# MACHINE LEARNING IN ATLAS

#### Savannah Thais

Yale University SYNPA 2017, Gwangju, 11/17/17





## Outline

- 1. Introduction
- 2. Particle ID with Machine Learning
  - 1. W and top classification
- 3. Jet Images and Computer Vision
  - 1. Basics
  - 2. Quark vs gluon jet classification
  - 3. Understanding what the network is learning
- 4. Adversarial Networks
  - 1. Basics
  - 2. Jet Image Generation
  - 3. Decorrelation Studies
- 5. Recursive Neural Networks
  - 1. Basics
  - 2. Jet Classification
  - 3. B-tagging

## Machine Learning Introduction

- Allows an algorithm to learn patterns without being explicitly programmed
- Focus of this talk: algorithms trained on simulated data where truth values are known
  - Some studies using unlabeled data, beyond the scope of this talk
- Many different algorithms exist, general procedure is:
  - Initial algorithm parameters are random
  - Simulated data is fed through the algorithm
  - Predicted classification is compared to truth classification, error is quantified according to a loss function
  - Error is back-propagated to adjust the algorithm parameters
  - This process is repeated until stopping criteria is reached
- Important considerations:
  - Dependency on variables used and algorithm hyperparameters
  - Must check for overtraining

## Machine Learning for HEP

- Can utilize information not available in cut-based techniques:
  - Variables whose distributions over lap (exploit shape differences)
  - Non-linear correlations between input variables
  - Low-level variables
- Can reduce dependence on systematic uncertainties
- Can mitigate effects of simulation mis-modeling
- Often much faster than current techniques

Generally better performance on classification and similar tasks

## **HEP Environments**

|   | L1 Trigger                                                                                                             |   | High Level<br>Trigger                                                                                                              |   | Offline Computing                                                                                                         |   | Analysis                                                                                                                                    |
|---|------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------|
| • | Makes very fast<br>decision (10 µs)<br>Based on coarse<br>reconstruction in<br>ROI<br>Implemented at<br>hardware level | • | Slightly longer<br>decision time (30<br>ms)<br>Based on<br>simplified global<br>reconstruction<br>Implemented at<br>software level | • | Even longer<br>computation time<br>(20 s)<br>Reconstructs,<br>identifies,<br>isolates, and<br>calibrates all<br>particles | • | Computation<br>time<br>(approximately)<br>not important<br>Code written by<br>individual groups<br>Some centrally<br>produced<br>algorithms |

## **HEP Environments**

|   | L1 Trigger                                                                                                             |   | High Level<br>Trigger                                                                                                              |   | Offline Computing                                                                                                         |   | Analysis                                                                                                                                    |  |
|---|------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| • | Makes very fast<br>decision (10 µs)<br>Based on coarse<br>reconstruction in<br>ROI<br>Implemented at<br>hardware level | • | Slightly longer<br>decision time (30<br>ms)<br>Based on<br>simplified global<br>reconstruction<br>Implemented at<br>software level | • | Even longer<br>computation time<br>(20 s)<br>Reconstructs,<br>identifies,<br>isolates, and<br>calibrates all<br>particles | • | Computation<br>time<br>(approximately)<br>not important<br>Code written by<br>individual groups<br>Some centrally<br>produced<br>algorithms |  |
|   | Simulation                                                                                                             |   | <ul><li>Used to tune algorithms at all stages</li><li>Computationally expensive to do well</li></ul>                               |   |                                                                                                                           |   |                                                                                                                                             |  |

• Known mis-modeling problems and generator dependencies

## **HEP Environments**

| L1                                                                                          | Trigger                                                                              | High Level<br>Trigger                                                                                                              | Offline Computir                                                                                                          | ng | Analysis                                                                                                                                    |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Make<br/>decis</li> <li>Base<br/>recon<br/>ROI</li> <li>Imple<br/>hardv</li> </ul> | s very fast<br>ion (10 µs)<br>d on coarse<br>struction in<br>mented at<br>vare level | Slightly longer<br>decision time (30<br>ms)<br>Based on<br>simplified global<br>reconstruction<br>Implemented at<br>software level | Even longer<br>computation time<br>(20 s)<br>Reconstructs,<br>identifies,<br>isolates, and<br>calibrates all<br>particles | •  | Computation<br>time<br>(approximately)<br>not important<br>Code written by<br>individual groups<br>Some centrally<br>produced<br>algorithms |

| naruware level | software level                                                                                     | particles                                                   | •        | produced<br>algorithms |
|----------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------|------------------------|
| Simulation     | <ul> <li>Used to tune algorith</li> <li>Computationally exp</li> <li>Known mis-modeling</li> </ul> | ims at all stages<br>ensive to do well<br>problems and gene | erator d | ependencies            |

# Particle ID with Machine Learning

#### Paper here

## W<sup>±</sup> and Top Quarks

#### Want to separate hadronically decaying W<sup>±</sup> and top quarks from general QCD jet background

#### Training data construction:

- Reconstruct jets with standard anti-k<sub>t</sub> algorithm and trimming
- 2. Calculate jet substructure variables
- 3. Reconstruct 'truth jets' from long-lived particles
- 4. Match jets with truth jets and original truth particles to get labels

#### Training variables:

| Observable                 | Variable                                  | Used For |
|----------------------------|-------------------------------------------|----------|
| Energy Correlation Pation  | $ECF_1, ECF_2, ECF_3$                     | top,W    |
|                            | $C_2, D_2$                                |          |
| N-subjettiness             | $	au_{1}, 	au_{2}, 	au_{3}$               | top,W    |
|                            | $\tau_{21}, \tau_{32}$                    |          |
|                            | Fox Wolfram $(R_2^{\rm FW})$              | W        |
| Center of Mass Observables | Sphericity (S)                            | W        |
|                            | Thrust $(T_{\text{MIN}}, T_{\text{MAJ}})$ | W        |
|                            | Z <sub>CUT</sub>                          | W        |
| Splitting Measures         | $\mu_{12}$                                | W        |
|                            | $\sqrt{d_{12}}, \sqrt{d_{23}}$            | top,W    |
| Planar Flow                | $\mathcal{P}$                             | W        |
| Dipolarity                 | $\mathcal{D}$                             | W        |
| Angularity                 | <i>a</i> <sub>3</sub>                     | W        |
| Aplanarity                 | A                                         | W        |
| KtDR                       | KtDR                                      | W        |
| Qw                         | $Q_w$                                     | top      |

## **Boosted Decision Trees**

#### Combine many shallow decision trees into a boosted forest

- All events (signal and background) are equally weighted and mixed at the top of first tree
- 2. At each branching, an optimal cut is found to separate S and B
- When algorithm stops (due to predefined # of branches or events per node) each node is assigned an S or B label
- 4. Boosted: all incorrectly classified events are given a higher weight for next tree
- 5. Final classifier is the weighted average of the forest



## **BDT Training**

#### Iteratively add variables to pick best set

**ATLAS** Simulation Preliminary √s=13TeV, BDT *W* Tagging, ∈<sup>rel</sup><sub>s0</sub>=50% *W* Jet, p<sub>1</sub><sup>truth</sup>=[200,2000] GeV, m<sup>calo</sup>>40 GeV, m<sup>1truth</sup><2.0

MaxDepth





Relative background rejection



Top

Scan hyperparameter space to optimize

Check for overtraining with cross validation

NTrees

#### **Neural Networks**

Based on biological networks: a collection of connected nodes that pass information downstream

- Define a structure of multiple layers, each with different numbers of nodes
- 2. Define a (initially random) matrix for dimensional transformation between the layers
- Feed data through the network to predict a classification probability (0 to 1)
- 4. Back-propagate error through the network and changing the matrix values



## NN Training

Iteratively add variables in groups to pick best set



70

65

60

55

50

45

40

35





DNN architecture and training



17. lr 18. 19. l 20. lr 21. 22. 23. lr 23. lr 23. lr

Check for overtraining with cross validation

<u>е</u> б

13.15

15. 16.

DNN architecture and training

ö

#### Training input groups

#### Scan hyper-parameter space to optimize



Number of enochs



- Trained algorithms produce discriminant distributions
- Select cut for desired efficiency





W<sup>±</sup>



# Jet Images and Computer Vision

#### Jets in ATLAS

- Cone-like showers of quarks and gluons that produce more particles all close to each other
- Can come from QCD processes or boosted bosons and tops
- Typically identified using constructed variables that describe substructure inside jet





#### Jet Images

#### Cells in the calorimeter become pixels in an image



- 1. Center the image on largest energy deposit
- 2. Select a fixed window size around center
- 3. Color pixel according to energy deposited in that cell

Note: jet images are sparser than images in other computer vision applications and do not have well defined edges  $\rightarrow$  introduces new difficulties

## **Convolutional Neural Networks**

- A type of deep NN typically used for image processing Consist of some combination of 3 layer types:
- Convolution: a set of learnable filters (kernels) that are convolved across the width and height of input data using a sliding window
- Pooling: provides non-linear down-sampling by combining the outputs of several neurons
- Fully Connected: traditional NN layer



#### Paper Here

## Quark vs Gluon Jet ID: Data

Looked at 3 ways to calculate pixel energy:

- Topo-clusters: groups of energy deposits, used for jet clustering
- · Calo-towers: fixed size division of calorimeter projected onto grid
- Tracks: tracks associated to jets with ghost-association



Also pre-processed images to exploit space-time symmetries (in backup)

#### Quark vs Gluon Jet ID: Network



- 3 convolution and max pooling combinations
- Final output is softmax probability of being quark jet or gluon jet

#### Quark vs Gluon Jet ID: Results



#### Paper Here

## What Is It Learning?

Now look at a study on separating W jets from QCD jets



Network learns most variables, but doesn't entirely learn jet mass

## What Is It Learning?



99.34% signal



99.33% signal









99.33% signal

Look at average of 500 most activating images for different nodes











250 < p\_/GeV < 300 GeV, 65 < mass/GeV < 95



Look at correlation of each pixel with classification output

Learning that QCD background has wider radiation and W has 2 clear prongs!

#### What Is It Learning?

Restrict phase space to eliminate power of substructure variables



Network is learning additional information outside of substructure!

# Adversarial Networks

#### **Adversarial Networks**

- Pit 2 networks against each other in a non-cooperative game
- Adversary network takes output of main task network and tries to predict something from it
- Loss function becomes combination of competing objectives

$$E(\theta_f, \theta_r) = \mathcal{L}_f(\theta_f) - \mathcal{L}_r(\theta_f, \theta_r)$$



#### Simulations in ATLAS

- Full simulations in ATLAS are very computationally expensive (if done well)
- FASTSim reduces CPU time, but is also less accurate
- Many analyses need lots of high quality simulations to optimize their design → currently no good solution

Can we use ML to solve this?

Paper Here

#### **Generative Adversarial Networks**

- GANs pit a generator G against a discriminator D
  - G tries to generate physics simulations from random noise input
  - D tries to separate simulations from G from Pythia simulations
- First ATLAS study is generating jet images
- Common problem with GANs is mode collapse: G learns one small feature that is maximally confusing to D
  - Can alleviate this by adding an auxiliary task to D
  - In this study, auxiliary task is distinguishing W jets from QCD jets



### **GAN** Architecture

#### For HEP tasks, create a location aware GAN (LAGAN) with:

- Locally connected layers
- Rectified Linear Units in last layer to create sparsity
- Batch normalization to help stabilize
- Minibatch discrimination to enforce sparsity and high dynamic range



#### **GAN Results**



#### Accurately reproduces pixel intensity and substructure variable distributions





Training converges to stable point where D gives 1/2

#### What is the GAN Learning?

#### Random Pythia Jets and their nearest GAN neighbors



Learning images well while not memorizing Pythia distributions, <u>but</u> also learning to produce easier to discriminate images

#### **GAN Performance and Speed**



## **Imposing Constraints**

- Outside of simulation generation, can use ANNs to impose physics driven constraints on training
- Big challenge in HEP is robustness with respect to systematic uncertainties and changing conditions
- To train a discriminator robust to or de-correlated from a physics variable, train adversary to reproduce this variable from the output of the classifier



Optimizing both goals concurrently is impossible, so introduce weighting parameter:

 $L_{\text{tagger}} = L_{\text{classification}} - \lambda L_{\text{adversary}}$ 

Paper Here

# Reducing Pileup Dependence

- Can introduce nuisance parameter representing pileup
  - First study is discretized: Z=0 for no pileup Z=1 for 50
- Primary task: distinguishing W jets from QCD jets
- Adversary task: predicting Z from primary output



Trading classification accuracy for robustness to pileup increases final significance

#### Paper Here

#### **Jet Mass Decorrelation**

- Many jet tagging procedures distort jet mass distribution
  - Increases uncertainty in background modeling
  - Decreases significance of final results
- Primary task: distinguish W jets from QCD jets
- Adversary task: reproduce jet mass from primary output



ANN less efficient than regular NN, but also not mass dependent



# Recurrent Neural Networks

#### **Recurrent Neural Networks**

- RNNs take in time ordered data
- Basic unit is a cell with some internal state
  - Initial state is 0
  - At each training step, a new event is fed in and combined with the current internal state
  - Combination rules are learned during training
- Allow for embedding variable length information into a fixed length space while maintaining information from ordering
  - The output embedded vector can then be fed to a classifier

# RNN for Jet ID: Concept

- RNNs widely used for language processing, can extend this to jet construction:
  - The particles in a jet should follow some order determined by QCD
  - 4 momentum of particles are the 'words' and the ordered clustering into jets are the 'sentences'

Ordered jets are embedded into a binary tree, weights of the tree are learned by the RNN (bottom up)

$$\mathbf{h}_{k}^{\text{jet}} = \begin{cases} \mathbf{u}_{k} & \text{if } k \text{ is a leaf} \\ \sigma \begin{pmatrix} \mathbf{h}_{k_{L}}^{\text{jet}} \\ \mathbf{h}_{k_{R}}^{\text{jet}} \\ \mathbf{u}_{k} \end{pmatrix} + b_{h} \end{pmatrix} & \text{otherwise} \\ \end{cases}$$

$$\mathbf{u}_{k} = \sigma \left( W_{u}g(\mathbf{o}_{k}) + b_{u} \right) \\ \mathbf{o}_{k} = \begin{cases} \mathbf{v}_{i(k)} & \text{if } k \text{ is a leaf} \\ \mathbf{o}_{k_{L}} + \mathbf{o}_{k_{R}} & \text{otherwise} \end{cases}$$



 $\mathbf{v}_{N_i}$ 

Paper Here

#### **RNN for Jet ID: Results**

- Applied to distinguishing W jets from QCD jets
- Looked at using information from pre-processed images and raw  $p_{\rm T}$  information calo towers or individual particles

| Input                  | Architecture              | ROC AUC                               |  |  |  |  |  |
|------------------------|---------------------------|---------------------------------------|--|--|--|--|--|
|                        | Projec                    | ted into images                       |  |  |  |  |  |
| towers                 | MaxOut                    | 0.8418                                |  |  |  |  |  |
| towers                 | $k_t$                     | $0.8321 \pm 0.0025$                   |  |  |  |  |  |
| towers                 | $k_t \ (\text{gated})$    | $0.8277 \pm 0.0028$                   |  |  |  |  |  |
| Without image preproce |                           |                                       |  |  |  |  |  |
| towers                 | $	au_{21}$                | 0.7644                                |  |  |  |  |  |
| towers                 | mass + $	au_{21}$         | 0.8212                                |  |  |  |  |  |
| towers                 | $k_t$                     | $0.8807 \pm 0.0010$                   |  |  |  |  |  |
| towers                 | C/A                       | $0.8831 \pm 0.0010$                   |  |  |  |  |  |
| towers                 | anti- $k_t$               | $0.8737 \pm 0.0017$                   |  |  |  |  |  |
| towers                 | $\operatorname{asc-}p_T$  | $0.8835 \pm 0.0009$                   |  |  |  |  |  |
| towers                 | $\operatorname{desc-}p_T$ | $ 0.8838 \pm 0.0010 $                 |  |  |  |  |  |
| towers                 | random                    | $0.8704 \pm 0.0011$                   |  |  |  |  |  |
| particles              | $k_t$                     | $0.9185 \pm 0.0006$                   |  |  |  |  |  |
| particles              | C/A                       | $\textbf{0.9192} \pm \textbf{0.0008}$ |  |  |  |  |  |
| particles              | $	ext{anti-}k_t$          | $0.9096 \pm 0.0013$                   |  |  |  |  |  |
| particles              | $\operatorname{asc-}p_T$  | $0.9130 \pm 0.0031$                   |  |  |  |  |  |
| particles              | $\operatorname{desc-}p_T$ | $0.9189 \pm 0.0009$                   |  |  |  |  |  |
| particles              | random                    | $0.9121 \pm 0.0008$                   |  |  |  |  |  |
|                        | *****                     | / A 1. A                              |  |  |  |  |  |

Best RNNs ~ MaxOut with images, but faster and easier to train



Better with particle and towers than images  $\rightarrow$  information lost in images



## RNN for B-tagging: Concept

Paper Here

- Current b-tagging uses impact parameter (IP) information from tracks and secondary vertex information
  - Combined in a BDT for final application
- Current IP algorithm (IP3D) applies a LH to tracks to predict if they came from a certain flavor particle
  - Neglects correlations between tracks



#### **RNN for B-tagging: Results**

#### RNN outperforms IP3D, almost as well as combined BDT



#### Including substructure variables further improves RNN



RNN could replace IP3D and improve b-tagging accuracy!

#### **Additional Studies**

- <u>Unsupervised</u> mixture modeling and <u>weakly labeld</u> learning (improved quark vs gluon jets discrimination)
- Bonsai trees for <u>triggers</u> (improved accuracy and speed)
- DNNs for <u>exotic particle</u> searches (analysis classification)
- Reweighting/calibration with <u>BDTs</u>
- Studying <u>parton shower modeling</u> dependence in jet images and eliminating scale dependence
- Reinterpretation of <u>LHC data for BSM searches</u> based on theory parameters (what should the LHC events look like)
- Other particle IDs (taus, photons)
- <u>Color studies</u> with CNNs (additional information by separating energy contributions from different particle types)
- CNNs for EM Particle ID (my work!)
- LHC work summarized <u>here</u>

#### Conclusions

- Machine learning outperforms physics motivated techniques in many applications
- Can be applied to all stages of LHC physics
- Complexity of events and dependence on pileup will only increase as we move to HL LHC
  - Need to develop better triggers, taggers, and reduce pileup dependence
- Many exciting areas for continued research and collaboration with industry to use cutting edge ML techniques!

# Backup

## Variable Grouping in BDT Training

|                  | W-Boson Tagging Observable Groups |   |   |   |   |   |         |
|------------------|-----------------------------------|---|---|---|---|---|---------|
| Observable       | 1 2                               |   | 3 | 4 | 5 | 6 | 7 (BDT) |
| $ECF_1$          |                                   |   | 0 | 0 | 0 | 0 |         |
| $ECF_2$          |                                   |   | 0 | 0 | 0 | 0 | o       |
| ECF <sub>3</sub> |                                   |   | 0 | 0 | 0 | 0 | o       |
| $C_2$            | 0                                 | 0 |   |   | 0 | 0 |         |
| $D_2$            | 0                                 | 0 |   |   | 0 | 0 | 0       |
| $	au_1$          |                                   |   | 0 | 0 | 0 | 0 | 0       |
| $	au_2$          |                                   |   | 0 | 0 | ο | 0 |         |
| $	au_{21}$       | 0                                 | 0 |   |   | ο | 0 | o       |
| $R_2^{\rm FW}$   |                                   | 0 | 0 | 0 | 0 | 0 | o       |
| S                |                                   | 0 | 0 | 0 | 0 | 0 | o       |
| $\mathcal{P}$    |                                   |   |   |   | 0 | 0 | ο       |
| $\mathcal{D}$    |                                   |   |   |   | 0 | 0 |         |
| $a_3$            |                                   |   | 0 | 0 | 0 | 0 | o       |
| A                |                                   |   | 0 | 0 | 0 | 0 | о       |
| $T_{ m MIN}$     |                                   | 0 |   | 0 |   | 0 |         |
| $T_{\rm MAJ}$    |                                   | 0 |   | 0 |   | 0 |         |
| Z <sub>CUT</sub> |                                   |   |   |   | 0 | 0 |         |
| $\mu_{12}$       |                                   |   |   |   | 0 | 0 |         |
| $\sqrt{d_{12}}$  | 0                                 | 0 | 0 |   | 0 | 0 |         |
| <i>KtDR</i>      |                                   |   |   |   | ο | 0 | o       |

#### **Projection onto Calo Towers**



## W<sup>±</sup> vs QCD Jet ID: Data

Want to separate boosted W<sup>±</sup> jets from QCD background

- Restricted study to 250-300 GeV jet p<sub>T</sub>, and 65-95 GeV jet mass
- Images formed using calo-tower technique, 25x25 pixel images
- Pre-processed with translation, rotation, and parity flip



## W<sup>±</sup> vs QCD Jet ID: Architecture

Compared performance of 2 network types:

- 1. CNN:
  - 3 convolution, max pooling, and dropout layer combinations
  - 11x11 kernels in first layer, 3x3 in other layers
  - 1 densely connected layer
  - Output layer of sigmoid classification
- 2. MaxOut:
  - 2 Maxout layers: value of node is max of all inputs
  - 2 fully connected layers
  - Output layer of sigmoid classification

#### W<sup>±</sup> vs QCD Jet ID: Results

 $250 < p_T/GeV < 300 GeV, 65 < mass/GeV < 95$ 

 $\sqrt{s} = 13$  TeV, Pythia 8



#### **Bjet track Correlations**

