac{\kappa_s\alpha_s}{4m^2}\frac{1}{r^3}S_{12}$$
$$S_{12} = 4[3(S_1 \cdot \hat{r})(S_2 \cdot \hat{r}) - S_1 \cdot S_2]$$

We have made a FIT in all charmonium well-stablished states, including $h_c(1P)$ and $\chi_{c2}(2P)$, obtaining:

 $m_c = 1.4622 \text{ GeV}, \ \alpha_s = 0.5202, \ b = 0.1463 \text{ GeV}^2, \ \sigma = 1.0831 \text{ GeV}$

T. Barnes, S. Godfrey and E. S. Swanson, "Higher charmonia," Phys. Rev. D 72, 054026 (2005).

Charmonium Mass Spectrum

 $m_c = 1.4622 \text{ GeV}, \, \alpha_s = 0.5202, \, b = 0.1463 \text{ GeV}^2, \, \sigma = 1.0831 \text{ GeV}$

Nice agreement!

Diquark $V_{cc} = \frac{1}{2}V_{c\bar{c}}$

- We use the same parameters, but color factor -2/3 instead of -4/3, and also half of the string tension: $b_{cc} = b_{c\bar{c}}/2$
- Identical fermions $cc \rightarrow$ anti-symmetric wavefuncion

• S-wave:
$$\begin{cases} \overline{\mathbf{3}} \to \mathbf{S} = \mathbf{1} \\ \mathbf{6} \to \mathbf{S} = \mathbf{0} \end{cases} \qquad M(cc) = 2m_c + E_{cc} + \langle V_{Spin}^{(1)} \rangle_{cc}$$

• Ground state Antitriplet Color diquark \rightarrow Spin 1 (1³S₁), like J/ ψ

	N^{2S}	$S^{+1}\ell M^{(0)}$	⁰⁾ [GeV	[] R(0)	$ ^2 [GeV]$	V^3] $\langle z \rangle$	$\langle r^2 \rangle^{1/2}$ [fi	m] $\left\langle \frac{v}{c} \right\rangle$	$\left \frac{2}{2}\right\rangle$	
	1 ³	S	3.133 4	1	0.32	96	0.59	93 0.1	23	
	1^{1}	Р	3.353	0		0	0.9	06 0.1	41	
$N^{2S+1}\ell_J$	$\langle T \rangle$	$\langle V_V^{(0)} \rangle$	$\langle V_S^{(0)} \rangle$	$\langle V_{SS}^{(0)} \rangle$	$E^{(0)}$	$M^{(0)}$) [MeV]	$\langle V_{LS}^{(1)} \rangle$	$\langle V_T^{(1)} \rangle$	M^f [MeV]
1^3S_1	180.4	-173.9	197.9	4.7	209.0		3133.4	0	0	3133.4
$1^{1}P_{1}$	206.7	-93.3	316.2	-0.9	428.7		3353.0	0	0	3353.0

Tetraquark

- Same parameters of charmonium, with diquark mass
- Two-body problem $M(T_{4c}) = m_{cc} + m_{\bar{c}\bar{c}} + E_{[cc][\bar{c}\bar{c}]} + \langle V_{Spin}^{(1)} \rangle_{[cc][\bar{c}\bar{c}]}$
- Only diquark 1^3S_1 are used to build the tetraquark
- Spin 1 x Spin 1 \rightarrow New quantum numbers!
- We also include between diquark-antidiquark:

✓ Orbital excitation

(negative Parity!)

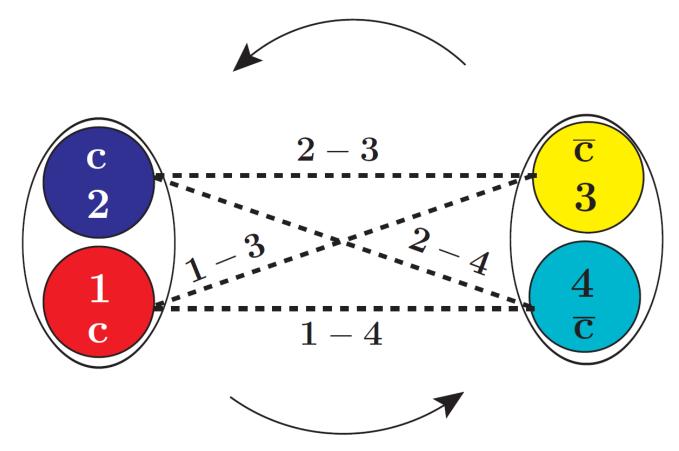
✓ Radial excitation

$$C_T = (-1)^{L_T + S_T}$$
$$P_T = (-1)^{L_T}$$

We can get one EXOTIC quantum number

S_T	L_T	J_T	J^{PC}
0	0	0	0^{++}
1	0	1	1^{+-}
2	0	2	2^{++}
0	1	1	1
1	1	2	2^{-+}
1	1	1	1^{-+}
1	1	0	0^{-+}
2	1	3	3
2	1	2	$2^{}$
2	1	1	1

√1⁻⁺


• Spin 1 x Spin 1 \rightarrow Spin-Spin and Spin-Orbit easy! S₁ · S₂ L · S

 \rightarrow What about the Tensor? Spherical Representation of the Tensor $\mathbf{S_{12}} = 4[3(\mathbf{S_1} \cdot \hat{\mathbf{r}})(\mathbf{S_2} \cdot \hat{\mathbf{r}}) - \mathbf{S_1} \cdot \mathbf{S_2}] = 4[T_0 + T_0' + T_1 + T_{-1} + T_2 + T_{-2}]$ $Y_2^0 = \sqrt{\frac{5}{4\pi} (\frac{3}{2} \cos^2 \theta - \frac{1}{2})}$ $T_0 = (3\cos^2\theta - 1) S_{1z} S_{2z}$ $T'_0 = -\frac{1}{4}(3\cos^2\theta - 1)(S_{1+}S_{2-} + S_{1-}S_{2+})$ $Y_2^{-1} = +\sqrt{\frac{15}{8\pi}}(\sin\theta\cos\theta)e^{-i\varphi}$ $T_1 = \frac{3}{2}\sin\theta\cos\theta e^{-i\varphi} \left(S_{1z}S_{2+} + S_{1+}S_{2z}\right)$ $Y_2^1 = -\sqrt{\frac{15}{8\pi}}(\sin\theta\cos\theta)e^{i\varphi}$ $T_{-1} = \frac{3}{2}\sin\theta\cos\theta e^{i\varphi} \left(S_{1z}S_{2-} + S_{1-}S_{2z}\right)$ $Y_2^{-2} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^2 \theta e^{-2i\varphi}$ $T_2 = \frac{3}{4} \sin^2 \theta e^{-2i\varphi} S_{1+} S_{2+}$ $Y_2^2 = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^2 \theta e^{2i\varphi}$ $T_{-2} = \frac{3}{4} \sin^2 \theta e^{2i\varphi} S_{1-} S_{2-}$ $\ell' = \ell, \ell - 2, \ell + 2$ $\int Y_{\ell'}^{m'*}(\theta,\varphi)Y_2^q(\theta,\varphi)Y_\ell^m(\theta,\varphi)\mathrm{d}\Omega$ m' = m + q

The Tetraquark Wavefunction

$$\begin{split} [(S_d = 1) \otimes (S_{\bar{d}} = 1) \rightarrow (S_T = 1)] \otimes (L_T = 1) \longrightarrow |J_T, M_{J_T}\rangle &= |0, 0\rangle_{J_T} \\ &= \frac{1}{\sqrt{3}} |1, 1\rangle_{S_T} \otimes |1, -1\rangle_{L_T} - \frac{1}{\sqrt{3}} |1, 0\rangle_{S_T} \otimes |1, 0\rangle_{L_T} + \frac{1}{\sqrt{3}} |1, -1\rangle_{S_T} \otimes |1, 1\rangle_{L_T} \\ &= \frac{1}{\sqrt{3}} \Big(\frac{1}{\sqrt{2}} |1, 1\rangle_{12} \otimes |1, 0\rangle_{34} - \frac{1}{\sqrt{2}} |1, 0\rangle_{12} \otimes |1, 1\rangle_{34} \Big) Y_1^{-1}(\theta, \varphi) \\ &\quad - \frac{1}{\sqrt{3}} \Big(\frac{1}{\sqrt{2}} |1, 1\rangle_{12} \otimes |1, -1\rangle_{34} - \frac{1}{\sqrt{2}} |1, -1\rangle_{12} \otimes |1, 1\rangle_{34} \Big) Y_1^0(\theta, \varphi) \\ &\quad + \frac{1}{\sqrt{3}} \Big(\frac{1}{\sqrt{2}} |1, 0\rangle_{12} \otimes |1, -1\rangle_{34} - \frac{1}{\sqrt{2}} |1, -1\rangle_{12} \otimes |1, 0\rangle_{34} \Big) Y_1^1(\theta, \varphi) \\ &= \frac{1}{\sqrt{3}} \Big(\frac{1}{2} (\uparrow\uparrow\uparrow\downarrow\downarrow + \uparrow\uparrow\downarrow\uparrow - \uparrow\downarrow\uparrow\uparrow\uparrow - \downarrow\uparrow\uparrow\uparrow\uparrow) \Big) Y_1^{-1}(\theta, \varphi) \\ &\quad - \frac{1}{\sqrt{3}} \Big(\frac{1}{\sqrt{2}} (\uparrow\uparrow\downarrow\downarrow\downarrow - \downarrow\downarrow\uparrow\uparrow\uparrow) \Big) Y_1^0(\theta, \varphi) \\ &\quad + \frac{1}{\sqrt{3}} \Big(\frac{1}{2} (\uparrow\uparrow\uparrow\downarrow\downarrow + \downarrow\uparrow\downarrow\downarrow - \downarrow\downarrow\uparrow\downarrow - \downarrow\downarrow\downarrow\uparrow) \Big) Y_1^1(\theta, \varphi) \end{split}$$

The tensor acting in the diquark-antidiquark system with relative orbital angular momentum

- Within the 2-body approximation of point-like diquarks, it is equivalent:
 - One tensor acting between two spin 1 constituents: $[CC] [\overline{C}\overline{C}]$
 - Four tensors acting between two spin $\frac{1}{2}$ constituents: each $\mathcal{C}\overline{\mathcal{C}}$ pair

- The four $\mathcal{C}\overline{\mathcal{C}}$ pairs yield the same result due to the symmetry of the angular wavefunctions

For consistence, $c\bar{c}$ pair thresholds are calculated with model predictions for $c\bar{c}$ mass.

- 0^{++} might be just a few MeV under the $\eta_c \eta_c$ threshold.
- 1⁺⁻ is below the $\eta_c J/\psi$ threshold, and can't decay in $\eta_c \eta_c$ 2⁺⁺ is below the $J/\psi J/\psi$ threshold, but can decay to $\eta_c \eta_c$ in *D*-wave.

TABLE IX: Results for T_{4c} masses using ground state (1^3S_1) diquarks. Parameters are $m_{cc} = 3133.4$ GeV, $\alpha_s = 0.5202$, b = 0.1463 GeV², $\sigma = 1.0831$ GeV.

	$\overline{N^{2S+1}\ell_J}$		(1, 7, (0))	$(\mathbf{T}_{\mathbf{Z}}(0))$	(1, 7, (0))	$\mathbf{r}^{(0)}$	$\lambda_{I}(0)$ [λ_{I} λ_{I}]	$({\bf T}_{Z}(1))$	$({\bf T}_{Z}(1))$		
		(/	$\langle V_V^{(0)} \rangle$		$\langle V_{SS}^{(0)} \rangle$					M^f [MeV] J^{PC}	
	$1^{1}S_{0}$					-297.3	5969.4	0	0	$5969.4 0^{++}$	
	$1^{3}S_{1}$	574.8	-928.0	157.6	-50.2	-245.8	6020.9	0	0	$6020.9 1^{+-}$	S-wave
	$1^5 S_2$	479.4	-847.5	172.5	44.3	-151.3	6115.4	0	0	$6115.4\ 2^{++}$	
	$1^{1}P_{1}$	372.6	-371.8	325.3	-15.8	310.3	6577.1	0	0	$6577.1 \ 1^{}$	ר ר
	$1^{3}P_{0}$	358.9	-364.3	330.7	-7.4	318.0	6584.7	-59.4	-44.8	$6480.4 \ 0^{-+}$	
	$1^{3}P_{1}$	358.9	-364.3	330.7	-7.4	318.0	6584.7	-29.7	22.4	$6577.4 \ 1^{-+}$	
	$1^{3}P_{2}$	358.9	-364.3	330.7	-7.4	318.0	6584.7	29.7	-4.5	$6609.9 \ 2^{-+}$	P-wave
	$1^{5}P_{1}$	335.4	-350.8	340.7	6.4	331.7	6598.4	-75.9	-27.2	$6495.4 \ 1^{}$	
	$1^{5}P_{2}$	335.4	-350.8	340.7	6.4	331.7	6598.4	-25.3	27.1	$6600.2 \ 2^{}$	
	$1^{5}P_{3}$	335.4	-350.8	340.7	6.4	331.7	6598.4	50.6	-7.7	$6641.2 \ 3^{}$	
ſ	$2^{1}S_{0}$	410.8	-397.0	404.6	-21.8	396.6	6663.3	0	0	$6663.3 \ 0^{++}$	
	$2^{3}S_{1}$	408.7	-398.2	408.7	-11.4	407.8	6674.5	0	0	$6674.5 \ 1^{+-}$	S-wave
	$2^5 S_2$	403.0	-400.7	416.8	12.3	431.4	6698.1	0	0	$6698.1 \ 2^{++}$	
	$2^{1}P_{1}$	414.9	-262.9	537.5	-12.0	677.4	6944.1	0	0	$6944.1 \ 1^{}$	7
	$2^{3}P_{0}$	407.8	-260.0	541.2	-5.7	683.3	6950.0	-47.9	-35.6	$6866.5 \ 0^{-+}$	
ns	$2^{3}P_{1}$	407.8	-260.0	541.2	-5.7	683.3	6950.0	-23.9	17.8	$6943.9 \ 1^{-+}$	
13	$2^{3}P_{2}$	407.8	-260.0	541.2	-5.7	683.3	6950.0	23.9	-3.6	$6970.4 \ 2^{-+}$	P-wave
	$2^5 P_1$	394.5	-254.2	548.7	5.2	694.3	6961.0	-63.1	-22.2	$6875.6 \ 1^{}$	
	$2^5 P_2$	394.5	-254.2	548.7	5.2	694.3	6961.0	-21.0	22.2	$6962.1 \ 2^{}$	
L	$2^5 P_3$	394.5	-254.2	548.7	5.2	694.3	6961.0	42.1	-6.3	$6996.7 \ 3^{}$	

Radial

Excitations

Comparison with Thresholds

TABLE II. Lowest S-wave two-meson thresholds (MeV) for all J^{PC} quantum numbers.

	J^{PC}	M_1M_2	Model	Exp.
~Below? 5969.4	0++	$\eta_c(1S)\eta_c(1S)$	5984.8	5966.8
<i>Below</i> 6020.9	1+-	$J/\psi(1S)\eta_c(1S)$	6084.1	6080.3
<i>Below</i> 6115.4	2++	$J/\psi(1S)J/\psi(1S)$	6183.4	6193.8
Above 6480.4	0-+	$\eta_c(1S)\chi_{c0}(1P)$	6418.2	6398.1
Above 6577.4	1 ⁻⁺	$\eta_c(1S)\chi_{c1}(1P)$	6494.2	6494.1
Above ~Below? 6577.1 6495.4	1	$\eta_c(1S)h_c(1P)$	6502.9	6508.8
Above 6609.9	2-+	$\eta_c(1S)\chi_{c2}(1P)$		6539.6
6600.2	2	$J/\psi(1S)\chi_{c1}(1P)$	6593.5	6607.6
Above/Below?		Phys. Rev. D	73, 05400	04 (2006).

Errors

- We can roughly estimate the error in charmonium fit by taking $\frac{\sqrt{\chi^2}}{N}$ where N=13 states (input). This yields **6.1 MeV**, too little.
- If we take $\sqrt{\chi^2/N}$ we get **22 MeV**, maybe too much.
- If instead of fitting 13 states, we fit only the 8 states below the DD threshold, the accuracy improves, and the parameters change just a little.
- With this other set of parameters, the tetraquark results are different by about **10 MeV**, but still qualitatively the same.

T_{4c} wavefunctions properties

$N^{2S+1}\ell$	$M^{(0)}$ [GeV]	$ R(0) ^2 \; [\text{GeV}^3]$	$\langle r^2 \rangle^{1/2}$ [fm]	$\left\langle \frac{v^2}{c^2} \right\rangle$
1^1S	5.9694	8.4219	0.232	0.199
1^3S	6.0209	7.8384	0.241	0.183
$1^{5}S$	6.1154	6.6727	0.264	0.153
$1^1 P$	6.5771	0	0.471	0.119
1^3P	6.5847	0	0.478	0.115
$1^5 P$	6.5984	0	0.491	0.107
2^1S	6.6633	2.8414	0.588	0.131
2^3S	6.6745	2.8528	0.595	0.130
$2^5 S$	6.6981	2.8616	0.610	0.129
$2^1 P$	6.9441	0	0.785	0.132
$2^3 P$	6.9500	0	0.790	0.130
$2^5 P$	6.9610	0	0.800	0.126

Is the linear confinement faking a bound state?

- NO. If we turn off the linear confinement and repeat the calculation with the same parameters, we get:
- Diquark $1^3S_1 = 2881.36$ MeV

(lower since we don't the positive contribution of the linear term)

- 0⁺⁺ 5328.4 MeV
- 1⁺⁻ 5374.9 MeV
- 2⁺⁺ 5452.3 MeV
- All S-wave below $\eta_c \eta_c$!
- Close to the results using the Bethe-Salpeter formalism
 - W. Heupel, G. Eichmann, C. S. Fischer, "Tetraquark Bound States in a Bethe-Salpeter Approach", Phys. Lett. B 718, 545 (2012).

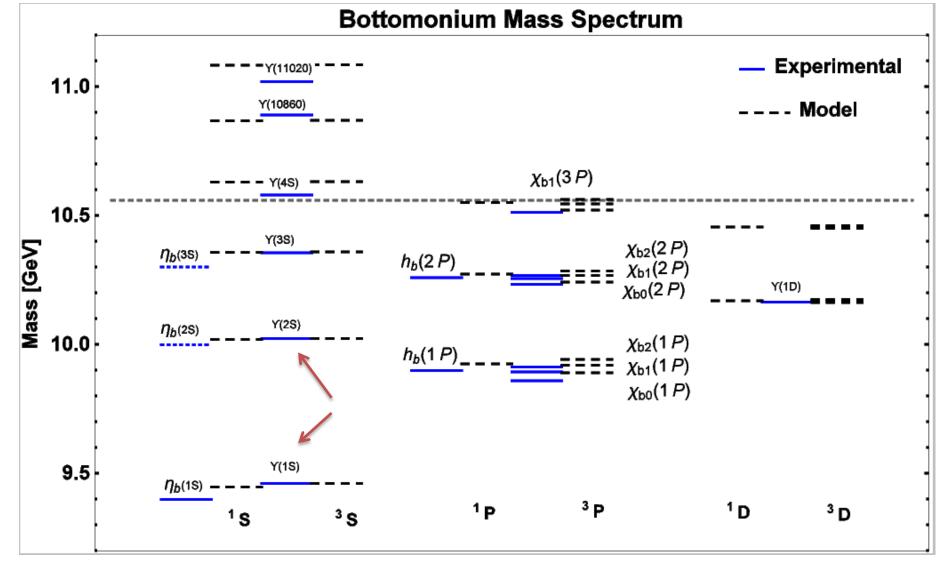
T_{4c} : Comparisons

S-wave

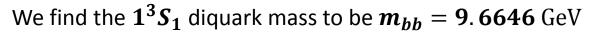
J^{PC}	M_1^f [GeV	M_{1-LS}^f	[GeV]	M_2^f [O	GeV]	ref. [1] ref.	[2]	ret	f. [3]
0++	5.8359	5.90	73	5.96	94	5.966	5.617 –	6.254	6.44	- 7.15
1^{+-}	6.0023	6.01	22	6.02	09	6.051	5.720 -	6.137	6.37	-6.51
2^{++}	6.3352	6.22	21	6.11	54	6.223	5.777 —	6.194	6.5 1	-6.37
P-wav	е									
J^{PC}	$N^{2S+1}\ell_J$	M_1^f [GeV]	M_{1-LS}^f	$_{\rm g} [{\rm GeV}]$	M_2^f	[GeV]	ref. [4]	ref.	[3]	ref. [5]
1	$1^{1}P_{1}$	6.5954	6.5	447	6.5	5771	6.55 - 6.82	6.83 -	6.84	6.420
1	$1^5 P_1$	6.5250	6.4	676	6.4	1954	6.39			

- Ref. [1] : A. V. Berezhnoy, A. V. Luchinsky, A. A. Novoselov, "Heavy tetraquarks production at the LHC", Phys. Rev. D 86, 034004 (2012).
- Ref. [2] : J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, "Heavy-flavored tetraquark states with the $QQ\bar{Q}\bar{Q}$ configuration," arXiv:1605.01134 [hep-ph] (2016).
- Ref. [3] : W. Chen, H. X. Chen, X. Liu, T. G. Steele, S. L. Zhu, "Hunting for exotic doubly hidden-charm/bottom tetraquark states", arXiv:1605.01647 [hep-ph] (2016).
- Ref [4] : K. T. Chao, "The (cc)-(\overline{cc}) (Diquark anti-Diquark) States in e^+e^- Annihilation," Z. Phys. C 7, 317 (1981).
- Ref [5] : T. W. Chiu et al. [TWQCD Collaboration], "Y(4260) on the lattice," Phys. Rev. D 73, 094510 (2006).

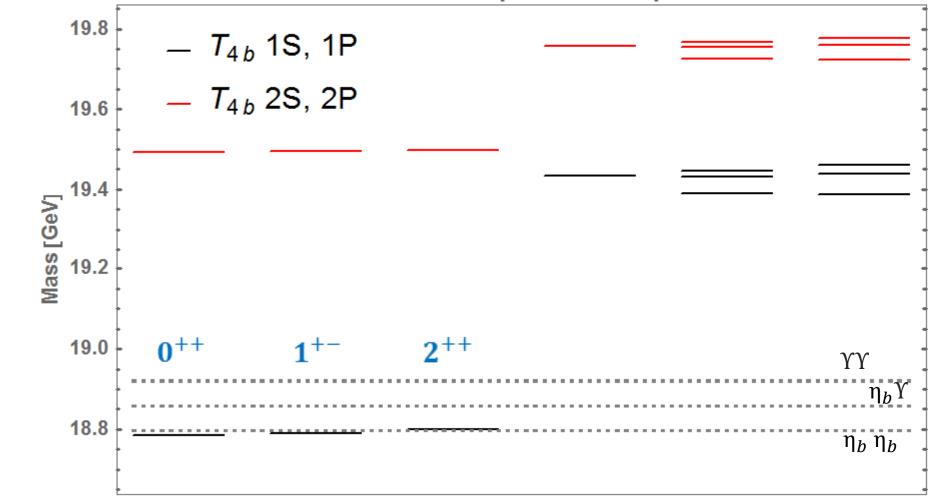
Conclusions for T_{4c}


- **Nonrelativistic** treatment + diquark-antidiquark **2-body** factorization:
 - Wavefunctions, **Orbital** and **Radial** excitations.
 - Contribution of each term of the Potential and Spin-dependent interactions
- Most of the **excited** states are **above** the thresholds for dissociation into $c\overline{c}$ pairs
- The lowest states (1S) might be stable against decay into $c\bar{c}$ pairs \rightarrow Decay into Leptons
- Tetraquarks $[cc] [\overline{cc}]$ are very **compact** and **~Nonrelativistic** ($\langle v^2/c^2 \rangle \sim \leq 0.2$)
 - \sim ~0.3 fm for 1S, ~0.5 fm for 1P and 2S and ~0.8 fm for 2P
 - Smaller than the diquarks $\sim 0.6 \text{ fm} \rightarrow 2$ -body factorization OK?
- The **P-wave** states might be better approximations, since the centrifugal barrier contributes to the **separation between diquark and antidiquark**
- In **S-wave** tetraquarks:
 - The One Gluon Exchange is very strong and dominates over confinement.
 - The Spin-Spin interaction is also very strong even though it has a factor $1/m_{cc}^2$
- Tetraquarks also bind without the linear confinement! Only OGE → Lower masses!

T_{4b} : The All-**Bottom** Tetraquark


• We have some *preliminary* results for the T_{4b}

 Now we fit the bottomonium spectrum to get the parameters


 And repeat the same procedure to get the diquark and tetraquark

- Here we fit **only** $\Upsilon(1S)$ and $\Upsilon(2S)$. Notice that $\Upsilon(3S)$ comes for free!
- To fine-tune the spin-spin splitting and orbital excitations more states need to be included. $m_b = 4.7940 \text{ GeV}, \ \alpha_s = 0.3845, \ b = 0.1729 \text{ GeV}^2, \ \sigma = 0.9200 \text{ GeV}$

All-Bottom Tetraquark Mass Spectrum

Since our $b\overline{b}$ estimates aren't very accurate, we show thresholds with experimental $b\overline{b}$ mass.

 \rightarrow All S-wave T_{4b} tetraquarks could be below the $\eta_b \eta_b$ threshold!

Final remarks: Tcc and Tbb

- The $cc\overline{u}\overline{d}$ and $\overline{b}\overline{b}ud$ seem to be great candidates for manifestely exotic tetraquarks.
- Even tough the diquark-antidiquark assumption can be used, one *cannot* solve the **Schödinger** equation to get the **light diquark**.
- Also, in a two-body problem with *different masses* one should be carefull with the **spin-dependent** terms.
- Adjusting the **parameters** is also a delicate task since it involves three *different* energy scales: heavy-heavy, light-light and heavy-light.
- The **light and heavy diquarks** might **behave differently**. If so, maybe the tetraquark could also rearrenge as: antidiquark-quark-quark, like a baryon 3 body-problem.
- A different strategy is necessary.

Тсс

Their cc diquark = 3306.2 M. Karliner and J. Rosner arXiv		quark = 3133.4 MeV
Contribution	Value (MeV)	
$2m_c^b$	3421.0	2924.4
$2m_q^b$	726.0	
$a_{cc}/(m_c^b)^2$	14.2	4.7
$-3a/(m_q^b)^2$	-150.0	204.2
cc binding	-129.0	204.3
Total	3882.2 ±	= 12 3709.4

Below the D0 D*+ threshold at 3875 MeV and also **below** D0D+gamma at 3734 MeV !

Tbb

Their bb diquark = 10087.0 M. Karliner and J. Rosner arXiv:1		Our bb diquark	= 9664.6 MeV
Contribution	Value	(MeV)	Preliminary!!
$2m_b^b$	-	10087.0	9588.0
$2m_{g}^{b}$		726.0	
$a_{bb}/(m_{b}^{b})^{2}$		7.8	0.9
$-3a/(m_{q}^{b})^{2}$		-150.0	
bb binding		-281.4	75.7
Total		10389.4 ± 1	2 10240,6

Still Below the BB* threshold at 10604 MeV and B- B0bar gamma at 10559 MeV.

Backup Slides

Comparison with Thresholds

Possible decay modes of the $cc\bar{c}\bar{c}$ states by spontaneous dissociation into two charmonium mesons.

J ^{PC}	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), J/\psi J/\psi$	$\eta_c(1S)\chi_{c1}(1P), J/\psi h_c(1P)$
0-+	$\eta_c(1S)\chi_{c0}(1P), J/\psi h_c(1P)$	$J/\psi J/\psi$
0	$J/\psi \chi_{c1}(1P)$	$J/\psi\eta_c(1S)$
1++	_	$J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P), \eta_c(1S)\chi_{c0}(1P)$
1+-	$J/\psi\eta_c(1S)$	$J/\psi \chi_{c0}(1P), J/\psi \chi_{c1}(1P), \eta_{c}(1S)h_{c}(1P)$
1-+	$J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P)$	_
1	$J/\psi \chi_{c0}(1P), J/\psi \chi_{c1}(1P), \eta_c(1S)h_c(1P)$	$J/\psi\eta_c(1S)$

Spin-dependent interactions \rightarrow first-order perturbative corrections

Splitting of states with different quantum numbers

$$\begin{split} V_{SS}^{(1)} &= C_{SS}(r) \ \mathbf{S_1} \cdot \mathbf{S_2} & \text{Spin-Spin} \\ V_{LS}^{(1)} &= C_{LS}(r) \ \mathbf{L} \cdot \mathbf{S} & \text{Spin-Orbit} \\ V_{T}^{(1)} &= C_{T}(r) \left(\frac{(\mathbf{S_1} \cdot \mathbf{r})(\mathbf{S_2} \cdot \mathbf{r})}{\mathbf{r}^2} - \frac{1}{3}(\mathbf{S_1} \cdot \mathbf{S_2}) \right) & \text{Tensor} \end{split}$$

Radial-dependent coefficients calculated with the wavefunction y(r)

$$C_{SS}(r) = \frac{2}{3m^2} \nabla^2 V_V(r) = -\frac{8\kappa_s \alpha_s \pi}{3m^2} \delta^3(r)$$

$$C_{LS}(r) = \frac{1}{2m^2} \frac{1}{r} \left[3 \frac{dV_V(r)}{dr} - \frac{dV_S(r)}{dr} \right] = -\frac{3\kappa_s \alpha_s}{2m^2} \frac{1}{r^3} - \frac{b}{2m^2} \frac{1}{r}$$

$$C_T(r) = \frac{1}{m^2} \left[\frac{1}{r} \frac{dV_V(r)}{dr} - \frac{d^2 V_V(r)}{dr^2} \right] = -\frac{12\kappa_s \alpha_s}{4m^2} \frac{1}{r^3}$$

$$\langle \mathbf{S_{12}} \rangle_{1 \otimes 1 \to S = 2, 1, 0, \ell = 1} \rightarrow \begin{cases} S_T & L_T & J_T & \langle \mathbf{S_{d-\bar{d}}} \rangle \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 \\ 1 & 1 & 2 & -\frac{4}{5} = -0, 8 \\ \hline 0 & 1 & 1 & 2 \\ 1 & 1 & 2 & -\frac{4}{5} = -0, 8 \\ \hline 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 4 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 4 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & -8 \\ \hline 2 & 1 & 3 & -\frac{8}{5} = -1, 6 \\ \hline 2 & 1 & 2 & \frac{28}{5} = 5, 6 \\ \hline 1 & 1 & -\frac{561}{100} = -5, 61 \\ \hline 1 & 1 & 1 & -\frac{561}{100} = -5, 61 \\ \hline 1 & 1 & 1 & -\frac{561}{100} = -5, 61 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1$$

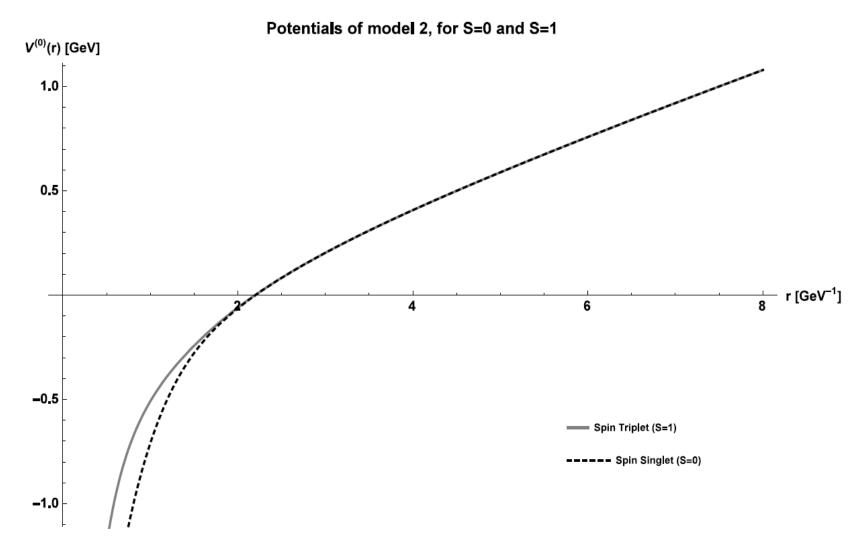
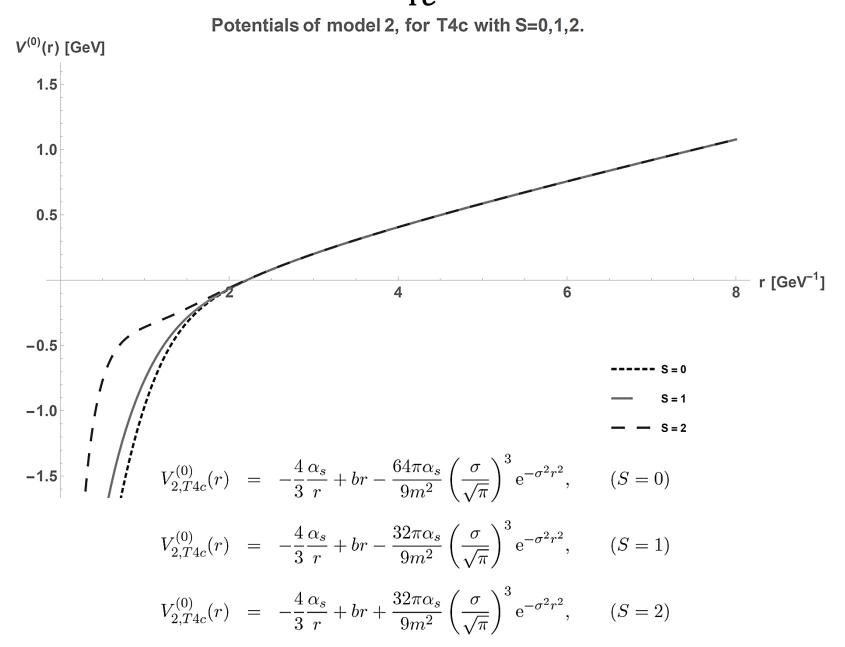



Figure: Potentials of model 2: Coulomb plus linear plus smeared spin-spin, for S = 0 and S = 1. Parameters are $\alpha_s = 0.5285$, b = 0.1458 GeV², $\sigma = 1.1779$

 T_{4c}

Charmonium

$N^{2S+1}\ell$	$M^{(0)}$ [GeV]	$ R(0) ^2 \; [\text{GeV}^3]$	$\langle r^2 \rangle^{1/2}$ [fm]	$\left\langle \frac{v^2}{c^2} \right\rangle$
1^1S	2.9924	1.5405	0.375	0.336
1^3S	3.0917	1.1861	0.421	0.253
$1^1 P$	3.5105	0	0.678	0.257
$1^{3}P$ (c.o.g.)	3.5191	0	0.689	0.246
2^1S	3.6317	0.7541	0.839	0.308
2^3S	3.6714	0.7092	0.867	0.293
1^1D	3.7951	0	0.899	0.280
$1^{3}D$ (c.o.g.)	3.7958	0	0.901	0.278
$2^1 P$	3.9334	0	1.071	0.324
$2^{3}P$ (c.o.g.)	3.9427	0	1.082	0.315
3^1S	4.0481	0.6088	1.210	0.364
3^3S	4.0755	0.5914	1.230	0.357
2^1D	4.1591	0	1.258	0.350
$2^{3}D$ (c.o.g.)	4.1604	0	1.261	0.348
4^1S	4.3933	0.5430	1.531	0.424
4^3S	4.4150	0.5340	1.547	0.419

$N^{2S+1}\ell_J$	$\langle T \rangle$	$\langle V_V^{(0)} \rangle$	$\langle V_S^{(0)} \rangle$	$\langle V_{SS}^{(0)} \rangle$	$E^{(0)}$	$M^{(0)}$ [MeV]	$\langle V_{LS}^{(1)}\rangle$	$\langle V_T^{(1)}\rangle$	M^f [MeV]
$1^{1}S_{0}$	491.9	-584.4	246.2	-85.6	68.1	2992.4	0	0	2992.4
$1^{3}S_{1}$	370.6	-504.0	279.4	21.4	167.4	3091.7	0	0	3091.7
$1^{3}P_{0}$	359.5	-246.6	480.0	2.0	594.8	3519.1	-63.9	-29.4	3425.8
$1^{3}P_{1}$	359.5	-246.6	480.0	2.0	594.8	3519.1	-32.0	14.7	3501.8
$1^{1}P_{1}$	375.2	-253.1	471.1	-7.0	586.2	3510.5	0	0	3510.5
$1^{3}P_{2}$	359.5	-246.6	480.0	2.0	594.8	3519.1	32.0	-2.9	3548.1
$2^{1}S_{0}$	450.6	-287.3	573.8	-29.7	707.4	3631.7	0	0	3631.7
$2^{3}S_{1}$	428.5	-281.7	590.4	9.8	747.1	3671.4	0	0	3671.4
$1^{3}D_{1}$	407.0	-175.4	639.7	0.2	871.5	3795.8	-8.8	-3.9	3783.1
$1^{3}D_{2}$	407.0	-175.4	639.7	0.2	871.5	3795.8	-2.9	3.9	3796.7
$1^{1}D_{2}$	408.8	-175.9	638.5	-0.6	870.8	3795.1	0	0	3795.1
$1^{3}D_{3}$	407.0	-175.4	639.7	0.2	871.5	3795.8	5.9	-1.1	3800.6
$2^{3}P_{0}$	460.4	-186.2	742.1	2.2	1018.4	3942.7	-59.9	-26.1	3856.7
$2^{3}P_{1}$	460.4	-186.2	742.1	2.2	1018.4	3942.7	-29.9	13.0	3925.8
$2^{1}P_{1}$	474.4	-190.8	733.1	-7.5	1009.1	3933.4	0	0	3933.4
$2^{3}P_{2}$	460.4	-186.2	742.1	2.2	1018.4	3942.7	29.9	-2.6	3970.0
$3^{1}S_{0}$	532.8	-215.4	826.5	-20.1	1123.8	4048.1	0	0	4048.1
$3^{3}S_{1}$	521.9	-215.3	837.7	6.9	1151.2	4075.5	0	0	4075.5
$2^{3}D_{1}$	508.6	-145.8	873.0	0.3	1236.1	4160.4	-11.6	-3.7	4145.1
$2^{3}D_{2}$	508.6	-145.8	873.0	0.3	1236.1	4160.4	-3.9	3.7	4160.2
$2^{1}D_{2}$	511.3	-146.5	871.0	-1.0	1234.8	4159.1	0	0	4159.1
$2^{3}D_{3}$	508.6	-145.8	873.0	0.3	1236.1	4160.4	7.7	-1.1	4167.1
$4^{1}S_{0}$	620.4	-179.5	1044.0	-15.8	1469.0	4393.3	0	0	4393.3
$4^{3}S_{1}$	613.2	-180.6	1053.0	5.6	1490.7	4415.0	0	0	4415.0

TABLE III: Results for charmonium $c\bar{c}$ masses from the model. Parameters are $m_c = 1.4622$ GeV, $\alpha_s = 0.5202$, b = 0.1463 GeV², $\sigma = 1.0831$ GeV.

$N^{2S+1}\ell_J$	M^{final} [MeV] Tab. III	$\operatorname{Exp}[76]$ [MeV]	$\Gamma \ [MeV]$	Meson	J^{PC}
$1^{1}S_{0}$	2992.4	2983.4 ± 0.5	31.8 ± 0.8	$\eta_c(1S)$	0^{-+}
$1^{3}S_{1}$	3091.7	3096.900 ± 0.006	0.0929 ± 0.0028	$J/\psi(1S)$	$1^{}$
$1^{3}P_{0}$	3425.8	3414.75 ± 0.31	10.5 ± 0.6	$\chi_{c0}(1P)$	0^{++}
$1^{3}P_{1}$	3501.8	3510.66 ± 0.07	0.84 ± 0.04	$\chi_{c1}(1P)$	1^{++}
$1^{1}P_{1}$	3510.5	3525.38 ± 0.11	0.7 ± 0.4	$h_c(1P)$ [†]	1^{+-}
$1^{3}P_{2}$	3548.1	3556.20 ± 0.09	1.93 ± 0.11	$\chi_{c2}(1P)$	2^{++}
1P (c.o.g.)	(3519.1)	(3525.303)	—	_	_
$2^{1}S_{0}$	3631.7	3639.2 ± 1.2	$11.3^{+3.2}_{-2.9}$	$\eta_c(2S)$	0-+
$2^{3}S_{1}$	3671.4	3686.097 ± 0.025	0.296 ± 0.008	$\psi(2S)$	1
$1^{3}D_{1}$	3783.1	3773.13 ± 0.35	27.2 ± 1.0	$\psi(3770)$	1
$1^{3}D_{2}$	3796.7	—	—	_	$2^{}$
$1^{1}D_{2}$	3795.1	—	—	_	2^{-+}
$1^{3}D_{3}$	3800.6	—	—	_	3
1D (c.o.g.)	(3795.8)	_	_	_	_
$2^{3}P_{0}$	3856.7	_	_	*	0^{++}
$2^{3}P_{1}$	3925.8	_	_	_	1^{++}
$2^{1}P_{1}$	3933.4	_	_	_	1^{+-}
$2^{3}P_{2}$	3970.0	3927.2 ± 2.6	24 ± 6	$\chi_{c2}(2P)$	2^{++}
2P (c.o.g.)	(3942.7)	—	—	_	_
$3^{1}S_{0}$	4048.1	_	_	_	0-+
$3^{3}S_{1}$	4075.5	4039 ± 1	80 ± 10	$\psi(4040)$	1
$2^{3}D_{1}$	4145.1	4191 ± 5	70 ± 10	$\psi(4160)$	1
$2^{3}D_{2}$	4160.2	_	_	_	$2^{}$
$2^{1}D_{2}$	4159.1	_	_	_	2^{-+}
$2^{3}D_{3}$	4167.1	_	_	_	3
2D (c.o.g.)	(4158.9)	_	_	_	_
$4^{1}S_{0}$	4393.3	_	_	_	0^{-+}
$4^{3}S_{1}$	4415.0	4421 ± 4	62 ± 20	$\psi(4415)$	1

TABLE IV: Comparison of charmonium $c\bar{c}$ experimental data and results from the model.

Diquarks

	N^{2S}	$S^{+1}\ell$	$M^{(0)}$ [GeV]	R(0	$) ^{2} [G]$	eV^3]	$\langle r^2 \rangle$	$^{1/2}$ [fr	n] ($\left\langle \frac{v^2}{c^2} \right\rangle$	
	1^3	³ S	3.1	1334		0.3	296		0.5 9)3 (0.123	
	1^{1}	P	3.	3530			0		0.90)6	0.141	-
	2^3	^{3}S	3.	4560		0.5	2370		1.1_{-1}	47	0.167	•
	2^{1}	Р	3.	6062			0		1.39	95	0.190	
N^2	$e^{S+1}\ell_J$	$\langle T \rangle$	$\langle V_V^{(0)} \rangle$	$\langle V_S^{(0)} \rangle$	$\langle V_{SS}^{(0)} \rangle$	$E^{(0)}$	$M^{(0)}$ [[MeV]	$\langle V_{LS}^{(1)} \rangle$	$\langle V_T^{(1)} \rangle$	M^f [M	eV]
1	$^{3}S_{1}$	180.4	-173.9	197.9	4.7	209.0	3	133.4	0	0	313	3.4
1	$^{1}P_{1}$	206.7	-93.3	316.2	-0.9	428.7	3	3353.0	0	0	335	63.0
2	$2^{3}S_{1}$	244.8	-105.7	389.8	2.9	531.7	3	3456.0	0	0	345	6.0
2	$2^{1}P_{1}$	277.5	-72.3	477.9	-1.2	681.9	3	3606.2	0	0	360)6.2

Diquarks: Comparisons

TABLE VII: Results for diquark cc from literature.

$N\ell$	$M_{cc} \; [\text{GeV}]$	$ R(0) ^2 \; [{ m GeV}^3]$	$\langle r^2 \rangle^{1/2}$ [fm]	Ref.
$\mathbf{1S}$	3.13	$(0.523)^{2} = 0.2735$	0.58	[43]
2S	3.47	$(0.424)^2 = 0.1798$	1.12	[43]
2P	3.35	—	0.88	[43]
$\mathbf{1S}$	3.226	—	—	[39]
1S	3.067	_	_	[2] mod. I
$\mathbf{1S}$	3.082	—	_	[2] mod. II
1P	3.523	—	_	$[2] \bmod. I$
1P	3.513	—	_	$[2] \mod$. II
$\mathbf{1S}$	3204.1	_	_	[63]

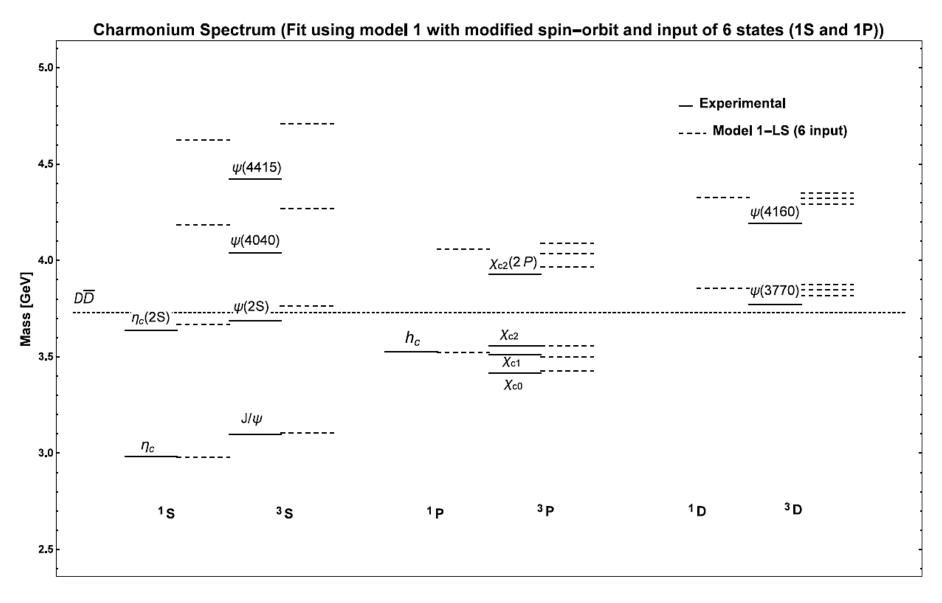


Figure: Spectrum of charmonium with model 1, input of 6 $c\bar{c}$ and modified spin-orbit. Parameters are $m_c = 1.2819$ GeV, $\alpha_s = 0.3289$, b = 0.2150 GeV².