Cosmological simulations and dark matter direct detection

Nassim Bozorgnia

Institute for Particle Physics Phenomenology Durham University

Dark Matter halo

What is the distribution of Dark Matter (DM) in halo of our Galaxy?

Uncertainties in the local DM distribution — large uncertainties in the interpretation of direct detection data.

Dark Matter halo

What is the distribution of Dark Matter (DM) in halo of our Galaxy?

Uncertainties in the local DM distribution —> large uncertainties in the interpretation of direct detection data.

 Standard Halo model (SHM): isothermal sphere with an isotropic Maxwell-Boltzmann velocity distribution with a peak speed equal to the local circular speed (~220 km/s).

Direct detection results

Assumption: **SHM**

Direct detection results

Nassim Bozorgnia DMUK Meeting, Bristol, 17th Jan 2018

Direct detection results

Nassim Bozorgnia DMUK Meeting, Bristol, 17th Jan 2018

Dark Matter only simulations

 DM speed distributions from cosmological N-body simulations without baryons, deviate substantially from a Maxwellian.

• Significant systematic uncertainty since the impact of baryons neglected.

Hydrodynamical simulations

 Each hydrodynamical (DM + baryons) simulation adopts a different galaxy formation model, spatial resolution, DM particle mass.

 Large variation in DM speed distributions between the results of different simulations.

Hydrodynamical simulations

 Each hydrodynamical (DM + baryons) simulation adopts a different galaxy formation model, spatial resolution, DM particle mass.

 Large variation in DM speed distributions between the results of different simulations.

EAGLE and APOSTLE

 We use the EAGLE and APOSTLE hydrodynamic simulations.
 Calibrated to reproduce the observed distribution of stellar masses and sizes of low-redshift galaxies.

Nassim Bozorgnia

DMUK Meeting, Bristol, 17th Jan 2018

Identifying Milky Way analogues

 Identify MW-like galaxies by taking into account observational constraints on the MW, in addition to the mass constraint: rotation curves [locco, Pato, Bertone, 1502.03821], total stellar mass.

Dark Matter density profiles

• Spherically averaged DM density profiles of the MW analogues:

Dark Matter density profiles

• Spherically averaged DM density profiles of the MW analogues:

 To find the DM density at the position of the Sun, consider a torus aligned with the stellar disc.

$$\rho_{\chi}$$
 = 0.41 - 0.73 GeV/cm³

Bozorgnia et al., 1601.04707

Local speed distributions

In the galactic rest frame:

Local speed distributions

In the galactic rest frame:

- Maxwellian distribution with a free peak provides a better fit to haloes in the hydrodynamical simulations compared to their DMO counterparts.
- Best fit peak speed:

Local speed distributions

Common trends in different hydrodynamical simulations:

- Baryons deepen the gravitational potential in the inner halo, shifting the peak of the DM speed distribution to higher speeds.
- In most cases, baryons appear to make the local DM speed distribution more Maxwellian.

Bozorgnia & Bertone, 1705.05853

How common are dark disks?

 $f(v_r) [10^{-3} (km/s)^{-1}]$

 Only two haloes have a rotating DM component in the disc with mean velocity comparable to that of the stars.

Hint for the existence of a co-rotating dark disk in 2 out of 14 MW analogues.

How common are dark disks?

 Only two haloes have a rotating DM component in the disc with mean velocity comparable to that of the stars.

Hint for the existence of a co-rotating dark disk in 2 out of 14 MW analogues.

• Sizable dark disks also rare in other hydro simulations:

 $(v_r) [10^{-3} (km/s)^{-1}]$

 They only appear in simulations where a large satellite merged with the MW in the recent past, which is robustly excluded from MW kinematical data.

The halo integral

• For standard spin-independent and spin-dependent interactions:

$$\eta(v_{\min}, t) \equiv \int_{v > v_{\min}} d^3 v \ \frac{f_{\det}(\mathbf{v}, \mathbf{t})}{v}$$

 Halo integrals for the best fit Maxwellian velocity distribution (*peak speed* 223 - 289 km/s) fall within the I σ uncertainty band of the halo integrals of the simulated haloes.

The halo integral

Common trend in different hydrodynamical simulations:

 Halo integrals and hence direct detection event rates obtained from a Maxwellian velocity distribution with a free peak are similar to those obtained directly from the simulated haloes.

> Bozorgnia et al., 1601.04707 (EAGLE & APOSTLE) Kelso et al., 1601.04725 (MaGICC) Sloane et al., 1601.05402 Bozorgnia & Bertone, 1705.05853

• Assuming the **Standard Halo Model**:

Nassim Bozorgnia DMUK Meeting, Bristol, 17th Jan 2018

• Compare with simulated Milky Way-like haloes:

Nassim Bozorgnia DMUK Meeting, Bristol, 17th Jan 2018

Fix local ρ_{χ} =0.3 GeV cm⁻³

- Difference in the local DM density —> overall difference with the SHM.
- Variation in the peak of the DM speed distribution —> shift in the low mass region.

Comparison to other hydrodynamical simulations:

Fix local ρ_X =0.3 GeV cm⁻³

Bozorgnia & Bertone, 1705.05853

Non-standard interactions

• For a very general set of non-relativistic effective operators:

Kahlhoefer & Wild, 1607.04418

$$\frac{d\sigma_{\chi N}}{dE_R} = \frac{d\sigma_1}{dE_R} \frac{1}{v^2} + \frac{d\sigma_2}{dE_R}$$

Non-standard interactions

• For a very general set of non-relativistic effective operators:

Kahlhoefer & Wild, 1607.04418 $\frac{d\sigma_{\chi N}}{dE_R} = \frac{d\sigma_1}{dE_R} \frac{1}{v^2} + \frac{d\sigma_2}{dE_R}$ $\eta(v_{\min}, t) \qquad h(v_{\min}, t) = \int_{v > v_{\min}} d^3v \ v \ f_{det}(\mathbf{v}, t)$

Non-standard interactions

• For a very general set of non-relativistic effective operators:

$$\frac{d\sigma_{\chi N}}{dE_R} = \frac{d\sigma_1}{dE_R} \frac{1}{v^2} + \frac{d\sigma_2}{dE_R}$$

$$\eta(v_{\min}, t) \qquad h(v_{\min}, t) = \int_{v > v_{\min}} d^3v \ v \ f_{det}(\mathbf{v}, t)$$

• Best fit Maxwellian $h(v_{\min})$ falls within the $I \sigma$ uncertainty band of the $h(v_{\min})$ of the simulated haloes.

Summary

- To make precise quantitative predictions for the DM distribution from simulations —> Identify MW analogues by taking into account observational constraints on the MW.
 - Local DM density agrees with local and global estimates.
 - Halo integrals of MW analogues match well those obtained from best fit Maxwellian velocity distributions.
- A Maxwellian velocity distribution with a peak speed constrained by hydrodynamical simulations, and independent from the local circular speed, could be used for the analysis of direct detection data.

Selection criteria for MW analogues

- M_{*} strongly correlated with v_c at 8 kpc, while the correlation of M₂₀₀ with v_c is weaker.
- $M_{\star}(R < 8 \text{ kpc}) = (0.5 0.9)M_{\star}$.
- $M_{\rm tot}(R < 8 \, \rm kpc) = (0.01 0.1) M_{200}$.
- Over the small halo mass range probed, little correlation between M_{DM}(R < 8 kpc) and M₂₀₀.

Departure from isothermal

Nassim Bozorgnia

DMUK Meeting, Bristol, 17th Jan 2018

Searching for dark disks

Is there an enhancement of the local DM density in the **Galactic disc** compared to the **halo**?

Compare the the average \(\rho_{DM}\) in the torus with the value in a spherical shell at 7 < R < 9 kpc.</p>

 $ho_{\rm DM}^{\rm torus}$ is larger than $ho_{\rm DM}^{\rm shell}$ by:

2 – 27% for 10 haloes, greater than 10% for 5 haloes, and greater than 20% for only two haloes.

The increase in the DM density in the disc could be due to the DM halo contraction as a result of dissipational baryonic processes.

Halo shapes

- ► To study the shape of the inner (R < 8 kpc) DM haloes, we calculate the inertia tensor of DM particles within 5 and 8 kpc.</p>
 ⇒ ellipsoid with three axes of length a ≥ b ≥ c.
- Calculate the sphericity: s = c/a.
 - s = 1: perfect sphere. s < 1: increasing deviation from sphericity.
 - At 5 kpc, s = [0.85, 0.95]. At 8 kpc, s lower by less than 10%.
 - Due to dissipational baryonic processes, DM sphericity systematically higher in the hydrodynamic simulations compared to DMO haloes in which s = [0.75, 0.85].

Halo shapes

Describe a deviation from sphericity by the triaxiality parameter:

$$T=\frac{a^2-b^2}{a^2-c^2}$$

0

. 0

• Oblate systems, $a \approx b \gg c \Rightarrow T \approx 0$.

In the hydro case, since inner haloes are very close to spherical, deviation towards either oblate or prolate is small. DMO counterparts have a preference for *prolate* inner haloes.

Parameters of the simulations

Ling et al. Eris NIHAO EFS- EAGLE (HR) APOSTLE (IR) MaGICC GA	AMSES ASOLINE GASOLINE2 ET (ANARCHY) 1 ET (ANARCHY) 2 ASOLINE 4	$\begin{array}{r} 2662 \\ 81213 \\ - \\ 1821 - 3201 \\ 2160, \ 3024 \\ 4849, \ 6541 \\ 5845, \ 5460 \end{array}$	$\begin{array}{c} - \\ 2 \times 10^{4} \\ 3.16 \times 10^{5} \\ 2.26 \times 10^{5} \\ 1.3 \times 10^{5} \\ 2.2 \times 10^{5} \\ 2.2 \times 10^{4} \end{array}$	7.46×10^{5} 9.80×10^{4} 1.74×10^{6} 1.21×10^{6} 5.9×10^{5} 1.11×10^{6} 1.5×10^{5}	200 124 931 350 308 310

Properties of the selected MW analogues

Simulation	Count	$M_{ m star}~[imes 10^{10} { m M}_{\odot}]$	$M_{\rm halo}~[\times 10^{12} {\rm M}_{\odot}]$	$ ho_{\chi} \ [{\rm GeV/cm^3}]$	$v_{\rm peak}~[{\rm km/s}]$
Ling et al.	1	~ 8	0.63	0.37 - 0.39	239
Eris	1	3.9	0.78	0.42	239
NIHAO	5	15.9	~ 1	0.42	192 - 363
EAGLE (HR)	12	4.65 - 7.12	2.76 - 14.26	0.42 - 0.73	232 - 289
APOSTLE (IR)	2	4.48, 4.88	1.64 - 2.15	0.41 - 0.54	223 - 234
MaGICC	2	2.4 - 8.3	0.584, 1.5	0.346, 0.493	187, 273
Sloane <i>et al.</i>	4	2.24 – 4.56	0.68 - 0.91	0.3 - 0.4	185 - 204