

LHC Injectors Upgrade

LHC Injectors Upgrade

Additional (beyond baseline) PS upgrade options

H. Damerau, A. Lasheen SPS injection losses review 30/11/2017

Many thanks to G. Favia, C. Rossi, E. Shaposhnikova

Overview

- Introduction
- Observations motivating additional upgrades
 - Open issues with beam
 - Observations of limitations with feedbacks
- Higher-harmonic Landau RF system
 - Beam tests and expected benefits
 - RF system parameters
- Additional RF systems
 - Feasibility of adiabatic bunch shortening at PS-SPS transfer
 - Potential voltage and frequency ranges
- Summary

Introduction and motivation

Issues with LHC-type beams in the PS, even with partly implemented longitudinal LIU improvements

- 1. Preserve longitudinal beam quality at highest intensities
 - Coupled-bunch instabilities at $N_b > 2 \cdot 10^{11}$ ppb
 - Uncontrolled emittance blow-up
- 2. Avoid bunch shape distortion of caused by bunch rotation prior to PS-SPS transfer
 - Distorted bunch distribution at PS ejection due to rotation
- \rightarrow Difficult to reach $N_{\rm b}$ = 2.6 \cdot 10¹¹ ppb with LIU baseline improvements

Overview

• Introduction

- Observations motivating additional upgrades
 - Open issues with beam
 - Observations of limitations with feedbacks
- Higher-harmonic Landau RF system
 - Beam tests and expected benefits
 - RF system parameters
- Additional RF systems
 - Feasibility of adiabatic bunch shortening at PS-SPS transfer
 - Potential voltage and frequency ranges
- Summary

Longitudinal emittance along batch

- Above bunch intensities of 2 · 10¹¹ ppb beam quality degrades
- Emittance along batch increase

 \rightarrow Again first few bunches much less affected than tail of batch

Quadrupole oscillations after transition

- **Emulating higher intensity by** increasing density $N_{\rm b}/\varepsilon_{\rm l}$
- \rightarrow Quadrupole instabilities observed right after transition crossing

ε₁,90%:

0.95 eVs

0.5

0.4

0.3

0.2

0.0

Mode amplitude [ns]

 \rightarrow Measurements at 4 \cdot 2.0 \cdot 10¹¹ ppb

Nominal emittance: $\varepsilon_{1,90}\%$: = 0.95 eVs

9

Mode number, n_b

 \rightarrow No damping from coupled-bunch feedback

• Stop RF manipulations at flat-top to observe evolution of stability

- Dipole coupled bunch oscillations build up along the batch $\rightarrow Low 2Q/\omega_0$ impedance source decaying during ~400 ns gap
- Already well developed at start of first splitting manipulation

- Stop RF manipulations at flat-top to observe evolution of stability
- Coupled-bunch feedback enabled → significant improvement

- Stop RF manipulations at flat-top to observe evolution of stability
- Coupled-bunch feedback enabled → significant improvement

- Dipole coupled-bunch oscillations well damped
- Again quadrupolar oscillations at ~4 · 2 · 10¹¹ ppb
 → Not damped by feedback system? → Mode analysis

Quadrupole oscillations with feedback?

Side-bands at ±2*f*_S also pass the filters of the coupled-bunch feedback
 → BUT: phase advance wrong (set for dipole oscillation damping)

• Detrimental effect of 80 MHz cavity impedance, $N_b = 2.2 \cdot 10^{11}$ ppb

Bunch length and emittance degradation along the batch

 → With minimum number of high frequency cavities
 → Well below bunch intensities of N_b = 2.6 · 10¹¹ ppb

CERN

Overview

- Introduction
- Observations motivating additional upgrades
 - Open issues with beam
 - Observations of limitations with feedbacks
- Higher-harmonic Landau RF system
 - Beam tests and expected benefits
 - **RF system parameters**
- Additional RF systems
 - Feasibility of adiabatic bunch shortening at PS-SPS transfer
 - Potential voltage and frequency ranges
- Summary

High-frequency cavity as Landau RF system

- Proof-of-principle test adding 20/40 MHz at flat-top in 2016
 - \rightarrow Nominal intensity of $4 \cdot 1.3 \cdot 10^{11}$ ppb without coupled-bunch feedback
 - → Bunch shortening (BS, in-phase) and lengthening (BL, counter-phase)

→ No significant stability change in BL mode

High-frequency cavity as Landau RF system

- Proof-of-principle test adding 20/40 MHz at flat-top in 2016
 - \rightarrow Nominal intensity of $4 \cdot 1.3 \cdot 10^{11}$ ppb without coupled-bunch feedback
 - → Bunch shortening (BS, in-phase) and lengthening (BL, counter-phase)

 \rightarrow Similar condition than in the SPS with 200/800 MHz RF systems

E. Shaposhnikova et al., PAC2005

Damping of quadrupole instability

- $\rightarrow N_{b} = 4 \cdot 2 \cdot 10^{11}$ ppb together with dipole coupled-bunch feedback
- → Bunch shortening (BS, in-phase) and lengthening (BL, counter-phase)
- \rightarrow Reduce higher-harmonic voltage down to ratio $V_{40 \text{ MHz}}/V_{10 \text{MHz}} = 0.1$

 \rightarrow Encouraging results with combination 10 MHz/40 MHz

Robustness of Landau cavity approach

• Few parameters: harmonic number, RF voltage and phase

 \rightarrow Scan to explore parameter sensitivity

→ Damp dipole and higher-order mode instabilities simultaneously
→ Robust with respect to relative phase

Landau cavity during acceleration?

- Existing 40 MHz cavities optimized for large RF voltage (~300 kV) at fixed frequency
- Measurements to explore frequency range at low RF voltage

→ Frequency limits confirmed with beam tests
→ Insufficient → Need dedicated RF system for Landau damping

Harmonic number ratio for dedicated cavity

• 1st order calculation: *f*_s distribution during acceleration

Possible harmonic number ratio

Synchrotron frequency spread versus emittance

 \rightarrow 3rd harmonic not very efficient, 5th harmonic too high for 1.4 eVs \rightarrow 4th harmonic (*h* = 84) seems interesting compromise

CERN

Possible Landau RF system parameters

Frequency ranges and preliminary RF voltages

	$\Delta f/f$ [%]	$h_2/h_1 = 3, h = 63$	$h_2/h_1 = 4, h = 84$	$h_{2}/h_{1} = 5, h = 105$
2 GeV to 26 GeV	5.3	28.4930.04 MHz	37.9840.05 MHz	47.4850.07 MHz
Transition to 26 GeV	1.3	29.6530.04 MHz	39.5340.05 MHz	49.4250.07 MHz
RF voltage		~ 6080 kV (<i>V</i> 2/ <i>V</i> 1 = 0.30.4)	~ 4050 kV (<i>V</i> 2/ <i>V</i> 1 = 0.20.25)	< <mark>40 kV</mark> (V2/V1 < 0.2)

- Vaccum cavity similar to 40 MHz with ferrite tuners?
 - → Moderate voltage, relatively large tuning range and duty cycle
- Technically feasible, similar RF systems exist, e.g.:
 - → FNAL Main Injector: 55 kV, 37.8...52.8 MHz $(\Delta f/f \sim 30\%)$ \rightarrow FNAL Booster:
 - \rightarrow CERN study:

- 240 kV, 52.8...53.1 MHz $(\Delta f/f \sim 0.6\%)$ up to 60 kV, 18...40 MHz $(\Delta f/f \sim 70\%)$
- Launch study for conceptual technical design of RF system?

Overview

- Introduction
- Observations motivating additional upgrades
 - Open issues with beam
 - Observations of limitations with feedbacks
- Higher-harmonic Landau RF system
 - Beam tests and expected benefits
 - **RF system parameters**
- Additional RF systems
 - Feasibility of adiabatic bunch shortening at PS-SPS transfer
 - Potential voltage and frequency ranges

Adiabatic bunch shortening

-2

-3

-2 -1

0

Φ

1

2

3

• Assumption: nominal longitudinal emittance of 0.35 eVs

RF voltage	RF voltage	Bunch	Separatrix and 0.35 eVs trajectory
40 MHz [kV]	80 MHz [kV]	length [ns]	
600	0	7.3	
600	600	5.7	
600	900	5.3	
(2160)	(o)	5.3	$\frac{\partial}{\partial t} 0$
(o)	(1210)	5.3	

→ Bunches with 40 MHz alone short enough to fit into 80 MHz wavelength

 \rightarrow Beam test with 600 kV at 40 MHz and 600 kV at 80 MHz

Single-bunch test

• Objective: Check minimum bunch length without intensity effects

→ Measured bunch length with ~0.35 eVs emittance becomes 6 ns
 → Corresponds well to estimate from trajectory of 5.7 ns

Short multi-bunch beams

- LHC 25 ns beam at nominal intensity, $N_b = 1.3 \cdot 10^{11}$ ppb
- Limited by energy from present anode power converters

→ Measured bunch length longer (7.7 ns) than expected (7.3 ns) → Transverse instabilities (probably e-cloud) with short bunches

Matched PS-SPS transfer

→ RF voltage in addition to 600 kV at 40 MHz and 900 kV at 80 MHz for adiabatic compression to 4 ns bunches at PS extraction

- → Longitudinal emittance increase requires excessive RF voltage
- Whichever options is considered:
 - → Important multi-cavity (3...9 cavities) installation
 - \rightarrow Feasible in terms of space and cost?

Overview

- Introduction
- Observations motivating additional upgrades
 - Open issues with beam
 - Observations of limitations with feedbacks
- Higher-harmonic Landau RF system
 - Beam tests and expected benefits
 - RF system parameters
- Additional RF systems
 - Feasibility of adiabatic bunch shortening at PS-SPS transfer
 - Potential voltage and frequency ranges
- Summary

Summary

- Difficulties to reach LIU parameters with baseline upgrades
 - \rightarrow Emittance growth along the batch already at 2.5 GeV
 - $\rightarrow~$ Dipole and quadrupole instabilities above 2 \cdot 10^1 ppb
 - → Uncontrolled longitudinal emittance blow-up along the batch
- Higher-harmonic Landau cavity
 - \rightarrow Proven damping of dipole and quadrupole instabilities at flat-top
 - → Stability beyond coupled-bunch feedback
 - → Potential of even smaller longitudinal emittance for PS
 - $\rightarrow\,$ Needs technical design study to define manpower, cost and schedule
- RF system for adiabatic shortening or reduced bunch rotation
 - → MV range: large multiple cavity installations
 - $\rightarrow\,$ Issues with short bunches in the PS: e-cloud, microwave instabilities
- Open questions and beam studies before LS₂
 - \rightarrow Refine parameter choices for Landau RF system
 - \rightarrow Beam studies with new 40/80 MHz power converters in 2018

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

Spare slides

RF system parameter example

- $6 \times \text{less voltage} \rightarrow 36 \times \text{smaller shunt impedance at constant power}$
- Smaller cavity then present 40 MHz: R/Q \downarrow and Q \downarrow

	Existing	Estimate
	PS 40 MHz	Landau 40 MHz
RF voltage	300 kV _p	50 kV _p
Frequency, <i>f</i> _{res}	40.053 MHz	37.9840.05 MHz
Tuning range	Fixed frequency	Ferrite tuner, 5%
Geometrical parmeter, <i>R_S</i> / <i>Q</i> _o	<u>33</u> Ω	10 Ω
Loaded quality factor, $Q_{ m L}$	~10000	~2000
Shunt impedance, R	~330 kΩ	~20 kΩ
Power for nominal voltage, P	~140 kW	~65 kW

• Cost estimate: ~2 to 3 MCHF

٠

Development time: ~4...5 years

Preliminary, not based on
technical design

Transverse observations (Guido)

• As expected, beam transversely unstable

Wide-band pick-up (SSoo), last turns

Pick-up (SSoo), hor. last 500 turns

- \rightarrow Data yet to be analysed
- → First signals from electron cloud monitor in SS98, but no systematic data taken so far → MD next week
- → Transverse feedback set-up for operation at flat-top → next week

Dephasing test with coupled-bunch feedback ³

→ Scanned phase of signal processing channels trying to act on quadrupole modes of specific mode number

Acceleration of LHC multi-bunch beams

• Longitudinal parameters of the present acceleration cycle

Synchrotron frequency distributions

• Only one MD in 2016: promising → Study systematically in 2017

Ferrite tuner for 80 MHz cavities

Operate 80 MHz cavities for protons and ions simultaneously

- \rightarrow Fast ferrite tuner to switch cavity between p⁺ and Pb⁵⁴⁺ frequencies in PPM ($\Delta f/f = 0.29\%$)
- **Inductively loaded** ٠ coaxial line coupled to cavity with DC bias
- **Prototype on test cavity** validated
- **Difficulties with** installation on C80-08
- \rightarrow Installation on all cavities during LS₂
- \rightarrow Flexibility to operate 3rd 80 MHz with protons

25 ns multi-bunch beam tests

 \rightarrow Move voltage programs to 72-bunch cycle with $N_{\rm b}$ = 1.3 10¹¹ ppb

- Iso-adiabatic rise of both 40 MHz cavities in sequence
 → First C40-78, then C40-77
- Difficulties to pulse the 80 MHz cavities with beam
 - → Maximum voltage of only 100 kV from each cavity
 - \rightarrow C8o-89 weaker than C8o-88

- Bunch length with 600 kV at 40 MHz alone:
 → ~7.7-8 ns (measured) versus 7.3 ns expected
- Adding 200 kV at 80 MHz shortens to ~6.7 ns

