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Machine Learning Introduction
• Allows an algorithm to learn patterns without being 

explicitly programmed
• Focus of this talk: algorithms trained on simulated data 

where truth values are known
• Some studies using unlabeled data, beyond the scope of this talk

• Many different algorithms exist, general procedure is:
• Initial algorithm parameters are random 
• Simulated data is fed through the algorithm 
• Predicted classification is compared to truth classification, error is 

quantified according to a loss function 
• Error is back-propagated to adjust the algorithm parameters 
• This process is repeated until stopping criteria is reached

• Important considerations:
• Dependency on variables used and algorithm hyperparameters
• Must check for overtraining
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Machine Learning for HEP
• Can utilize information not available in cut-based 

techniques:
• Variables whose distributions over lap (exploit shape differences)
• Non-linear correlations between input variables 
• Low-level variables

• Can reduce dependence on systematic uncertainties
• Can mitigate effects of simulation mis-modeling
• Often much faster than current techniques 
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Generally better performance on 
classification and similar tasks



HEP Environments
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Offline Computing

• Even longer 
computation time 
(20 s)

• Reconstructs, 
identifies, 
isolates, and 
calibrates all 
particles

L1 Trigger

• Makes very fast 
decision (10 μs)

• Based on coarse 
reconstruction in 
ROI

• Implemented at 
hardware level

High Level 
Trigger Analysis

• Computation 
time 
(approximately) 
not important

• Code written by 
individual groups

• Some centrally 
produced 
algorithms

• Slightly longer 
decision time (30 
ms)

• Based on 
simplified global 
reconstruction

• Implemented at 
software level 
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Particle ID 
with Machine 

Learning
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W± and Top Quarks
Want to separate hadronically decaying W± and top 

quarks from general QCD jet background
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Training data construction:
1. Reconstruct jets with 

standard anti-kt
algorithm and trimming

2. Calculate jet 
substructure variables

3. Reconstruct ‘truth jets’ 
from long-lived 
particles

4. Match jets with truth 
jets and original truth 
particles to get labels 

Training variables: 

Paper here



Boosted Decision Trees
Combine many shallow decision trees into a boosted forest
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1. All events (signal and background) 
are equally weighted and mixed at 
the top of first tree 

2. At each branching, an optimal cut 
is found to separate S and B 

3. When algorithm stops (due to 
predefined # of branches or events 
per node) each node is assigned 
an S or B label 

4. Boosted: all incorrectly classified 
events are given a higher weight 
for next tree 

5. Final classifier is the weighted 
average of the forest 
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BDT Training

Iteratively add 
variables to 
pick best set
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Scan hyper-
parameter space 
to optimize Check for over-

training with 
cross validation

W± Top



Neural Networks
Based on biological networks: a collection of connected 

nodes that pass information downstream
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1. Define a structure of multiple 
layers, each with different 
numbers of nodes 

2. Define a (initially random) 
matrix for dimensional 
transformation between the 
layers 

3. Feed data through the network 
to predict a classification 
probability (0 to 1) 

4. Back-propagate error through 
the network and changing the 
matrix values 
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NN Training
Iteratively add 
variables in 
groups to pick 
best set
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Scan hyper-parameter 
space to optimize

Check for over-
training with 
cross validation

W± Top

W±



Results
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• Trained 
algorithms 
produce 
discriminant 
distributions

• Select cut 
for desired 
efficiency



Results
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W±

Top

BDTs and NNs 
outperform cuts 
on physics 
motivated 
variables

BDTs and NNs 
perform similarly 
even when 
trained with 
other variables



Jet Images 
and Computer 

Vision
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Jets in ATLAS
• Cone-like showers of quarks and gluons that produce more 

particles all close to each other 
• Can come from QCD processes or boosted bosons and tops
• Typically identified using constructed variables that describe 

substructure inside jet

Savannah Thais  11/17/2017 17



Jet Images
Cells in the calorimeter become pixels in an image
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1. Center the image on largest energy deposit
2. Select a fixed window size around center
3. Color pixel according to energy deposited in that cell

Note: jet images are sparser than images in  other computer vision applications 
and do not have well defined edges à introduces new difficulties



Convolutional Neural Networks
A type of deep NN typically used for image processing

Consist of some combination of 3 layer types:
• Convolution: a set of learnable filters (kernels) that are 

convolved across the width and height of input data using 
a sliding window

• Pooling: provides non-linear down-sampling by combining 
the outputs of several neurons 

• Fully Connected: traditional NN layer
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Quark vs Gluon Jet ID: Data
Looked at 3 ways to calculate pixel energy:

• Topo-clusters: groups of energy deposits, used for jet clustering
• Calo-towers: fixed size division of calorimeter projected onto grid
• Tracks: tracks associated to jets with ghost-association
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Tracks TowersTopoclusters
Also pre-processed images to exploit space-time symmetries (in backup)

Paper Here



Quark vs Gluon Jet ID: Network
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• 3 convolution and max pooling combinations
• Final output is softmax probability of being quark jet or gluon jet



Quark vs Gluon Jet ID: Results
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Comparisons 
to physics 
motivated 
variables

Comparisons 
of pixelization
schemes

400-500 
GeV

150-200 
GeV

150-200 
GeV

400-500 
GeV



What Is It Learning?
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Combine DNN with 
physics variables Look at correlation of DNN output with physics variables 

Network learns most variables, but doesn’t entirely learn jet mass

Now look at a study on separating W jets from QCD jets

Paper Here



What Is It Learning?
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Look at average 
of 500 most 
activating 
images for 
different nodes

Look at 
correlation of 
each pixel with 
classification 
output

Learning that QCD 
background has 
wider radiation and W 
has 2 clear prongs!



What Is It Learning?
Restrict phase space to eliminate power of substructure variables
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Network is learning additional information outside of substructure! 



Adversarial 
Networks
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Adversarial Networks
• Pit 2 networks against each other in a non-cooperative game
• Adversary network takes output of main task network and 

tries to predict something from it
• Loss function becomes combination of competing objectives
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Simulations in ATLAS
• Full simulations in ATLAS are very computationally 

expensive (if done well)
• FASTSim reduces CPU time, but is also less accurate
• Many analyses need lots of high quality simulations to 

optimize their design à currently no good solution
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Can we use ML to solve this?



Generative Adversarial Networks
• GANs pit a generator G against a discriminator D

• G tries to generate physics simulations from random noise input
• D tries to separate simulations from G from Pythia simulations

• First ATLAS study is generating jet images
• Common problem with GANs is mode collapse: G learns 

one small feature that is maximally confusing to D
• Can alleviate this by adding an auxiliary task to D
• In this study, auxiliary task is distinguishing W jets from QCD jets
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Paper Here



GAN Architecture
For HEP tasks, create 
a location aware GAN 
(LAGAN) with: 

• Locally connected 
layers

• Rectified Linear Units 
in last layer to create 
sparsity

• Batch normalization to 
help stabilize

• Minibatch
discrimination to 
enforce sparsity and 
high dynamic range
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GAN Results
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Accurately reproduces pixel intensity and substructure variable distributions

Training converges 
to stable point 
where D gives 1/2

mass
pT 𝛕21



What is the GAN Learning?
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Random Pythia Jets and their nearest GAN neighbors

Pythia

GAN

Signal and Background Correlations DNN Output

Pythia GAN Pythia GAN
Learning images well while not memorizing Pythia distributions, but also learning 

to produce easier to discriminate images



GAN Performance and Speed
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LAGAN performs better 
than other common GAN 
architectures

LAGAN is an order of 
magnitude faster 
even on CPU



Imposing Constraints
• Outside of simulation generation, can use ANNs to impose 

physics driven constraints on training
• Big challenge in HEP is robustness with respect to systematic 

uncertainties and changing conditions
• To train a discriminator robust to or de-correlated from a 

physics variable, train adversary to reproduce this variable 
from the output of the classifier 
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Optimizing both goals 
concurrently is impossible, 
so introduce weighting 
parameter:



Reducing Pileup Dependence
• Can introduce nuisance parameter representing pileup

• First study is discretized: Z=0 for no pileup Z=1 for 50 
• Primary task: distinguishing W jets from QCD jets
• Adversary task: predicting Z from primary output 
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Trading classification accuracy 
for robustness to pileup 
increases final significance

Paper Here



Jet Mass Decorrelation 
• Many jet tagging procedures distort jet mass distribution

• Increases uncertainty in background modeling
• Decreases significance of final results 

• Primary task: distinguish W jets from QCD jets
• Adversary task: reproduce jet mass from primary output
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ANN less efficient than regular NN, but
also not mass dependent

ANN provides better 
final significance!

Paper Here



Recurrent 
Neural 

Networks
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Recurrent Neural Networks
• RNNs take in time ordered data
• Basic unit is a cell with some internal state

• Initial state is 0
• At each training step, a new event is fed in and combined with the 

current internal state
• Combination rules are learned during training 

• Allow for embedding variable length information into a fixed 
length space while maintaining information from ordering
• The output embedded vector can then be fed to a classifier

Savannah Thais  11/17/2017 38



RNN for Jet ID: Concept
• RNNs widely used for language processing, 

can extend this to jet construction:
• The particles in a jet should follow some order 

determined by QCD
• 4 momentum of particles are the ‘words’ and the 

ordered clustering into jets are the ‘sentences’
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Ordered jets are 
embedded into a binary 
tree, weights of the tree 
are learned by the RNN 
(bottom up)

Paper Here



RNN for Jet ID: Results
• Applied to distinguishing W jets from QCD jets
• Looked at using information from pre-processed images 

and raw pT information calo towers or individual particles
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Best RNNs ~ MaxOut
with images, but faster 
and easier to train

Better with particle and 
towers than images à
information lost in images

The algorithm used to 
order matters: kT and 
desc-pT best



RNN for B-tagging: Concept
• Current b-tagging uses impact parameter (IP) information 

from tracks and secondary vertex information
• Combined in a BDT for final application

• Current IP algorithm (IP3D) applies a LH to tracks to 
predict if they came from a certain flavor particle
• Neglects correlations between tracks
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Paper Here

RNN application treats 
tracks as variable length 
sequence to embed



RNN for B-tagging: Results
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RNN outperforms IP3D, almost as well as combined BDT

Including substructure variables further improves RNN

RNN could replace IP3D and improve b-tagging accuracy!

Light jets

Light jets

Charm jets

Charm jets



Additional Studies
• Unsupervised mixture modeling and weakly labeld learning 

(improved quark vs gluon jets discrimination)
• Bonsai trees for triggers (improved accuracy and speed)
• DNNs for exotic particle searches (analysis classification)
• Reweighting/calibration with BDTs
• Studying parton shower modeling dependence in jet images 

and eliminating scale dependence
• Reinterpretation of LHC data for BSM searches based on 

theory parameters (what should the LHC events look like)
• Other particle IDs (taus, photons)
• Color studies with CNNs (additional information by separating 

energy contributions from different particle types)
• CNNs for EM Particle ID (my work!)
• LHC work summarized here
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Conclusions
• Machine learning outperforms physics motivated 

techniques in many applications
• Can be applied to all stages of LHC physics
• Complexity of events and dependence on pileup will only 

increase as we move to HL LHC
• Need to develop better triggers, taggers, and reduce pileup 

dependence
• Many exciting areas for continued research and 

collaboration with industry to use cutting edge ML 
techniques!

Savannah Thais  11/17/2017 44



Backup
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Variable Grouping in BDT Training
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Projection onto Calo Towers
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W± vs QCD Jet ID: Data
Want to separate boosted W± jets from QCD background
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• Restricted study to 250-
300 GeV jet pT, and 65-
95 GeV jet mass

• Images formed using 
calo-tower technique, 
25x25 pixel images 

• Pre-processed with 
translation, rotation, and 
parity flip

Paper Here



W± vs QCD Jet ID: Architecture
Compared performance of 2 network types:

1. CNN:
• 3 convolution, max pooling, and dropout layer combinations
• 11x11 kernels in first layer, 3x3 in other layers
• 1 densely connected layer
• Output layer of sigmoid classification

2. MaxOut:
• 2 Maxout layers: value of node is max of all inputs
• 2 fully connected layers
• Output layer of sigmoid classification
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W± vs QCD Jet ID: Results
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DNNs outperform 
physics motivated 
variables!



Bjet track Correlations
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