Issues in Hadron Spectroscopy -- puzzling near-threshold anomalies --

Stephen Lars Olsen

Joint Symposium on Nuclear, Particle & Field, and Astrophysics (SYNPA2017) Chonnam University, Gwangju, KOREA, Nov. 17-18, 2016

QCD dilemma

r fm

"psychological" problem -- theory is divorced from reality --

"practical" problem

- long-distance QCD effects limits on new physics searches -

(g-2)_{μ} /2: experimental precision $\delta_{exp} = \pm 6.3 \times 10^{-10}$

"practical" problem

- long-distance QCD effects limits on new physics searches -

(g-2)_{μ} /2: experimental precision $\delta_{exp} = \pm 6.3 \times 10^{-10}$

A better understanding of longdistance QCD is essential

http://www.edge.org/conversation/frank wilczek-power-over-nature

Possible strategies for dealing with the "scandalous" situation

Theorists: abandon old ideas, try to dream up new ones

Experimenters: try to identify previously unrecognized patterns in the data

$B^{-} \rightarrow K^{-} \pi^{+} \pi^{-} J/\psi$ event in Belle $\downarrow_{e^{+}e^{-}}$

$M(\pi^+\pi^-J/\psi)$

$M(\pi^+\pi^-J/\psi)$

X(3872) Mass

 $M_{\chi(3872)}$ is indistinguishable from $m_{D^0} + m_{D^{*0}}$ "B.E."=3 ± 193 keV PDG14: 3871.69±0.12 3871.69±0.09 MeV

3870.6 3870.8 3871 3871.2 3871.4 3871.6 3871.8 3872 3872.2 3872.4

X(3872) "Binding Energy"

or is the data telling us something?

Thresholds may be interesting

Look at light baryon thresholds

baryon-antibaryon:

2 S-wave threshold states:

0⁻⁺ pp̄ system

$J/\psi(\psi') \rightarrow \gamma p\overline{p}$

$J/\psi \rightarrow \gamma p\bar{p}$ at BESII

$J/\psi \rightarrow \gamma p\bar{p}$ at BESIII (PWA)

FSI included: A. Sibirtsev et al, PRD71, 054010 (2005)

"protonium:" a pp bound state?

X(1835)→ $\pi^+\pi^-\eta'$ with 58M J/ ψ decays (BESII)

X(1835)→ $\pi^+\pi^-\eta'$ with 225M J/ ψ decays (BESIII)

What are the new structures?

way above threshold, but narrow (Г≈80 MeV)!!

 ✓ first resonant structures observed in the 2.3 GeV region:

-LQCD predicts that the lowest –lying pseudoscalar glueball: around 2.3 GeV

 $-J/\psi \rightarrow \eta' \pi^+ \pi^-$ is a good decay channel for finding 0⁻⁺ glueballs.

X(2120)/X(2370) possibilities:
 -pseudoscalar glueball ?
 -η/η' radial excitations?

PRD82,074026,2010 J.F. Liu, G.J. Ding and M.L.Yan PRD83:114007,2011 (J.S. Yu, Z.-F. Sun, X. Liu, Q. Zhao)

X(1835)→ $\pi^+\pi^-\eta'$ with 1.1B J/ ψ events (BESIII)

 $J/\psi \to \gamma \pi^+ \pi^- \eta'$

Flatté formula fit:

Two-resonance fit

X(1835) $\rightarrow \pi^+\pi^-\eta'$ with 1.1B J/ ψ events

X(1835) in other channels (BESIII)

1⁻⁻ baryon-antibaryon systems

1⁻⁻ baryon-antibaryon systems

time-like form-factors

 e^{+} $q^{2} > 0$

If the form-factors are analytic: as $\tau \rightarrow 1$ $|G_E| \rightarrow |G_M|$ and $\frac{d\sigma}{d\Omega} \rightarrow$ isotropic

Integrated cross section:

$$\sigma_{B\bar{B}}(m_{B\bar{B}}) = \frac{4\pi\alpha^{2}\beta C}{3m_{B\bar{B}}^{2}} \left[\left| G_{M}(m_{B\bar{B}}) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(m_{B\bar{B}}) \right|^{2} \right] = \frac{4\pi\alpha^{2}\beta C}{3m_{B\bar{B}}^{2}} \left| G_{eff}(m_{B\bar{B}}) \right|^{2} \left(1 + 1/2\tau \right)$$

"effective" form-factor

effective form factor

$$\left| G_{eff} \right| = \sqrt{\frac{2\tau \left| G_{M} \right|^{2} + \left| G_{E}^{2} \right|}{2\tau + 1}}$$

numerology

$$\sigma_{B\bar{B}}(m_{B\bar{B}}) = \frac{4\pi\alpha^{2}\beta C}{3m_{B\bar{B}}^{2}} |G_{eff}(m_{B\bar{B}})|^{2} (1+1/2\tau) = 98.6 \text{ nb} \frac{\beta C}{m_{B\bar{B}}^{2}/m_{p}^{2}} |G_{eff}(m_{B\bar{B}})|^{2} (1+1/2\tau)$$

$$\frac{4\pi\alpha^2}{3m_p} = 98.6 \text{ nb}; \quad \text{at threshold:} \quad \begin{array}{c} \tau \to 1 \\ m_{B\overline{B}} \to 2m_B \\ & \left| G_{eff} \right| \to \left| G_M \right| \end{array}$$

Integrated cross section

$$\sigma_{B\overline{B}}(m_{B\overline{B}}) = 98.6 \text{ nb} \frac{\beta C}{m_{B\overline{B}}^2 / m_p^2} |G_{eff}(m_{B\overline{B}}|^2 (1+1/2\tau))$$

for pp: C= $\frac{\pi \alpha / \beta}{1 - \exp(-\pi \alpha / \beta)} \rightarrow \frac{\pi \alpha}{\beta}$

$$\sigma_{p\overline{p}}\left(m_{p\overline{p}} \rightarrow 2m_{p}\right) \rightarrow 0.85 \text{ nb} \left|G_{eff}\left(2m_{p}\right)\right|^{2}$$

for $n\overline{n}$ ($\Lambda\overline{\Lambda}$): C=1

PreliminaryBESIII data confirms BaBar

 $\sigma(e^+e^- \rightarrow \gamma_{isr} p\bar{p})$

 $|G_{eff}|$

 $|G_E(2m_p)|/|G_M(2m_p)| \rightarrow 1$

$\sigma(e^+e^- \rightarrow n\bar{n})$ near threshold

$e^+e^- \rightarrow \gamma^* \rightarrow \Lambda \overline{\Lambda}$ at threshold

for $\Lambda \overline{\Lambda}$, C=1; $\sigma \propto \beta$

$e^+e^- \rightarrow \gamma^* \rightarrow \Lambda \overline{\Lambda}$ at threshold

but 1st some experimental physics

First event in BESIII

July 20, 2007

Elevel a all'aire arrent

events we don't usually show in public

events we don't usually show in public

What would a $\Lambda\bar{\Lambda}$ at rest look like in BESIII

about like this

about like this

BESIII $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ measurements

	\sqrt{s} (GeV)	\mathcal{L}_{int}	$N_{\rm obs}$	$\epsilon(1+\delta)$	σ^{B} (pb)	G (×10 ⁻²)
	2.2324_1	2.63	43 ± 7	12.9	(15) $312 \pm 51^{+72}_{-45}$	ر two methods
	2.2324_2	2.63	22 ± 6	8.25	$288 \pm 96^{+64}_{-36}$	are consistent
conventional analyses [$\frac{2.2324_c}{2.400}$	3.42	45 ± 7	25.3	$305 \pm 45_{-36}$ $128 \pm 19 \pm 18$	$\frac{61.9 \pm 4.6_{-9.0}}{12.7 \pm 0.9 \pm 0.9}$
at higher energies	2.800	3.75	8 ± 3	36.1	$14.8 \pm 5.2 \pm 1.9$	$4.10 \pm 0.72 \pm 0.26$
	3.080	30.73	13 ± 4	24.5	$4.2 \pm 1.2 \pm 0.5$	$2.29 \pm 0.33 \pm 0.14$

BESIII 709.10236

Effective time-like form-factor of the Λ

 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

$e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ results

	\sqrt{s} (MeV)	$\mathcal{L}_{\mathrm{int}}~(\mathrm{pb}^{-1})$	$f_{ m ISR}$	σ (pb)
$2m_{\Lambda c}$ +1.6 MeV	4574.5 4580.0	$47.67 \\ 8.545$	$\begin{array}{c} 0.45 \\ 0.66 \end{array}$	$\begin{array}{c} 236 \pm 11 \pm 46 \\ 207 \pm 17 \pm 13 \end{array}$
	$4590.0 \\ 4599.5$	$8.162 \\ 566.9$	$\begin{array}{c} 0.71 \\ 0.74 \end{array}$	$\begin{array}{r} 245 \pm 19 \pm 16 \\ 237 \pm \ 3 \pm 15 \end{array}$

 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$ results

_	$\sqrt{s} \; ({ m MeV})$	$\mathcal{L}_{\mathrm{int}}$ (pb ⁻¹)	$f_{ m ISR}$	σ (pb)
2m _{//c} +1.6 Me	/ 4574.5 4580.0	$47.67 \\ 8.545$	$\begin{array}{c} 0.45 \\ 0.66 \end{array}$	$\begin{array}{c} 236 \pm 11 \pm 46 \\ 207 \pm 17 \pm 13 \end{array}$
	$4590.0 \\ 4599.5$	$8.162 \\ 566.9$	$\begin{array}{c} 0.71 \\ 0.74 \end{array}$	$\begin{array}{c} 245 \pm 19 \pm 16 \\ 237 \pm 3 \pm 15 \end{array}$

 $|G_{M}(2m_{\Lambda_{c}})| > 1!$

question to theorists:

Is the Coulomb factor reliable?

question to theorists:

Is the Coulomb factor reliable?

question to theorists:

BB threshold measurement prospects

BESIII data "in the can"

- & under analysis -

Scan data 2015 between 2 and 3.08 GeV (552 pb⁻¹)

Comments

Thresholds are interesting

Acknowledgement

Thanks to my colleague **Rinaldo Baldini** (INFN-Frascati), who taught me all I know about time-like form factors and got me & BESIII colleagues involved in the subject Thank you

감사합니다

Backup Slides

