

RUB

The PANDA Experiment and the Electromagnetic Calorimeter

Fritz-Herbert Heinsius

RUHR-UNIVERSITÄT Bochum FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Experimentelle Hadronenphysik

Content

- FAIR
- PANDA Physics
- PANDA Detector
- PANDA EMC
- EMC Readout
- EMC Cooling

Prague 9.-11.11.2017

The FAIR Project at Darmstadt

RUB

PANDA

Fritz-Herbert Heinsius

2

FAIR Accelerator Complex

PANDA Physics Program

• pp- and pA-annihilation: beam momentum 1.5-15 GeV/c

Charmonium Spectroscopy

Study of charmonium states plays a crucial role in understanding QCD

Ideal probe of (de)confinement and the transition regime between perturbative and non-perturbative QCD

New States of Matter Z(4430)+ ψ(4³S₁) 4.4 η_c(4¹S₀) Y(4360) χ_{c2}(33P₂) h_c(3¹P₁) Z₂(4250)+ χ_{ε1}(3³Ρ₁ Y(4260) 4.2 Z_c(4200)⁺ χ_{c0}(3³P₀) ψ(2³D₁) X(4160) [GeV/c²] ψ(3³S₁ Z1(4050)+ Z_c(4020)+ 1 η_c(31S₀) 4.0 Pentaguark Tetraquark **H-dibaryon** (c2(23P2) X(3940) X(3915) Z_c(3900)+ M_D+M_D X(3872) MASS χ_{c0}(2³P₀) 3.8 Ψ''(1³D₁) diquark-diquark-antiquark diquark-diquark-diquark diquark-diantiquark $2M_{D}$ ψ'(2³S₁) η_ε′(2¹S₀) 3.6 χ_{c2}(1³P₂) Glueball Molecule Hybrid h_c(1¹P₁) χ_{ε1}(1³P1) g d mmfū χ_{c0}(1³P₀) 3.4 established cc states 3.2 predicted, undiscovered J/ψ(1³S₁) neutral XYZ mesons 3.0 η_ε(1¹S₀) charged XYZ mesons 0-+ 2++ 1--1+-0++ 1++ JPC

Glueballs

Specific predictions of mass spectrum

from quenched LatticeQCD.

- Width of ground state $\sim 100 \text{ MeV}$
- Several states predicted below 5 GeV/c², some with exotic quantum numbers
- Exotic heavy glueballs:
 - m(0⁺⁻) = 4140(50)(200) MeV
 - m(2⁺⁻) = 4740(70)(230) MeV

Some predicted decay modes: $\phi\phi$, $\phi\eta$, $J/\psi\eta$, $J/\psi\phi$...

C. Morningstar and M. Peardon, Phys. Rev. D 60, 034509 (1999)

The detection of non-exotic glueballs is not trivial, as these states mix with the nearby $q \bar{q}$ states with the same quantum numbers, thus modifying the expected decay pattern.

PANDA antiproton physics unique advantages:

Resonance Scans

Cooled antiproton beam with high momentum resolution

Precise measurement of masses and width of resonances

 only dependent on beam resolution (HESR Δp/p<5x10⁻⁵)

Example: χ_{c1} Resonance Scan

Formation:

$$\overline{p}p \to \chi_{1,2} \to \gamma \mathbf{J} / \psi \to \gamma e^+ e^-$$

- Resonance scan: ٠
 - → mass resolution depends on the beam resolution

E760/835@Fermilab ≈ 240 keV PANDA@FAIR 50 keV ≈

Gaiser et al., Phys. Rev. D34 (1986) 711: CrystalBall (SLAC): 3512.3 ± 4 MeV/c² Andreotti et al., Nucl. Phys. B717 (2005) 34-47: E835 (Fermilab): 3510.641 ± 0.074 MeV/c2

PANDA Physics Program

HEP: interference of coupled channels

S	pectroscopy		Nucleon Structure
New narrow XYZ: Search for partner states		Bound	Generalized parton distributions: Orbital angular momentum
Production of exotic QCD states: Glueballs & hybrids		States of Strong Interaction	Drell Yan process: Transverse structure, valence anti-quarks
	Ofmannana		Timelike formfactors:
Astro physics: Strange n-stars	Strangeness Strange baryo	ons: Nuclear Physics	e and µ pairs HI collisions
Nuclear physics	Spectroscopy Polarisation	Had Hypernuclear physics: Had Cha	drons in nuclei: to elementary arm and strangeness reactions
Hypernuclear		Hyperon interaction	

spectroscopy

RUB

HEP: underlying

elementary

Exclusive measurements

Almost 4π coverage

Target and forward spectrometer High event rate (10⁷/s)

Sophisticated online processing Detection of rare decay modes

Charged particle tracking (p<15 GeV/c) Good momentum / vertex resolution Good PID capabilities Photon detection (E=0.02-15 GeV) Excellent energy / angular resolution Detection of low energetic photons

Electromagnetic Calorimeter (EMC)

RUB

- Sampling calorimeter in forward spectrometer
- Homogeneous crystal calorimeter in target spectrometer: Barrel and two end caps
- 15 552 PbWO₄ crystals (20 cm \approx 22 X₀)
- Operating at -25 °C: 4 times more light than at 25 °C
- Time resolution < 2 ns
- Envisaged energy resolution

 $\leq 1\% \oplus rac{\leq 2\%}{\sqrt{E/ ext{GeV}}}$

- 99.8% of 4π
- B = 2T

Lead tungstate (PWO) Crystals

- Partly produced at BCTP (Russia)
- Production now at Crytur (Czech Republic)

RUB

Photodetectors **VPTT (Hamamatsu)**

~~~~~~

APD: 80 % fw endcap 100 % barrel 100 % bw endcap

Quantum eff. (typ.)

Active area

Gain

APD

Dark current (Anode)

Capacity **Fritz-Herbert Heinsius** 

PANDA

≈ 23 % 200 mm<sup>2</sup> typ. 50 < 1 nA ≈ 22 pF

2. Dynode

Anode Mesh 1. Dynode (mesh) Photocathode

#### APD (Hamamatsu)



≈ 80 %  $6.8 \times 14 = 95.2 \text{ mm}^2$ 200 / 150 1 pA – max 40 nA ≈ 270 pF

## Electronics and Readout System



- APFEL-ASIC / Basel low noise preamplifier
- Intelligent front-end: SADC
- Time-distribution system: SODANET
- Triggerless DAQ
- Data concentrators
- Burst-building network
- On-line computing

# Sampling ADC

- 64 ADC channels (32 dual gain)
- 14 bit resolution
- 80 MHz sampling rate
- Feature extraction
- Two versions:
  - APFEL ASIC
  - Basel preamplifier
- Irradiated, lab and beam tests







#### **Test Beam Results**

Forward endcap prototype





#### Production of Forward Endcap











- Assembly of forward endcap EMC at Jülich
  - Beam and DAQ tests with straws, MVD etc. at COSY-TOF area



## **Production of Barrel Slice**



710 crystals in 11 different geometries

Assembly of first slice in 2017













## **Cooling System**



#### **Cooling System**



#### **Temperature Monitoring**

- Pt100
- Resolution < 0.02 °C</li>
- Thickness < 140 μm
- Distributed between crystals
- Own production





![](_page_25_Picture_8.jpeg)

# Forward Endcap EMC Cooling

#### **Cooling and Insulation**

- Cooling lines through drilled holes in backplate support
- Low mass Vacuum Isolation Panels
- Vacuum insulation of cooling lines through solenoid magnet

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Figure_7.jpeg)

![](_page_26_Picture_8.jpeg)

#### **Barrel EMC Cooling**

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

## Summary

- HESR provides an antiproton beam with 1.5 15 GeV/c momentum
- The PANDA detector covers almost  $4\pi$  around a fixed target
- PANDA experimental program is covering the three pillars of hadron physics
  - Hadron spectroscopy
  - Hadron structure
  - Hadron interaction
- Lead tungstate crystals enable a compact EMC design, capable of resolving a high hit rate
- Assembly of the forward endcap calorimeter and slice
- Looking forward to produce excellent physics results at the beginning of the next decade