

Conceptual design of an SPS collimation system

M. Patecki, A. Mereghetti, D. Mirarchi, S. Redaelli

- Objectives for the SPS collimation system
- SPS beams
- Beam losses in the SPS
- Analysis of Beam Loss Monitors (BLM) data
- Comparison of 2 designs with nominal aperture:
 - Two-stage collimation
 - Scraper+Absorber at the maximum of the dispersion
- Collimation performance with measured horizontal aperture
- Summary

- Objectives for the SPS collimation system
- SPS beams
- Beam losses in the SPS
- Analysis of Beam Loss Monitors (BLM) data
- Comparison of 2 designs with nominal aperture:
 - Two-stage collimation
 - Scraper+Absorber at the maximum of the dispersion
- Collimation performance with measured horizontal aperture
- Summary

Objectives and challenges

- Objectives:
 - Passive machine protection
 - Concentration of losses in the designed locations
 - Reduction of activation of equipment
 - Functional for all SPS beams and optics (priority to HL-LHC beams)

• Challenges:

- Avoid the movement of collimators between the cycles (common gap or small adjustment with orbit bump)
- Fitting into (very limited) empty spots
- Enough beam clearance -> large gaps to avoid consuming an usefull beam

- Objectives for the SPS collimation system
- SPS beams
- Beam losses in the SPS
- Analysis of Beam Loss Monitors (BLM) data
- Comparison of 2 designs with nominal aperture:
 - Two-stage collimation
 - Scraper+Absorber at the maximum of the dispersion
- Collimation performance with measured horizontal aperture
- Summary

SPS beams

- LHC-type and fixed target
- Injection Energy (26GeV and 14 GeV)
- 3 types of optics: Q20, Q22, Q26
- Beams at slow extraction (special machine settings)
- Tables with beam parameters in extra slides

- Objectives for the SPS collimation system
- SPS beams
- Beam losses in the SPS
- Analysis of Beam Loss Monitors (BLM) data
- Comparison of 2 designs with nominal aperture:
 - Two-stage collimation
 - Scraper+Absorber at the maximum of the dispersion
- Collimation performance with measured horizontal aperture
- Summary

Losses in the SPS

- Injection and extraction losses
- Off-momentum losses
 - Capture (bunch S-shape)
 - Flat bottom (full bucket)
 - During E ramp
 - In high dispersion regions
- Transverse losses
 - Due to large beam size at injection energy
 - At aperture restrictions
- Scraping

Losses over the cycle

SPS Q20, 16-08-2017, 15:59:50, t = 20 ms

Assuming same response of all BLMs:

Loss [%]	BLM#	s [m]	element
17.7	133	643.4	MBA.12030
13.0	181	4291.1	MBA.42630
7.9	132	387.4	MBA.11230
6.5	169	3331.2	MBA.33230
4.7	97	5215.2	MDV.51907

- Objectives for the SPS collimation system
- SPS beams
- Beam losses in the SPS
- Analysis of Beam Loss Monitors (BLM) data
- Comparison of 2 designs with nominal aperture:
 - Two-stage collimation
 - Scraper+Absorber at the maximum of the dispersion
- Collimation performance with measured horizontal aperture
- Summary

Two-stage collimation system (Preliminary design by Daniele)

LHC Collimation Project

- Proposed by D. Mirarchi et al.: "SPS collimation first look and ideas." LIU-SPS, Beam Loss, Protection and Transfer Lines WG Meeting, 23.03.2016.
- Typical two-stage collimation system based on the betatron motion (correct phase advance between stages required).
- Primary collimators in the empty dipole slot; secondary coll. in the straight section.
- 4 collimators

Picture from: https://indico.cern.ch/event/609774/#17-fluka-simulations-of-sps-co

Optics at the collimators (Q20 & Q22)

	Table. Optics at the locations of the commators.							
case	coll	s [m]	$\mu_{\rm x} \ [2\pi]$	$\mu_{\rm y} \ [2\pi]$	$\beta_{\mathbf{x}}$ [m]	$\beta_{\rm y}~[{\rm m}]$	$D_x [m]$	
Q20	TCP.H	453.0	1.31	1.33	96.43	34.88	2.92	At the limit for off-momentum
	TCP.V	461.5	1.33	1.37	69.45	50.07	2.17	cleaning
	TCSG.H	520.5	1.51	1.53	85.18	40.41	-0.46	(Dx max: 8m)
	TCSG.V	539.0	1.56	1.59	39.56	86.96	-0.47	
Q22	TCP.H	453.0	1.44	1.47	95.08	30.00	0.90	loo low for off-momentum
	TCP.V	461.5	1.46	1.50	66.20	44.93	0.64	cleaning
	TCSG.H	520.5	1.65	1.69	81.94	35.88	0.65	(Dx max: 7m)
	TCSG.V	539.0	1.71	1.74	34.74	85.31	0.75	

Option at the locations of the collimators

Original design by Daniele:

Table

- Studied for Q20 & Q26 optics (there was no strong request for Q22 at that time)
- Half-gaps for primary collimators: $4\sigma_{\beta}$ (for ϵ =3.5 μ m) (=14mm TCPH)
- This corresponds to $1.1\sigma_{\beta}$ + D_x δ_{bh} (for ϵ =1.89 µm)
- Half-gaps for secondary collimators: $5.5\sigma_{\beta}$ (for ϵ =3.5 μ m)
- Impact parameter 6.5 μ m
- Not an option for Q22 optics (D_x too low)

Two-stage collimation – loss map

Modified design of Daniele:

- Half-gaps for primary collimators: $4\sigma_{\beta} + D_x \delta_{bh}$ (for ϵ =1.89 µm) (=21.4 mm TCPH)
- Half-gaps for secondary collimators: $5.5\sigma_{\beta} + D_x \delta_{bh}$ (for ϵ =1.89 µm)
- Impact parameter 0.1 μm

	S [m]	Mod.	Orig
All colls	-	73.3	77.6
TCP.H	453.0	48.7	42.7
TCP.V	461.5	8.8	9.5
TCS.H	520.5	13.0	19.2
TCS.V	539.0	2.7	6.0
drift	453 - 461	4.6	3.7
drift	462 - 465	3.0	2.7
MBB.11470	465.0	2.5	2.4
MBB.11490	471.4	0.9	0.9
MBB.11550	490.0	1.2	0.9
MBA.11570	496.7	3.2	2.0
MKQH.11679	523.7	2.7	3.3
MBA.11590	503.4	0.9	

- Objectives for the SPS collimation system
- SPS beams
- Beam losses in the SPS
- Analysis of Beam Loss Monitors (BLM) data
- Comparison of 2 designs with nominal aperture:
 - Two-stage collimation
 - Scraper+Absorber at the maximum of the dispersion
- Collimation performance with measured horizontal aperture
- Summary

D_x [m]

2

0

Scraper + Absorber @ Dx max SPS 26GeV Q20: coll. pos.

- Rather unusual design based on dispersion.
- Collimation insertion at the maximum of the dispersion for best offmomentum cleaning;
- Tight space limits using this location in the arc, narrow vertical aperture, difficult to fit a secondary stage;
- Narrow scraper increases |dp/p| to send halo particles towards the absorber
- For 1cm of graphite about 3MeV E loss, corresponding to about δ_n =1.1e-4;
- Halo particles to hit the absorber front face with a large impact parameter (a few mm) and a large spread (a few mm);
- Scraper is not swept thorugh the beam. It is a short collimator with an adjustable opening.
- Only one collimation insertion.

Settings:

- TCS: 1cm, Gr or MoGr, half-gap: $5.0\sigma_{\beta} + D_x \delta_{bh}$ (for ϵ =1.89 µm) = 41.7 mm ٠
- TCA: 1m, MoGr or Cu, retraction 1.5mm w.r.t. TCS (0.6 σ_{eta} , δ_p =1.9e-4) ٠
- Impact parameter: 0.1 µm

GKX 11001

N CLIBERT

SPS\LGSSS0\LGSSS01

CAL IS

۱Ð

(TCS)

GMS SUPPORT

SHORT STRAIGHT SECTION

GKX 11001

SECTION DROITE COURTE

GKX 11001

PROJECT ENGINEER AS BUILT

Ē

Scraper (MoGr) + Absorber (MoGr) – loss map

	S [m]	Losses [%]
All colls	-	72.7
TCA	318.4	69.6
TCS	319.0	3.1
MDH.11007	319.3	1.5
BPH.11008	319.6	1.2
QF.11010	320.0	5.2
MBA.11030	323.4	5.8
MBA.11050	330.0	2.7
MBB.11090	343.0	1.0
LSD.11105	350.8	1.5
BPCN.12508	799.5	1.0

7

Scraper (MoGr) + Absorber (Copper) – loss map

aperture [mn	80 60 40 20							
[ш/լ] և 1 10 10		400	500	coll. apert losses - losses - losses -	hor. vert. all hor. vert. 700	800	900	100 [%] 90 90 90 90 90 90 90 90 90 90 90 90 90 9

	S [m]	Copper	MoGr
All colls	-	86.7	72.7
TCA	318.4	83.9	69.6
TCS	319.0	2.8	3.1
MDH.11007	319.3	0.5	1.5
BPH.11008	319.6	<0.2	1.2
QF.11010	320.0	1.7	5.2
MBA.11030	323.4	3.0	5.8
MBA.11050	330.0	1.2	2.7
MBB.11090	343.0	0.5	1.0
LSD.11105	350.8	<0.2	1.5
BPCN.12508	799.5	0.8	1.0

Comparison

	Two-stag	ge	
	S [m]	Mod.	Orig
All colls	-	73.3	77.6
TCP.H	453.0	48.7	42.7
TCP.V	461.5	8.8	9.5
TCS.H	520.5	13.0	19.2
TCS.V	539.0	2.7	6.0
drift	453 - 461	4.6	3.7
drift	462 - 465	3.0	2.7
MBB.11470	465.0	2.5	2.4
MBB.11490	471.4	0.9	0.9
MBB.11550	490.0	1.2	0.9
MBA.11570	496.7	3.2	2.0
MKQH.11679	523.7	2.7	3.3
MBA.11590	503.4	0.9	

	Scr.+Abs	5.	
	S [m]	Copper	MoGr
All colls	-	86.7	72.7
TCA	318.4	83.9	69.6
TCS	319.0	2.8	3.1
MDH.11007	319.3	0.5	1.5
BPH.11008	319.6	<0.2	1.2
QF.11010	320.0	1.7	5.2
MBA.11030	323.4	3.0	5.8
MBA.11050	330.0	1.2	2.7
MBB.11090	343.0	0.5	1.0
LSD.11105	350.8	<0.2	1.5
BPCN.12508	799.5	0.8	1.0

- Objectives for the SPS collimation system
- SPS beams
- Beam losses in the SPS
- Analysis of Beam Loss Monitors (BLM) data
- Comparison of 2 designs with nominal aperture:
 - Two-stage collimation
 - Scraper+Absorber at the maximum of the dispersion
- Collimation performance with measured horizontal aperture
- Summary

Measured horizontal aperture

V. Kain, Measured Q20 aperture limits at QDs and possible physical explanation/solution, https://indico.cern.ch/event/673312/:

Measurement of mechanical aperture at QDs in H

- Measured at all QDs except locations *17 and *19
- Measurement at 14 GeV, Q26 with 4C bump
- Interpolate orbit at QD location and correct measured max. bump amplitude

Result in mm

 Systematically smaller aperture towards the inside than towards the outside. Aperture on paper 41.5 mm

Beam size vs. measured aperture

LHC Collimation Project

- Fitting a whole RF bucket very challenging in high dispersion regions
- Q20 is the most affected (largest dispersion)
- Makes it difficult to fit the collimator between beam envelope and mechanical aperture
- S+A and TCP.H marked at 318m and 453m, respectively.
- Common opening for S+A.
- TCP.H requires changing the gap between Q20 and Q26-fixed-target.

Collimation efficiency with meas. aper. Two-stage coll.

- Primary vertical collimator cut: $4\sigma_{\beta}$
- Secondary collimators retracted by 1 σ_{β} .
- Cleaning efficiency drops with measured aperture.
- Cleaning efficiency fully recovered by applying a tighter cut.

	Two-stage coll. system					
	Coll. cut H [mm]	model aper	meas. aper.	meas. aper. +5mm		
0	$2\sigma_{\beta} + D\delta_{bh} = 16.4$	76% (2%)	76% (2%)	76% (2%)		
Q' 20	$3\sigma_{\beta} + D\delta_{bh} = 18.9$	76% (3%)	52% (21%)	65% (9%)		
20	$4\sigma_{\beta} + D\delta_{bh}$ = 21.5	74% (3%)	2% (45%)	4% (36%)		

Some examples of loss maps in extra slides.

Legend:

no bracket: absorbed in colls. in bracket: max. localised loss

Collimation efficiency with meas. aper. Scraper+Absorber

- No problem for Q22.
- Tight aperture at QDs spoils the cleaning efficiency in Q20 optics.
- Decreasing the gaps helps in Q20.
- Efficiency recovered if the aperture is increased by 5mm.
- Cleaning efficiency improved with Copper.
- Half-gap of about 37mm for both Q20 and Q22.

		Absorber: MoGr Absorb			orber: Cop	per	
	Coll. cut [mm]	model aper	meas. aper.	meas. aper. +5mm	model aper	meas. aper.	meas. aper. +5mm
	$2\sigma_{\beta} + D\delta_{bh} = 33.9$	74% (5%)	69% (5%)	73% (5%)	87% (3%)	83% (3%)	87% (3%)
Q 20	$3\sigma_{\beta} + D\delta_{bh} = 36.5$	73% (5%)	65% (5%)	72% (5%)	87% (3%)	78% (4%)	86% (3%)
20	$4\sigma_{\beta} + D\delta_{bh}$ = 39.1	72% (6%)	57% (8%)	71% (6%)	86% (3%)	69% (8%)	85% (4%)
	$2\sigma_{\beta} + D\delta_{bh} = 32.1$	no need	76% (5%)		no need	no need	
Q 22	$3\sigma_{\beta} + D\delta_{bh} = 34.6$	to check	75% (5%)	no need to check	to check	to check	no need to check
	$4\sigma_{\beta} + D\delta_{bh} = 37.2$	75% (5%)	74% (5%)		89% (3%)	89% (3%)	

Some examples of loss maps in extra slides.

	$arepsilon_{N,x} \ [\mu m]$	$egin{array}{c} eta_x\ [m] \end{array}$	D_{χ} [m]	δ_{bh} $[10^{-3}]$	$\delta_{p,1\sigma} \\ [10^{-3}]$	σ_{eta} [mm]	$D_x \delta_{bh}$ [mm]	$D_x \delta_{p,1\sigma}$ [mm]
Q20	1.89	100	7.5	3.8	1.5	2.6	28.6	11.3
Q22	1.89	98.7	6.7	4.0	1.5	2.6	26.9	10.1

Legend:

no bracket: absorbed in colls. in bracket: max. localised loss

Objectives and challenges - summary

- Objectives:
 - Passive machine protection ✓ only H plane tested so far
 - Concentration of losses in the designed locations \checkmark
 - Reduction of activation of equipment ? E deposition study with FLUKA
 - Functional for all SPS beams and optics (priority to HL-LHC beams) \checkmark / \checkmark (S+A)/(2stage)

• Challenges:

- Avoid the movement of collimators between the cycles (common gap or small adjustment with orbit bump) \checkmark/\times
- Fitting into (very limited) empty spots \checkmark
- Enough beam clearance -> large gaps to avoid consuming an usefull beam \checkmark/\checkmark

Extra slides

Single pass dispersion

More detailed study might be needed.

REFERENCE SPS-TIDV-ES-0009

EDMS NO.

1760169

REV.

0.1

DRAFT Page 5 of 8

VALIDITY

REFERENCE SPS-TIDV-ES-0009

REV. 0.1 DRAFT 1760169

EDMS NO.

Page 6 of 8

VALIDITY

Parameter	Unit	SPS-FT North		SPS-FT SHiP	
		Low Energy	High Energy	Low Energy	High Energy
Energy	GeV	14	400	14	400
Bunch intensity	10 ¹⁰ p/b	1.47(1)	1.40	1.12(1)	1.07
Number of bunches per batch		4200		4200	
Batch length	ns	22100		22100	
Total intensity per batch	1013 p+	5.88 ⁽²⁾		4.49(2)	
Bunch spacing	ns	5			5
Number of trains per batch		2	2	:	2
Number of bunches per train		21	00	21	00
Train spacing	ns	1100		1100	
Train length	ns	10500		10500	
Emittance H (norm.)	μm	8.0		8	.0
Emittance V (norm.)	μm	5.0 5.0		.0	

(1): At flat-bottom before capture, assuming 5% reduction after capture

(2): At flat-top energy

Table 1: HL-LHC beam parameters in the SPS

Parameter	Unit	HL-LHC Standard		LIU-SPS 80b		HL-LHC BCMS	
Parameter	Unit	Low Energy	High Energy	Low Energy	High Energy	Low Energy	High Energy
Energy	GeV	26	450	26	450	26	450
Bunch intensity	1011 p/b	2.57(1)	2.43(2)	2.57(1)	2.43(2)	2.57(1)	2.43(2)
Number of bunches per batch		288		320		288	
Batch length	ns	7800 8600		00	8200		
Total intensity per batch	1013 p+	7.00 ⁽³⁾		7.78 ⁽³⁾		7.00 ⁽³⁾	
Bunch spacing	ns	25		25		2	5
Number of trains per batch			4		4		5
Number of bunches per train		7	2	8	0	4	8
Train spacing	ns	225		225		225	
Train length	ns	1175		1975		11	75
Emittance H (norm.)	μm	1.90 ^(4, 5)		1.90 ^(4, 5)		1.55(4, 5)	
Emittance V (norm.)	μm	1.90)(4, 5)	1.90	(4, 5)	1.55	(4, 5)

(1): At flat-bottom before capture, assuming 5% reduction after capture

- (2): At flat-top before scraping, assuming 2.32x10¹¹ at injection into LHC and including 5% reduction for scraping and injection losses
- (3): At flat-top energy
- (4): At extraction from SPS, allowing 10% emittance growth for SPS-LHC transfer and LHC injection process
- (5): Worst-case assumptions so as to ensure that there is an inherent safety factor in the subsequent calculations

Two-stage collimation – loss map

	S [m]	Losses [%]
All colls	-	77.6
TCP.H	453.0	42.7
TCP.V	461.5	9.5
TCS.H	520.5	19.2
TCS.V	539.0	6.0
drift	453 - 461	3.7
drift	462 - 465	2.7
MBB.11470	465.0	2.4
MBB.11490	471.4	0.9
MBB.11550	490.0	0.9
MBA.11570	496.7	2.0
MKQH.11679	523.7	3.3

Scraper (MoGr) + Absorber (MoGr) 450GeV, Q20

	S [m]	r1.5mm	r1.0mm	r0.5mm
All colls	-	85.6	86.4	87.0
TCA	318.4	69.1	76.0	82.0
TCS	319.0	16.5	10.4	5.0
MBA.11030	323.4	0.5	0.5	0.5
MBA.11050	330.0	1.5	1.4	1.4
MBB.11090	343.0	1.0	1.0	1.0
LSD.11105	350.8	1.7	1.6	1.5
BPCN.12508	799.5	1.3	1.4	1.3

Scraper (MoGr) + Absorber (MoGr) Q22, 26GeV

	S [m]	Q22	Q20
All colls	-	74.7	72.7
TCA	318.4	72.9	69.6
TCS	319.0	1.8	3.1
MDH.11007	319.3	1.5	1.5
BPH.11008	319.6	0.8	1.2
QF.11010	320.0	5.4	5.2
MBA.11030	323.4	6.1	5.8
MBA.11050	330.0	2.6	2.7
MBB.11090	343.0	1.1	1.0
LSD.11105	350.8	1.3	1.5
BPCN.12508	799.5	<0.2	1.0

Validation of cleaning efficiency with a constant E loss per turn

- Constant E loss 1keV/turn, at the beginning of every next turn
- 10 000 turns
- Same loss pattern as for halo initialized at the collimator

Scraper (MoGr) + Absorber (MoGr) meas. aper. $4\sigma_{\beta} + D\delta_{bh}$

	S [m]	Losses [%]
All colls	-	56.7
TCA	318.4	55.2
TCS	319.0	1.5
QD.10110	32.0	7.7
MDH.11007	319.3	1.2
BPH.11008	319.6	1.9
QF.11010	320.0	4.8
MBA.11030	323.4	4.3
MBA.11050	330.0	2.3
MBB.11090	343.0	1.5
QD.11110	352.0	2.2
QD.22510	1951.9	4.0
QD.40110	3487.7	4.0

Scraper (MoGr) + Absorber (Cu) meas. aper. $4\sigma_{\beta} + D\delta_{bh}$

	S [m]	Losses [%]
All colls	-	69.0
TCA	318.4	67.6
TCS	319.0	1.4
QD.10110	32.0	7.8
QF.11010	320.0	1.8
MBA.11030	323.4	3.4
MBA.11050	330.0	1.7
MBB.11090	343.0	1.0
QD.11110	352.0	1.2
QD.22510	1951.9	3.7
QD.40110	3487.7	3.9

Scraper (MoGr) + Absorber (Cu) meas. aper. $3\sigma_{\beta} + D\delta_{bh}$

	S [m]	Losses [%]
All colls	-	78.2
TCA	318.4	76.8
TCS	319.0	1.4
QD.10110	32.0	4.4
QF.11010	320.0	1.8
MBA.11030	323.4	3.0
MBA.11050	330.0	1.6
MBB.11090	343.0	1.0
QD.11110	352.0	1.0
QD.22510	1951.9	1.8
QD.40110	3487.7	1.8

CERN

s [m]

s [m]

CERN

I00∑

80

60

s [m]

Measured horizontal aperture +5mm

V. Kain, Measured Q20 aperture limits at QDs and possible physical explanation/solution, https://indico.cern.ch/event/673312/:

Aperture measurements correcting for 5.3 mm

- Difference between negative and positive aperture less pronounced
- Possibly a few locations with pumping port shield flange on QD-MBB transition installed wrongly

SPS MAIN VACUUM CHAMBERS

* Under vacuum
 ** When compressed in magnet

Bucket height

$$\delta_{\rm bh} = \sqrt{\frac{2 e V}{\pi \beta_0^2 E_0 h \left| \eta \right|}}$$

Bucket height at injection for Q20, Q22, Q26 and fixed target (FT).

	Q20	Q22	Q26	FT
RF V [MV]	4.5	3.5	3.0	2.5
$\delta_{\rm bh} \ [10^{-3}]$	3.70	4.03	5.13	3.17

Beam size vs. measured aperture

- Fitting a whole RF bucket very challenging in high dispersion regions
- Q20 is the most affected (largest dispersion)

