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Overview

• Introduction and motivation
• Effect of PS beam quality on SPS injection losses

• Present performance
• Maximum intensity with good and compromised quality

• Impact of longitudinal upgrades
• 10 MHz feedbacks

• Wide-band coupled-bunch feedback

• 20 MHz, 40 MHz and 80 MHz multi-harmonic feedbacks

• Summary
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Introduction

• PS Beam quality: essential contribution to losses in SPS
• Target: 72 bunches with 2.6 · 1011 ppb, el = 0.35 eVs, 4s = 4 ns, eh/v = 1.9 mm

• Transverse
• Beam size/emittance twice larger than expected after 2 GeV upgrade

• Instabilities (e.g., e-cloud) controlled by upgraded transverse damper

• Longitudinal
• Longitudinal emittance is key: 0.35 eVs/bunch

• Distortion of distribution due to bunch rotation 

• Uncaptured/large amplitude particles

• Phase jitter of bunches with respect to SPS buckets  G. Papotti

 A. Lasheen

Where do we stand? What to expect?
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Injection flat 
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Space charge
Headtail instability

Flat top
Longitudinal CBI
Emittance growth
Transv. instabilities
Electron cloud
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Acceleration/Bunch splittings
Longitudinal coupled-bunch instabilities
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Transient beam loading
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Intensity/beam quality limiting effects in PS
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Longitudinal effects in PS

Beam quality degradation

Coupled-bunch 
instabilities

Dipole Quadrupole

Emittance growth

Unknown, 
e.g. kickers?

High-frequency 
cavities
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Maximum intensity at extraction

Feedback on, Nb = 2 · 1011 ppb Feedback off, Nb = 2 · 1011 ppb

• Coupled-bunch feedback significantly improves beam stability

 Regularly delivered ~2 · 1011 ppb with nominal longitudinal emittance of 
el = 0.35 eVs and bunch length of 4s = 4 ns (Gaussian fit)

 Beam quality as at ~1.3 · 1011 ppb without feedback
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Maximum intensity at extraction

• Coupled-bunch feedback significantly improves beam stability

 Regularly delivered ~2 · 1011 ppb with nominal longitudinal emittance of 
el = 0.35 eVs and bunch length of 4s = 4 ns (Gaussian fit)

 Beam quality as at ~1.3 · 1011 ppb without feedback

Feedback on, Nb = 2.3 · 1011 ppb Feedback off, Nb = 2 · 1011 ppb
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Degradation of longitudinal beam quality

Parameters at LIU/HL-LHC baseline intensity: 2.6 · 1011 ppb 

 Additional longitudinal blow-up needed for stabilization

• Average el at arrival on flat-top: 
0.3 eVs (RMS, 4 final bunches)

• Corresponds to  ~0.45...0.5 eVs per 
bunch in usual convention

• Bunch length increase along 
the batch

 Onset of instability

 Longitudinal emittance far outside specification of 0.35 eVs

140 MHz    
and 280 MHz

140 MHz and 
380 MHz



10

LIU-PS baseline RF upgrades

Limitation Mitigation

• Longitudinal beam stability
• Coupled-bunch oscillations

1. Reduced impedances of all RF cavities
 Improved wide-band feedback 10 MHz
 Replaced 1-turn delay feedbacks 10 MHz
 New Multi-harmonic feedbacks for 20, 

40 and 80 MHz cavities
2. Dedicated coupled-bunch feedback

 Wide-band Finemet longitudinal kicker

• Bunch-to-bunch equalization  1-turn delay and multi-harmonic feedbacks

• PS-SPS transfer  Bunch rotation with both 40 MHz cav.

• Availability of 80 MHz cavities 
for protons and ions

 New fast ferrite tuners

• Reliability and long-term 
maintainability

 Replace anode power supplies for 
40 MHz and 80 MHz RF systems

 Upgrade to a digital beam control

• Most PS RF systems affected by upgrades:

 Improve longitudinal beam quality for LHC-type beams
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Longitudinal effects in PS

Beam quality degradation

Coupled-bunch 
instabilities

Coupled-bunch 
feedback,               

cavity feedbacks

Dipole Quadrupole

Emittance growth

Unknown, 
e.g. kickers?

High-frequency 
cavities

Multi-harmonic 
feedbacks          

(20, 40, 80 MHz)

Cavity 
feedbacks, 

Landau 
cavity?

Impedance 
identification, 

reduction?
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- Fast wide-band feedback 
around amplifier (internal)
 Gain limited by delay

Main 10 MHz RF system

• 10 + 1 ferrite loaded cavities, tunable from 2.8…10 MHz
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- Fast wide-band feedback 
around amplifier (internal)
 Gain limited by delay

Main 10 MHz RF system

• 10 + 1 ferrite loaded cavities, tunable from 2.8…10 MHz

Drive

+

FB ret.

- 1-turn delay feedback
 High gain at n  frev

+ 1-turn delay feedback
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1. Maximize loop gain of  direct wideband feedback

2. 1-turn delay feedback operational since LS1
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Wide-band feedback of 10 MHz cavities

• Power amplifier upgrade: New working point and grid resonator

 Increased gain of direct RF feedback around amplifier 

• Prototype amplifier installed during 2016 and (partly) 2017 runs

 Impedance reduction by factor of ~2 (h = 21) with beam

• Full implementation during LS2

• One single upgraded cavity has insignificant effect on stability

 What to expect after LS2?

 Benefit mainly during acceleration
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Study case: 21 bunches in h =21

 Multiple particles per bunch,  
length ~ 1 m

Multi-bunch simulations (MuSiC)

• Intensity, Nb = 4· 2.6 1011 ppb

 Mode 2 grows faster than mode 1, 
as expected

 Four times larger impedance 
translates in three times shorter 
rise time

Mode nb = 1

Mode nb = 2

Mode nb = 3

18 bunches in h = 21

 Multiple particles per bunch,  
length ~ 1 m
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PS coupled-bunch feedback overview
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FINEMET

GAP

-3 dB

6

S
p

li
tt

e
r 

+
 a

m
p

.

Digital signal 
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Beam signal from 
wall current monitor

fclk = 256 frev

Six-cell Finemet cavity:
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Stability during acceleration

• Longitudinal stability at arrival on flat-top, Nb = 4 · 2.0 · 1011 ppb

Feedback on 
(every cycle)

Feedback off 
(bunch 12, cycle #3)

Feedback off 
(bunch 12, cycle #2)

Feedback off 
(bunch 12, cycle #1)

Dt [ns] Dt [ns] Dt [ns] Dt [ns]

D
E

[M
e

V
]

D
E

[M
e

V
]



20

Final part of acceleration and flat-top

• Arrival at flat-top and high-energy splittings

• Mode pattern changes due to impedance

Feedback off (Nb = 1.8 · 1011 ppb) Feedback on (Nb = 1.8 · 1011 ppb)

 Significant improvement of longitudinal stability with feedback

 Above Nb = 4 · 2 · 1011 ppb again dipole and quadrupole coupled-bunch 
instabilities
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Feedbacks for 40/80 MHz

• Impedance reduction of high frequency cavities

 Potential margin for direct feedback gain ~6 dB (already > 40 dB)

 Need 1-turn delay like LLRF feedback beyond
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Amplitude

Phase

fres = 40.053 MHz-4 MHz +4 MHz

1.4 GeV
26 GeV

26 GeV1.4 GeV

40 MHz cavity transfer function

Specific technical difficulties:

• Fixed resonance cavity resonance 
while frev harmonics sweep

 Programmable notch filter with 
automatic phase calibration

• 80 MHz beyond 1st Nyqist band for 
clock frequencies 111…122 MHz

 Operate signal processing in 
under-sampling mode
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Multi-harmonic feedback

ADC DAC
Cavity 
return

Cavity 
drive

Single harmonics signal 
processing

• Prototype signal processing covering multiple harmonics

 Automatic calibration to compensate cavity phase

 Powerful digital signal processing with up to 8 harmonics

Single harmonics signal 
processing

Single harmonics signal 
processing

Single harmonics signal 
processing

Single harmonics signal 
processing

Single harmonics signal 
processing

Single harmonics signal 
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Single harmonics signal 
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 Impedance reduction           
> 20 dB demonstrated at 
harmonics close to fres

 May solve uncontrolled 
blow-up issues5 MHz

5 dB/div

Transfer function with 7-harmonic feedback
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Beam measurements with feedback
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 Prototype validated for both 40 MHz and 80 MHz RF system

 Implement on all cavities during 1st half of 2018

 Evaluate effect on uncontrolled blow-up before LS2
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Anode power supplies for 40/80 MHz systems

• Anode power supplied of final amplifiers are weakest part

 Differences between converters  ‘weak’ or ‘strong cavities

 New 25 kV / 200 kW power converters with three times output power 
to cover the needs of future operation

 First converter tested 
during 2017 run

 Completion during 
YETS2017/18                     
(5 more converters)

• Improve operational reliability at high beam intensities

 Remove limitations for MDs: post acceleration, adiabatic shortening

 Critical: commission early in 2018 to profit for studies 
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• Summary
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• Maximum achieved intensity per bunch: ~2.0 · 1011 ppb at el = 0.35 eVs

 Part of LIU baseline improvements already in place for studies

 Transverse emittance to become twice smaller with Linac4/2 GeV

• Strong beam quality degradation above > 2.0 · 1011 ppb

 Dipole and quadrupole coupled-bunch instabilities

 Significant uncontrolled emittance growth of the tail batches

• Expected impact of improvements before LS2

 Multi-harmonic feedbacks for 40/80 MHz cavities  Reduce el growth

 Anode power supplies  MDs: post-acceleration, adiabatic shortening

• Expected impact of improvements after LS2

10 MHz direct feedback  dipole coupled-bunch growth rate reduction

• Potentially not covered sufficiently with baseline

 Uncontrolled longitudinal emittance blow-up

 Dipole and quadrupole coupled-bunch instabilities
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THANK YOU FOR YOUR ATTENTION!
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Spare slides
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Introduction

Parameter Achieved

Injection

Intensity per bunch (total: 2 1013 ppp) 3.3 1012 ppb
(12  2.7 1011)

Transverse emittances 1.8 mm

Longitudinal emittance 3.0 eVs

Bunch length 205 ns

PS

Beam loss 5%

Transverse emittance growth 5%

Controlled longitudinal blow-up ~50%

Tolerable space charge tune shift, DQy -0.31

Ejection

Intensity per bunch 2.6 1011 ppb 1.7 1011 ppb 

Transverse emittances 1.9 mm 2.2 mm

Longitudinal emittance 0.35 eVs 0.35 eVs

Bunch length 4 ns 4 ns

• Objectives: HL-LHC request
Achieved 
end 2015
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Introduction

Parameter Achieved

Injection

Intensity per bunch (total: 2 1013 ppp) 3.3 1012 ppb
(12  2.7 1011)

Transverse emittances 1.8 mm

Longitudinal emittance 3.0 eVs

Bunch length 205 ns

PS

Beam loss 5%

Transverse emittance growth 5%

Controlled longitudinal blow-up ~50%

Tolerable space charge tune shift, DQy -0.31

Ejection

Intensity per bunch 2.6 1011 ppb 2.0 1011 ppb 

Transverse emittances 1.9 mm not checked

Longitudinal emittance 0.35 eVs 0.35 eVs

Bunch length 4 ns 4 ns

• Objectives: HL-LHC request
Achieved 
08/2016
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Triple splitting at Ekin = 2.5 GeV Split in four at flat top energy
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34Frequency domain feedback

 Harmonic of frev attenuated by more than 40 dB compared to 
sidebands at ± fs (~300 Hz)  Extremely narrow: fs /f0 ~ 6 · 10-4

 Precise 180° phase jump at center frequency

 Ten notches covering all 20 possible modes (h = 21), other than n = 0

• Suppress fs side-bands by actively compensating them

 Remove spectral components at n · frev and amplify n · frev ± fs

 Robust: insensitive to bunch positions and filling pattern

Filter transfer function
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1-turn delay feedbacks

• Further reduce impedance at harmonics of frev (comb filter feedback)

 Transient beam loading fully suppressed at 1.3 · 1011 ppb

 Full commissioning of digital 1-turn delay feedback for all 
11 main accelerating cavities in 2015

 New 1-turn delay feedbacks on 20 MHz, 40 MHz and 80 MHz 
cavities in 2016/17

72 bunches, Feedbacks off 72 bunches, feedbacks on

2 ms2 ms



36

Ferrite tuner for 80 MHz cavities

Operate 80 MHz cavities for protons and ions simultaneously

 Fast ferrite tuner to switch cavity between p+ and Pb54+ frequencies
in PPM (Df/f = 0.29%)

• Inductively loaded 
coaxial line coupled to 
cavity with DC bias

• Prototype on test cavity 
validated

• Difficulties with 
installation on C80-08

 Installation on all 
cavities during LS2

 Flexibility to operate 3rd

80 MHz with protons
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Effect of 80 MHz cavity impedance

• 80 MHz cavity for lead ions tuned to 135 kHz below proton frequency, 
but 3 dB bandwidth about 0.7 MHz

 80 MHz structure during h = 42  84 splitting

Averaged difference, with and 
without effect of 80 MHz ion cavityGap C80-08 closed Gap C80-08 open

• Perturbation visible at 1.6 · 1011 ppb

 Effect on beam quality?
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Bunch length at extraction

Cavities with gap open eRMS [eVs]

C40-78, C80-88, C80-89 0.231

C40-78, C80-88, C80-89
and C80-08 (at ion frequency)

0.238

Emittance at arrival on flat-top (4 final bunches)

Cavities with gap open 4sGauss [ns]

C40-78, C80-88, C80-89 4.03

C40-78, C80-88, C80-89
and C80-08 (ion frequency)

4.34

Average bunch length at extraction

80 MHz cavity impedance

open
closed

C80-08 gap

 Minor emittance blow-up at arrival on flat-top, but

 ~0.3 ns longer bunches due to impedance of additional 80 MHz cavity

 Expect improvement with new multi-harmonic feedbacks

http://cds.cern.ch/record/1141522/files/AB-Note-2008-052-MD.pdf
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S of all
10 cavities 
(real part)

• Studies revealed that 10 MHz cavity impedance four times larger than 
previously assumed (G. Favia)

New 10 MHz cavity impedance model

 Total impedance modelled as three resonators (fit of real part of impedance)

 Input for MuSiC code (M. Migliorati)
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Higher intensity?

Pushing intensity at expense of larger longitudinal emittance

 Bare minimum of 40/80 MHz cavities with gap open

 Trips of remaining cavities 40 MHz or 80 MHz due to beam loading 

Intensity ramp up Overall transmission Nej/(Ninj1+Ninj2)

 Excellent transmission up to 2.6 · 1011 ppb, even with el > 0.35 eVs

 No further RF issues related to high intensity


