PS Impedance Model Status

SPS Injection Losses Review: 30/11/17 B. Popovic Acknowledgements: C. Vollinger, A. Lasheen, H. Damerau

30/11/2017

Overview: Sources of Emittance Blow Up

From A. Lasheen Talk: PS beam injected into SPS : measurements & simulations

Emittance blow-up during splittings

- Longitudinal emittance evaluated at different steps of the splittings
- Measured emittance blow-up during the double splittings for an intensity of $4\times2.0\times10^{11}~\rm ppb$
- Longitudinal emittance blow-up along the batch during splitting with 3x80 MHz cavity gaps open
- The future Multi Harmonic Feedback should be a sufficient mitigation. Nevertheless, the sources of emittance blow-up should be minimized as much as possible (i.e. other impedance sources)

Large impedances at low frequencies

- Coupled bunch instabilities
- Especially the cavities
- Broadband impedance sources
 - Loss of Landau damping

Large impedance sources at high frequencies

Microwave instabilities

Introduction to PS Impedance Model

- Necessary to continue to build & maintain a longitudinal impedance model of the PS machine
- Build CST models for Wakefield & Eigenmode simulations
 - From CATIA files (when available), otherwise 2D drawings
- Confirm Wakefield & Eigenmode simulations with measurement (when possible and required)
 - RF measurements
 - Beam based impedance measurements
- Provide confirmed results for BLonD code
- Identify objects whose impedance can be reduced

Overview of Model Elements so Far

40 & 80 MHz Cavities

- CST Models of the **bare** cavities created
- No feedback system effects
- No HOM couplers or frequency tuners
- 10 MHz Cavity Model developed by G. Favia
- Transmission Line Kickers
 - CST Models of the KFA13, KFA21, KFA45, KFA71 & KFA79 created
 - Compare longitudinal impedances to previous CST models (S. Persichelli, Transverse)
 - Ferrite material from previous CST models (S. Persichelli, Transverse)
- Baseline Magnet Unit Section
 - CST models of the most common pumping manifold & bellows types
- UHV Gate Valves
 - 10 Valves in the PS
 - CST model (including internal mechanisms) created
 - Model confirmed via EM measurements
 - PS Dump
 - CST model of the two identical dumps currently in the machine
 - Working with EN-STI on the replacement dump design to reduce its impedance*

*IWG #14 : https://indico.cern.ch/event/671318/

.

•

40/80 MHz Bare* Cavities: CST Models

40/80 MHz Cavities: Model Summary

- Impedance performance is dominated by feedback systems
 - Necessary to incorporate the effect of feedback systems
 - CST Model is just one small part of the model
- Options proposed for dealing with the feedback
 - Model cavity together with feedback loops as was done with the PS 10 MHz cavity (presented by H. Damerau today)
 - Obtain impedance of 80 MHz cavity using measurements of gap voltage instead of modeling the feedback loops
- Geometry is starting point for the model
- Shape of mechanical short is included
 - Separate model of the mechanical short has been analyzed
- Does not include tuners that adjust frequency
- Does not include HOM dampers
 - Explore how to implement this in Wakefield Simulations

Transmission Line Kickers

- CST models built from old drawings and CATIA
- KFA13, 21, 71 & 79 all contain identical modules
 - KFA13 & KFA21 are identical units
- Important step would be to measure at least one module to benchmark simulations
 - 8C11 Ferrite
 - Using ABP provided definition*
 - Ferrite sample to be characterized

*https://impedance.web.cern.ch/impedance/PS.htm

Transmission Line Kicker Models

30/11/2017

KFA45: Comparing Wakefield Simulation Results

Vacuum Elements of MU Sections (100 Total)

Impedance of Baseline MU Section

UHV Gate Valve: CST Models

- 10 Valves total
- No internal model available
 - Not included in previous model
 - Proprietary
 - Drawn using datasheet
 - Measurements necessary

Previous Impedance Model

New Longitudinal Impedance Model

۲

UHV Gate Valve: Measurement Setup

- Measured using probe method
- Setup closed at both ends
 - Traps travelling wave modes
 - TE_{11p}

- Investigated resonances at
 - 1.2 GHz, 1.34 GHz & 1.5 GHz

UHV Gate Valve: Comparing Measurement & Simulation Results

Preliminary PS Dump Model

- Installed in straight sections 47 & 48
- Main problem modes are 'Coax Cavity'-like
- Simplified moveable dump

Source of :

- Emittance Blow Up
- Microwave Instability

'Coax Cavity'-like Modes

Eigenmode Solver: Front View

30/11/2017

Branko Popovic

Path Forward

- Cavities
 - Implementing the effects of the feedback systems
 - HOM Couplers
 - Validation with measurements
 - **Kickers**

•

- Measure 8C11 Sample
- Ferrite measurement script in development
- 8C11 samples to be machined
- If available, attempt to measure individual kicker modules
- Straight (SD) & Magnet (MU) Sections
 - Begin to model beam instrumentation devices (pickups, BPMs)
 - Confirm counts of passive elements
- **PS** Dump
- Confirm length of actuator & electric connection
- Add realistic material definitions to the moveable dump
- New PS dump design is in progress (EN-STI)
 - Current replacement design is a higher impedance contributor than the current design

Further Elements to add

- Complete survey of straight sections (SD)
- 20 MHz & 200 MHz Cavities
- Septa
- Remaining Kickers
 - KFA4 & KFA28
- Beam instrumentation
 - Wall current monitors
 - Wire scanners
 - Pick-ups
 - Vacuum elements
 - Flanges, bellows, transitions
 - Vacuum report, such as in the SPS, or similar document

Summary

- 1. Cavities are most obvious candidates for admittance blow up
 - Large impedance values
 - Reduction via feedbacks (H. Damerau talk)
- 2. Other sources of impedances
 - Kickers' resonances at low frequency
- 3. Future elements need to be impedance analyzed & reduced when possible
 - Example: New beam dump design
- 4. Wideband impedance sources (Kickers)
 - Reductions in Landau damping
- 5. Microwave instabilities
 - Gate valves
 - Pumping manifolds in magnet unit (MU) sections
- 6. Maintenance of impedance model

Supplemental Slides

Wakefield Simulation of the Closed Mechanical Short

KFA79: Comparing Wakefield Simulation Results

Comparing KFA79 to KFA13

- Inline modules produce a 'forest' of resonances (KFA13)
- Inline modules seem to allow additional modes to build up along beam path

I.E. Higher coupling between modules

KFA13

KFA71: Preliminary Wakefield Simulation Results

- Preliminary Wakefield Results
 - Need to run longer wakelength to further resolve peaks

Frequency / MHz

통 30000

Wake impedance Z [Magnitude]

30/11/2017

UHV Gate Valve: TM₀₁₀ Cavity Mode in the Valve

