

LHC Injectors Upgrade

LHC Injectors Upgrade

Impact of LIU-PS (baseline) upgrades

H. Damerau SPS injection losses review

30/11/2017

Many thanks to F. Bertin, G. Favia, S. Hancock, A. Huschauer, A. Lasheen, M. Migliorati, M. Morvillo, M. Paoluzzi, D. Perrelet, C. Rossi, E. Shaposhnikova, H. Timkó, L. Ventura

Overview

- Introduction and motivation
 - Effect of PS beam quality on SPS injection losses
- Present performance
 - Maximum intensity with good and compromised quality
- Impact of longitudinal upgrades
 - 10 MHz feedbacks
 - Wide-band coupled-bunch feedback
 - 20 MHz, 40 MHz and 80 MHz multi-harmonic feedbacks
- Summary

Introduction

- PS Beam quality: essential contribution to losses in SPS
 - Target: 72 bunches with 2.6 · 10¹¹ ppb, $\varepsilon_l = 0.35 \text{ eVs}$, $4\sigma = 4 \text{ ns}$, $\varepsilon_{h/v} = 1.9 \mu \text{m}$
- Transverse
 - Beam size/emittance twice larger than expected after 2 GeV upgrade
 - Instabilities (e.g., e-cloud) controlled by upgraded transverse damper
- Longitudinal
 - Longitudinal emittance is key: 0.35 eVs/bunch
 - Distortion of distribution due to bunch rotation
 - Uncaptured/large amplitude particles
 - Phase jitter of bunches with respect to SPS buckets \rightarrow G. Papotti

Where do we stand? What to expect?

 \rightarrow A. Lasheen

Intensity/beam quality limiting effects in PS

Overview

- Introduction and motivation
 - Effect of PS beam quality on SPS injection losses
 - Present performance
 - Maximum intensity with good and compromised quality
 - Impact of longitudinal upgrades
 - 10 MHz feedbacks
 - Wide-band coupled-bunch feedback
 - 20 MHz, 40 MHz and 80 MHz multi-harmonic feedbacks
 - Summary

Maximum intensity at extraction

- Coupled-bunch feedback significantly improves beam stability
 - → Regularly delivered ~2 · 10¹¹ ppb with nominal longitudinal emittance of $\epsilon_1 = 0.35$ eVs and bunch length of $4\sigma = 4$ ns (Gaussian fit)
 - $\rightarrow\,$ Beam quality as at ~1.3 \cdot 10 11 ppb without feedback

Maximum intensity at extraction

- Coupled-bunch feedback significantly improves beam stability
 - → Regularly delivered ~2 · 10¹¹ ppb with nominal longitudinal emittance of $\epsilon_1 = 0.35$ eVs and bunch length of $4\sigma = 4$ ns (Gaussian fit)
 - $\rightarrow\,$ Beam quality as at ~1.3 \cdot 10 11 ppb without feedback

Degradation of longitudinal beam quality

Parameters at LIU/HL-LHC baseline intensity: $2.6 \cdot 10^{11}$ ppb \rightarrow Additional longitudinal blow-up needed for stabilization

- Bunch length increase along the batch
 - → **Onset** of instability

- Average ε_l at arrival on flat-top:
 o.3 eVs (RMS, 4 final bunches)
- Corresponds to ~0.45...0.5 eVs per bunch in usual convention

 \rightarrow Longitudinal emittance far outside specification of 0.35 eVs

LIU-PS baseline RF upgrades

Limitation		Mitigation		
LongiCoup	tudinal beam stability led-bunch oscillations	 Reduced impedances of all RF cavities → Improved wide-band feedback 10 MHz ✓ Replaced 1-turn delay feedbacks 10 MHz → New Multi-harmonic feedbacks for 20, 40 and 80 MHz cavities Dedicated coupled-bunch feedback ✓ Wide-band Finemet longitudinal kicker 		
• Bunc	h-to-bunch equalization	ightarrow 1-turn delay and multi-harmonic feedbacks		
• PS-SP	PS transfer	✓ Bunch rotation with both 40 MHz cav.		
• Availa	ability of 80 MHz cavities otons and ions	→ New fast ferrite tuners		
• Relia main	bility and long-term tainability	 → Replace anode power supplies for 40 MHz and 80 MHz RF systems → Upgrade to a digital beam control 		

• Most PS RF systems affected by upgrades:

→ Improve longitudinal beam quality for LHC-type beams

Overview

- Introduction and motivation
 - Effect of PS beam quality on SPS injection losses
- Present performance
 - Maximum intensity with good and compromised quality
- Impact of longitudinal upgrades
 - 10 MHz feedbacks
 - Wide-band coupled-bunch feedback
 - 20 MHz, 40 MHz and 80 MHz multi-harmonic feedbacks
- Summary

Main 10 MHz RF system

• 10 + 1 ferrite loaded cavities, tunable from 2.8...10 MHz

 Fast wide-band feedback around amplifier (internal)
 → Gain limited by delay

Main 10 MHz RF system 10 + 1 ferrite loaded cavities, tunable from 2.8...10 MHz

- 1. Maximize loop gain of direct wideband feedback
- 2. 1-turn delay feedback operational since LS1

Wide-band feedback of 10 MHz cavities

Power amplifier upgrade: New working point and grid resonator

 Increased gain of direct RF feedback around amplifier

Impedance at h = 8, ~3.8 MHz

Impedance at *h* = 21, ~10 MHz

- Prototype amplifier installed during 2016 and (partly) 2017 runs \rightarrow Impedance reduction by factor of ~2 (h = 21) with beam
- Full implementation during LS₂
- One single upgraded cavity has insignificant effect on stability
- \rightarrow What to expect after LS₂?
- → Benefit mainly during acceleration

G. Favia

Multi-bunch simulations (MuSiC)

Study case: 21 bunches in *h* =21

- → Multiple particles per bunch, length ~ 1 m
- Intensity, $N_b = 4 \cdot 2.6 \ 10^{11} \text{ ppb}$

- → Mode 2 grows faster than mode 1, as expected
- → Four times larger impedance translates in three times shorter rise time

18 bunches in h = 21

→ Multiple particles per bunch, length ~ 1 m

- \rightarrow Rise times not well defined
- \rightarrow Stay of the order of ~50 ms

Overview

- Introduction and motivation
 - Effect of PS beam quality on SPS injection losses
- Present performance
 - Maximum intensity with good and compromised quality
- Impact of longitudinal upgrades
 - 10 MHz feedbacks
 - Wide-band coupled-bunch feedback
 - 20 MHz, 40 MHz and 80 MHz multi-harmonic feedbacks
- Summary

PS coupled-bunch feedback overview

Stability during acceleration

• Longitudinal stability at arrival on flat-top, $N_b = 4 \cdot 2.0 \cdot 10^{11}$ ppb

Final part of acceleration and flat-top

- Arrival at flat-top and high-energy splittings
 - Mode pattern changes due to impedance

 \rightarrow Significant improvement of longitudinal stability with feedback

 \rightarrow Above $N_b = 4 \cdot 2 \cdot 10^{11}$ ppb again dipole and quadrupole coupled-bunch instabilities

Overview

- Introduction and motivation
 - Effect of PS beam quality on SPS injection losses
- Present performance
 - Maximum intensity with good and compromised quality
- Impact of longitudinal upgrades
 - 10 MHz feedbacks
 - Wide-band coupled-bunch feedback
 - 20 MHz, 40 MHz and 80 MHz multi-harmonic feedbacks
- Summary

Feedbacks for 40/80 MHz

- Impedance reduction of high frequency cavities
 - \rightarrow Potential margin for direct feedback gain ~6 dB (already > 40 dB)
 - → Need 1-turn delay like LLRF feedback beyond

40 MHz cavity transfer function

Specific technical difficulties:

- Fixed resonance cavity resonance while f_{rev} harmonics sweep
- → Programmable notch filter with automatic phase calibration
- 80 MHz beyond 1st Nyqist band for clock frequencies 111...122 MHz
- → Operate signal processing in under-sampling mode

Multi-harmonic feedback

Prototype signal processing covering multiple harmonics

- → Automatic calibration to compensate cavity phase
- \rightarrow Powerful digital signal processing with up to 8 harmonics

 \rightarrow Impedance reduction > 20 dB demonstrated at harmonics close to f_{res}

→ May solve uncontrolled blow-up issues

Beam measurements with feedback

- **Observe beam induced voltage with/without feedback**
 - → Prototype validated for both 40 MHz and 80 MHz RF system

→ Implement on all cavities during 1st half of 2018
 → Evaluate effect on uncontrolled blow-up before LS2

Anode power supplies for 40/80 MHz systems

- Anode power supplied of final amplifiers are weakest part
 - \rightarrow Differences between converters \rightarrow 'weak' or 'strong cavities
- → New 25 kV / 200 kW power converters with three times output power to cover the needs of future operation
- → First converter tested during 2017 run
- → Completion during YETS2017/18 (5 more converters)

- Improve operational reliability at high beam intensities
- → **Remove limitations for MDs**: post acceleration, adiabatic shortening
- → Critical: commission early in 2018 to profit for studies

Overview

- Introduction and motivation
 - Effect of PS beam quality on SPS injection losses
- Present performance
 - Maximum intensity with good and compromised quality
- Impact of longitudinal upgrades
 - 10 MHz feedbacks
 - Wide-band coupled-bunch feedback
 - 20 MHz, 40 MHz and 80 MHz multi-harmonic feedbacks
- Summary

Summary

- Maximum achieved intensity per bunch: ~2.0 \cdot 10¹¹ ppb at ε_l = 0.35 eVs
 - \rightarrow Part of LIU baseline improvements already in place for studies
 - \rightarrow Transverse emittance to become twice smaller with Linac4/2 GeV
- Strong beam quality degradation above > $2.0 \cdot 10^{11}$ ppb
 - → Dipole and quadrupole coupled-bunch instabilities
 - \rightarrow Significant uncontrolled emittance growth of the tail batches
- Expected impact of improvements before LS₂
 - \rightarrow Multi-harmonic feedbacks for 40/80 MHz cavities \rightarrow Reduce ϵ_l growth
 - → Anode power supplies → MDs: post-acceleration, adiabatic shortening
- Expected impact of improvements after LS2
 10 MHz direct feedback → dipole coupled-bunch growth rate reduction
- Potentially not covered sufficiently with baseline
 - → Uncontrolled longitudinal emittance blow-up
 - → Dipole and quadrupole coupled-bunch instabilities

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

Spare slides

Introduction Objectives: HL-LHC request

J.

objectives: III litte request			Achieved
	Parameter		end 2015
	Intensity per bunch (total: 2 10 ¹³ ppp)	3.3 10 ¹² ppb (12 × 2.7 10 ¹¹)	
Injection	Transverse emittances	1.8 µm	
	Longitudinal emittance	3.0 eVs	
	Bunch length	205 ns	
	Beam loss	5%	
DC	Transverse emittance growth	5%	
P5	Controlled longitudinal blow-up	~50%	
	Tolerable space charge tune shift, ΔQ_y	-0.31	
	Intensity per bunch	2.6 1011 ppb	1.7 10" ppb
Figstion	Transverse emittances	1.9 µm	2.2 μm
Ljection	Longitudinal emittance	0.35 eVs	o.35 eVs
	Bunch length	4 ns	4 ns

IntroductionObjectives: HL-LHC request

U.

objectives: III life request			Achieved
	Parameter		08/2016
	Intensity per bunch (total: 2 10 ¹³ ppp)	3.3 10 ¹² ppb (12 × 2.7 10 ¹¹)	
Injection	Transverse emittances	1.8 µm	
	Longitudinal emittance	3.0 eVs	
	Bunch length	205 ns	
	Beam loss	5%	
DC	Transverse emittance growth	5%	
PS	Controlled longitudinal blow-up	~50%	
	Tolerable space charge tune shift, $\Delta Q_{ m y}$	-0.31	
	Intensity per bunch	2.6 1011 ppb	2.0 10 ¹¹ ppb
Figstion	Transverse emittances	1.9 µm	not checked
Ljection	Longitudinal emittance	0.35 eVs	0.35 eVs
	Bunch length	4 ns	4 ns

The LHC25ns cycle in the PS

 \rightarrow Each bunch from the Booster split in 12 \rightarrow 6 \times 3 \times 2 \times 2 = 72

RF systems in the PS

Frequency domain feedback

- Suppress f_s side-bands by actively compensating them
 - \rightarrow Remove spectral components at $n \cdot f_{rev}$ and amplify $n \cdot f_{rev} \pm f_s$
 - → **Robust**: insensitive to bunch positions and filling pattern

- → Harmonic of f_{rev} attenuated by more than 40 dB compared to sidebands at ± f_s (~300 Hz) → Extremely narrow: $f_s / f_o \sim 6 \cdot 10^{-4}$
- → Precise 180° phase jump at center frequency
- \rightarrow Ten notches covering all 20 possible modes (h = 21), other than n = 0

1-turn delay feedbacks

- Further reduce impedance at harmonics of f_{rev} (comb filter feedback)
 - \rightarrow Transient beam loading fully suppressed at 1.3 \cdot 10 $^{\rm n}$ ppb

- → Full commissioning of digital 1-turn delay feedback for all 11 main accelerating cavities in 2015
- → New 1-turn delay feedbacks on 20 MHz, 40 MHz and 80 MHz cavities in 2016/17

Ferrite tuner for 80 MHz cavities

Operate 80 MHz cavities for protons and ions simultaneously

- → Fast ferrite tuner to switch cavity between p^+ and Pb^{54+} frequencies in PPM ($\Delta f/f = 0.29\%$)
- Inductively loaded coaxial line coupled to cavity with DC bias
- Prototype on test cavity validated
- Difficulties with installation on C8o-o8
- → Installation on all cavities during LS2
- → Flexibility to operate 3rd
 80 MHz with protons

Effect of 80 MHz cavity impedance

- 80 MHz cavity for lead ions tuned to 135 kHz below proton frequency, but 3 dB bandwidth about 0.7 MHz
- \rightarrow 80 MHz structure during $h = 42 \rightarrow 84$ splitting

Averaged difference, with and

- Perturbation visible at 1.6 · 10¹¹ ppb
- → Effect on beam quality?

80 MHz cavity impedance

- \rightarrow Minor emittance blow-up at arrival on flat-top, but
- \rightarrow ~0.3 ns longer bunches due to impedance of additional 80 MHz cavity
- \rightarrow Expect improvement with new multi-harmonic feedbacks

New 10 MHz cavity impedance model

• Studies revealed that 10 MHz cavity impedance four times larger than previously assumed (G. Favia)

→ Total impedance modelled as three resonators (fit of real part of impedance) → Input for MuSiC code (M. Migliorati) (ci

Higher intensity?

Pushing intensity at expense of larger longitudinal emittance

- \rightarrow Bare minimum of 40/80 MHz cavities with gap open
- \rightarrow Trips of remaining cavities 40 MHz or 80 MHz due to beam loading

→ Excellent transmission up to 2.6 · 10¹¹ ppb, even with $\varepsilon_l > 0.35$ eVs → No further RF issues related to high intensity

