Momentum Aperture and Flat Bottom Losses

H. Bartosik, T. Bohl, K. Cornelis, P. Cruikshank, B. Goddard, V. Kain, K. Li, E. Shaposhnikova, M. Schwarz, J. Repond, G. Papotti, C. Pasquino, F. Velotti

Observation

- □ High intensity run 2017 in the SPS
 - Up 2 x 10¹¹ p⁺ per bunch
 - Comparison 25 ns standard (48 bunches) with BCMS
 - Standard $\varepsilon \sim 4 \ \mu m$, BCMS $\varepsilon \sim 2 \ \mu m$
 - Same longitudinal emittances

Lower losses with lower emittance

- ~ 5 % @ 11 s for BCMS
- ~ 7 % @ 11 s for standard

Theoretical aperture bottleneck with Q20

□ Beam envelope for Q20 with 2 um emittance

- Aperture tight at QD locations with large dispersion
 - Fits loss pattern

Measurement of mechanical aperture at QDs in H

- □ Measured at all QDs except locations *17 and *19
- □ Measurement at 14 GeV, Q26 with 4C bump
- Interpolate orbit at QD location and correct measured max. bump amplitude

Result in mm

 Systematically smaller aperture towards the inside than towards the outside. Aperture on paper 41.5 mm

Result in sigma in Q20

□ 2 um emittance, 2 mm orbit error, 1.5e-3 momentum spread

Aperture: +4.9 σ /-3.8 σ

Result in dp/p in Q20

□ What is radial steering limit?

Aperture: +0.76 % / -0.59 %

Compare to momentum aperture measurement with radial steering

□ Assuming 2 mm orbit error

Probable explanation of asymmetric momentum aperture

□ Transition MBB – SSS(QD): MBB is aligned 4.5 mm to outside

9

MBB – SSS (QD) transition

Comparison of different optics

- Given the aperture
 - Assume 2 um emittance, 1.5e-3 dp/p, 2 mm orbit

Optics	dp/p [%]	Aperture [σ]
Q20	+0.76 / -0.59	+4.9 / - 3.8
Q22	+0.9 / - 0.73	+ 5.8 / - 4.8
Q26	+1.7 / - 1.3	+10.5 / - 8.3

Measured aperture corrected by 5.3 mm

- Difference between negative and positive aperture less pronounced
- Possibly a few locations with pumping port shield flange on QD-MBB transition installed wrongly

Locations to increase aperture

~ 26 locations for LS2

Reason for cutoff: QF aperture not larger than 5 σ

APERTURE INCREASE – IMPACT ON TRANSMISSION

Diffusion

- □ Ideally could have used Q22 need comparable dataset Q20/Q22
- □ Thus : Assume linear diffusion process in the horizontal plane from I_1 to I_2 in Double Gaussian

- □ Use as input: 1.9e+11 ppb; 48 bunches: $\epsilon = 4$ um for standard, $\epsilon = 2$ um for BCMS
- □ Larger losses for 25 ns standard than for BCMS
 - ~ 5 % for BCMS, ~ 7 % for standard

What about emittance growth?

Measurements for BCMS

 \Box Corresponds to < 1 % of loss

Assumption of diffusion to calculate loss improvement with larger aperture

- □ For a given assumption on tail distribution and diffusion rate
 - Adjusted such to end up with 5 % loss @ 11 s with 2 um emittance
 - The gain for larger aperture depends on tail distribution and diffusion rate

Assumption of diffusion to calculate loss improvement with larger aperture

 \square Can fix diffusion rate and tail distribution: needs to give 7 % for ϵ = 4 um

- □ Blue curve gives loss improvement over 11 s as function of diffusion rate for 3.8 $\sigma \rightarrow$ 4.8 σ aperture increase
- \Box > factor 5 improvement for 2 um emittance

SCRAPING MDS

Nature of diffusion? Scraping measurements

□ MD 24th of November

- Q22, 1.5e+11 p+ per bunch, BCMS
- Establish bump at high dispersion QD location for 200 ms and remove it again
- Repeat at later time: bump at same amplitude

- First bump cleans
- Losses from second (third) bump from diffusion

Example: function for H corrector in bump

Results of scraping MD

- Particle amplitudes are growing slowly with time
- The losses at bump 3 are not affected by Q kick removal of uncaptured beam
- Q kick losses reduced by first bump

Results of scraping MD

- Example of measurements of longitudinal profiles during scraping MD
 - Comparison of:
 - Intensity integrated over bunch
 - Intensity integrated over batch
 - Intensity measured by BCT

- MD on 8/11/2017: bump x = 6.8 mm at QD.325 from 550 ms to end flat bottom
 - Bump and loss at QD.325 did not change overall losses
- Flat bottom losses due to uncaptured beam and large amplitude dp/p particles??

Conclusion

- $\hfill\square$ The horizontal aperture is only ~3.8 σ for Q20 and beams of 2 um emittance
 - Aperture limitation due to vacuum flanges at the MBB-QD transition
- Increase of MBB-QD vacuum flange aperture will reduce losses at flat bottom
 - 26 locations are proposed for LS2: estimate 7k CHF per location
- Benefit for the overall transmission cannot be guaranteed, as the nature of the lost particles is not fully understood
 - Particles with large dp/p from inside or outside of bucket?
 - More studies with Q22 required where there is ~1 σ more aperture
- □ An increase of the horizontal aperture is nevertheless in our interest
 - Will give margin for voltage and emittance
 - Now there is (virtually) none for Q20...

EXTRA SLIDES

Possible explanation of asymmetric momentum aperture

QD – **MBB** transition

Pumping port shield

