Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome address</td>
<td>1</td>
</tr>
<tr>
<td>COMASS DAQ: Where we are and where we want to go</td>
<td>1</td>
</tr>
<tr>
<td>COMPASS future physics program</td>
<td>1</td>
</tr>
<tr>
<td>Proton radius measurement</td>
<td>1</td>
</tr>
<tr>
<td>Overview about trigger hardware</td>
<td>2</td>
</tr>
<tr>
<td>Trigger Processor</td>
<td>2</td>
</tr>
<tr>
<td>FPGA based trigger development</td>
<td>2</td>
</tr>
<tr>
<td>Data filtering for calorimeters</td>
<td>2</td>
</tr>
<tr>
<td>Development in Saclay</td>
<td>2</td>
</tr>
<tr>
<td>Alice ASIC for TPC</td>
<td>3</td>
</tr>
<tr>
<td>Experience and developments in ASIC design at INFN Torino</td>
<td>3</td>
</tr>
<tr>
<td>INFN Torino Electronics Service</td>
<td>3</td>
</tr>
<tr>
<td>Pico TDC</td>
<td>3</td>
</tr>
<tr>
<td>MWPC read out</td>
<td>4</td>
</tr>
<tr>
<td>Bus Crates, Shelves at CERN</td>
<td>4</td>
</tr>
<tr>
<td>DAQ Software Interventions before 2018 Run</td>
<td>4</td>
</tr>
<tr>
<td>iFDAQ</td>
<td>4</td>
</tr>
<tr>
<td>Future iFDAQ and FEE Architecture</td>
<td>5</td>
</tr>
<tr>
<td>COMPASS DAQ Beyond 2020</td>
<td>5</td>
</tr>
<tr>
<td>Discussion</td>
<td>5</td>
</tr>
<tr>
<td>Command line interface</td>
<td>5</td>
</tr>
<tr>
<td>COMPASS API</td>
<td>6</td>
</tr>
<tr>
<td>DAQ Deployment Application</td>
<td>6</td>
</tr>
</tbody>
</table>
Introduction / 1

Welcome address

Author: Miroslav Finger

1 Charles University (CZ)

Corresponding Author: miroslav.finger@cern.ch

Introduction / 2

COMASS DAQ : Where we are and where we want to go

Author: Igor Konorov

1 Technische Universitaet Muenchen (DE)

Corresponding Author: igor.konorov@cern.ch

Introduction / 3

COMPASS future physics program

Author: Caroline Kathrin Riedl

1 Univ. Illinois at Urbana Champaign (US)

Corresponding Author: caroline.riedl@cern.ch

The M2 beam line at CERN is a unique hadron and muon facility. COMPASS has submitted a proposal requesting the extension of the COMPASS-II program in and beyond 2021. A Letter of Intent will be submitted by the end of 2017 suggesting a rich physics program to explore hadron structure using conventional meson beams, muon beams, and finally RF-separated hadron beams to enhance the fraction of beam kaons and anti-protons.

Introduction / 4

Proton radius measurement

Author: Sebastian Uhl

1 Technische Universitaet Muenchen (DE)

Corresponding Author: sebastian.uhl@cern.ch

The measurement of the proton radius is part of the proposal for the future COMPASS program. While continuing to use the DAQ and trigger system in the current way appears to be feasible, improving in particular the trigger is desirable to increase the number of recorded elastic events. I will present some ideas to achieve this, along with presenting the requirements to the COMPASS set-up for a successful measurement.
Overview about trigger hardware

Author: Benjamin Moritz Veit¹

¹ Johannes Gutenberg Universitaet Mainz (DE)

Corresponding Author: b.veit@cern.ch

Trigger Processor

Author: Benjamin Moritz Veit¹

¹ Johannes Gutenberg Universitaet Mainz (DE)

Corresponding Author: b.veit@cern.ch

FPGA based trigger development

Author: Dmytro Levit¹

¹ Technische Universitaet Muenchen (DE)

Corresponding Author: dmytro.levit@cern.ch

Data filtering for calorimeters

Author: Marcin Ziembicki¹

¹ Warsaw University of Technology (PL)

Corresponding Author: marcin.ziembicki@cern.ch

Development in Saclay

Author: Damien Neyret¹

¹ Université Paris-Saclay (FR)
FEE development / 10

Alice ASIC for TPC

Author: Christian Lippmann

1 GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE)

Corresponding Author: christian.lippmann@cern.ch

FEE development / 11

Experience and developments in ASIC design at INFN Torino

Author: Gianni Mazza

1 Universita e INFN Torino (IT)

Corresponding Author: mazza@to.infn.it

The presentation will describe the ASIC design activities at INFN Torino, with special focus on the developments for hybrid and monolithic pixel detectors, for timing measurements and for high speed data transmission circuit. ASICs currently used in various applications (ALICE ITS, COMPASS RICH, GBT common interface and medical interface) will be described, together with the recent developments in timing applications and HL-LHC prototypes.

FEE development / 12

INFN Torino Electronics Service

Author: Giulio Dellacasa

1 Universita e INFN Torino (IT)

Corresponding Author: gdellaca@to.infn.it

Electronics Service of the Turin section of INFN (Electronics Laboratory) fulfills all the requests made by different physics research groups providing both design, systems realization and test capabilities of discrete electronics and microelectronics devices. Design activities range from the very front-end electronics to the development of full read-out and data acquisition systems. Microelectronics design is one of the main activity of the Laboratory for the development of full-custom ASICs circuits. The team of IC designers has a long experience in analogue, mixed-mode or digital IC design. In addition the Electronics Laboratory provides design capabilities oriented to the implementation of Printed Circuit Boards (PCBs) and to digital programming techniques using Field Programmable Gate Arrays (FPGAs). This presentation gives a very short overview of all these activities, focusing on relevant projects and recent developments.
The preliminary schedule of DAQ changes before the Run 2018 has been already discussed and accepted. There are prepared two major interventions. The current DAQ is limited to event size up to 512 KB. First intervention gets rid of such event size restriction and provides with more general DAQ. Second intervention takes into account the integration of cross-point switch. It considers all aspects such as database, new slave control process and responsibilities of master process. Moreover, the contribution defines all allowed features in Topology GUI based on the current DAQ status from the user’s point of view. In the end, open questions rising from the cross-point switch integration are stated.
iFDAQ

Author: Dominik Steffen

1 Technische Universitaet Muenchen (DE)

Corresponding Author: dominik.steffen@cern.ch

DAQ / 20

Future iFDAQ and FEE Architecture

Author: Igor Konorov

1 Technische Universitaet Muenchen (DE)

Corresponding Author: igor.konorov@cern.ch

DAQ / 21

COMPASS DAQ Beyond 2020

Author: Josef Novy

1 Czech Technical University (CZ)

Corresponding Author: josef.novy@cern.ch

DAQ / 22

Discussion

DAQ / 23

Command line interface

Author: Antonin Kveton

1 Charles University (CZ)

Corresponding Author: antonin.kveton@cern.ch

Having a graphical-only user interface to the DAQ has proven problematic in two matters: remote access and run control automation. This talk will address the current status of the command-line interface and describe how it solves these problems, including the "script mode" feature introduced earlier this year. A short workshop session on how to write scripts against this interface will also take place during this talk. Finally, future plans will be discussed, especially the relationship of the command-line interface and the COMPASS API.
COMPASS API

Author: Matous Jandek

1 Czech Technical University (CZ)

Corresponding Author: matous.jandek@cern.ch

DAQ Deployment Application

Author: Jan Hrusovsky

1 Czech Technical University (CZ)

Corresponding Author: jan.hrusovsky@cern.ch

Event Size Display

Author: Martin Zemko

1 Czech Technical University (CZ)

Corresponding Author: martin.zemko@cern.ch

Support Tools

Author: Martin Bodlak

Co-author: Vladimir Jary

1 Charles University (CZ)
2 Czech Technical University (CZ)

Corresponding Authors: martin.bodlak@cern.ch, vladimir.jary@cern.ch

In our contribution, we present several tools that simplify work with data taking shifts at COMPASSS experiment at CERN. At first, we introduce online shift reservation tool. Administrator (or year coordinator) can use the tool to define list of shift for given data taking period. Members of the experiment use the tool to sign in for shifts according to their preferences. The tool automatically calculates served shifts for each institution, moreover concept of coefficients that rate different types of shifts (night, weekend) was introduced. In the second part of our talk, we present electronic checklist which would replace need to fill in paper forms. The shifter downloads form prepared by administrator into tablet, fills it in, and uploads the result. The application is able to work offline, moreover it verifies that all values are valid and within correct range. Both applications are prepared for deployment in the case they are approved.
Letter of Intent on the Common R&D project to upgrade the COMPASS Polarized Target with Recoil Detectors (PT with RD)

Author: Alexander Nagaytsev¹

¹ Joint Institute for Nuclear Research (RU)

Corresponding Author: alexander.nagaytsev@cern.ch

PID inside the COMPASS PT

Author: Gleb Meshcheryakov

Proposal for a possible recoil tracker based on double side Si-microstrip detectors

Author: Alexander Nagaytsev¹

¹ Joint Institute for Nuclear Research (RU)

Corresponding Author: alexander.nagaytsev@cern.ch

Activities of LTU for high energy physics experiments

Author: Maksym Protsenko¹

¹ National Academy of Sciences of Ukraine (UA)

Corresponding Author: maksym.protsenko@cern.ch

PANDA experiment

Author: Fritz-Herbert Heinsius¹

¹ Ruhr-Universitaet Bochum (DE)

Corresponding Author: fritz-herbert.heinsius@cern.ch
Spin Physics Experiments at NICA-SPD

Author: Alexander Nagaytsev

Joint Institute for Nuclear Research (RU)

Corresponding Author: alexander.nagaytsev@cern.ch

Status Overview / 34

Current iFDAQ Software Status

Author: Ondrej Subrt

Co-author: Josef Novy

Czech Technical University (CZ)

Corresponding Authors: ondrej.subrt@cern.ch, josef.novy@cern.ch

The contribution presents development and recent status of the Data Acquisition Systems (DAQ) of the COMPASS experiment at CERN. It focuses especially on development and deployment of the new communication library DIALOG and DAQ Debugger for the error detection. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. In complex software, such as the DAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. The resultant DAQ stability is discussed at the end and comparison with previous years is given.