

Neutrino Flux Requirements for DUNE

Leo Aliaga

WG1: Neutrino Flux October 16, 2017

Outline

- LBNF beamline designs.
- Ourrent flux uncertainties.
- Reducing the flux uncertainties

LBNF Beamline Designs

LBNF Beamline

- Primary proton beam in 60-120 GeV.
- Initial 1.2 MW beam power, upgradable to 2.4 MW.
- Wide-band beam on-axis with tunable energy spectrum.
- Decay pipe ~ 200 m long, He filled.
- Currently considering two different beamline designs:
 - Reference (NuMI-like).
 - Optimized (for CP violation).

Decision regarding which one will go forward to preliminary design will be made soon.

LBNF Reference Beamline

- Two horns, nearly identical to those used in NuMI, run at slightly higher current (230 kA).
- 1 m long graphite fin target, similar to but not identical to NuMI target

5

LBNF Optimized Beamline

- Three horns, not similar to NuMI, run at 300 kA
- 2 m long graphite fin target, but development of alternative graphite cylindrical target design is ongoing at RAL

6

LBNF Reference Beamline

LBNF Beamline Options

LBNF/DUNE Long Baseline Physics

Assuming:

- 1. 5% uncertainties on the normalizations of the v_e appearance correlated with the v_{μ} disappearance.
- 2. Additional uncertainties of 1%, 2% or 3% that are uncorrelated with the v_{μ} spectrum
- Going from 3% vs 1% uncertainty is equivalent to nearly doubling exposure time.

DUNE Sensitivity CDR Reference Design **Normal Hierarchy Optimized Design** $sin^2 2\theta_{13} = 0.085$ $sin^2 \theta_{23} = 0.45$ **5%**⊕1% **5%⊕2% 5%⊕3%** א ס II DUNE CDR Using GLoBES 200 400 600 800 1000 1200 1400 Exposure (kt-MW-years)

Fermilab

50% CP Violation Sensitivity

LBNF/DUNE Long Baseline Physics

Flux uncertainties enter:

- 1. **Directly** (after constraint by the near detector) the uncertainty 1, that is correlated between $v_e \,and \, v_{\mu,}$
- 2. Indirectly to the uncertainty 2, since flux uncertainties couple to uncertainties in cross sections:

$$N_{\nu_e}(E_{\nu}) = \phi_{\nu_{\mu}} \times \sigma(\nu_e) \times \epsilon(\nu_e) \times P(\nu_{\mu} \to \nu_e)$$

Fermilab

Current Flux Uncertainties

Focusing Uncertainties

POT counting and water layer are the most significant at the peak.

Horn current and target longitudinal offset are the most significant at the falling edge for the reference design.

😎 Fermilab

HP Uncertainties

- DUNE uses PPFX (Package to Predict the Flux) developed by MINERvA that uses all relevant HP data (currently it corrects FTFP_BERT G4 model).
- DUNE uses QGSP hadronic model and then only the uncertainties can be calculated using PPFX.

PPFX calculates two kind of uncertainties related to the corrections of the HP:

- 1. Beam attenuation.
- 2. Hadron production.

1. Beam Attenuation

When the particle interacts in a volume

 N_A : Avogadro Number, ρ : density, A: mass number

When the particle passes through the volume without interacting the survival probability is calculated.

14

Example: Absorption cross section of pion on Aluminum

Reference (Geant4):

 $\sigma_{absorption} = 344 \text{ mbar}$

🛟 Fermilab

 Most of the cross-section discrepancies are less than 6%.

2. Hadron Production

For thin target data (NA49 for instance):

 $correction(x_F, p_T, E) = \frac{f_{Data}(x_F, p_T, E = 158GeV) \times scale(x_F, p_T, E)}{f_{MC}(x_F, p_T, E)}$

(**f=Ed³ o/dp³**: invariant production cross section)

- The scale allows us to use NA49 for proton on carbon in 12-120 GeV (calculated with FLUKA).
- It was checked by comparing with NA61 at 31 GeV (negligible difference).

рС -> π⁺Х

Contours: 2.5, 10, 25, 50 and 75 % of the π yields.

🛟 Fermilab

Hadron Production Needs

• π , *K* and *nucleons* productions from *pC* based on data (mainly NA49).

• nucleon-A: quasi-elastics, extension from carbon to other materials, etc.

• No data applied to meson incidents: assuming large uncertainties.

Hadron Production Uncertainties

0 Fractional Uncertainty Total Same procedure as MINERvA Other Reference 0.18 $pC \rightarrow \pi$ applied to DUNE beam pC→K L. Fields (NBI 2017) 0.16 simulation $nC \rightarrow \pi$ pc→N Meson Inc 0.14 NucleonA **Target Absorption** Other Absorption 0.12 Total HP uncertainty ~7% in the 0.1 peak and 12% for very low 0.08 energies. 0.06 0.04 0.02

2

4

6

8

Neutrino Energy (GeV)

10

🞝 Fermilab

12

Hadron Production Uncertainties

Particle production in proton carbon interactions:

Pions (pC -> π)
 Kaons (pC -> K)
 Nucleons (pC -> N)

All covered by external data (mainly NA49).

(for high energy kaons, a combination of NA49 + MIPP k/ π)

The magnitude of this uncertainty depends both on uncertainties reported by experiments.

The correlations of the datasets are not reported by experiments. We assumed 100% for the systematics (conservative approach from MINERvA).

🗘 Fermilab

Hadron Production Uncertainties

Extending the data coverage:

Nucleon interactions (NucleonA)

Constrain these interactions with pC adding an additional uncertainty found by comparing A dependence of Barton, Skubic and Eichten.

When there is not data coverage, like: Incident Mesons (Meson Inc)

Guided by the agreement with other datasets: processes categorized by meson and produced particle. 40% error assigned in 4 x_F bins.

🗘 Fermilab

Reference and Optimized Beam Uncertainties

Very similar in focusing peak; Optimized has slightly larger uncertainties at high energy, primarily due to having more interactions not covered by data

🚭 Fermilab

Beam Uncertainty Correlation Matrix for the Optimized beam

🛟 Fermilab

Optimized

Reducing the flux uncertainties

How can we reduce the a priori uncertainties

More thin target data

 Inelastic cross-sections of π, K and protons in different materials (C, Fe, Al, He).

Differential cross-sections in different materials

- π -> π at a wide range 10-60 GeV.
- pA-> π (K) X, where X != C

Proton quasi elastic cross-sections

How can we reduce the a priori uncertainties

Replica target data: MINERvA experience.

~ 5% using MIPP NuMI target data primarily.

Phys. Rev. D 94, 092005 (2016)

Checking the consistency with the low-nu measurement, MINERvA decided to use a prediction based only on thin target corrections

😎 Fermilab

LBNF Flux Spectrometer

A concept to measure hadron production after the horns (See Paul Le Brun's talk)

Reducing the Focusing Uncertainties

After reducing the HP, the focusing uncertainties will become dominant. > 0.09

POT counting and water layer are

the most significant at the peak.

Horn current and target longitudinal offset are the most significant at the falling edge for the reference design.

Conclusions

Reducing the HP uncertainties is possible with dedicated experiments:

- **Replica target data** would be the best option but **timescale** is a challenge (DUNE expects to receive beam in 2026) and it is likely that no replica will be available.
- Thin target data would likely to have big impact on DUNE.

backup

LBNF/DUNE Long Baseline Physics

Respect to the shape (flux shape can have a big impact):

This omission means that systematics likely have **an even bigger impact** than shown on previous page (which is already impressive!)

🛟 Fermilab

MINERvA Strategy for Predicting the Flux

Accounting for every optical modeling uncertainty.

1. Calculate an a-priori flux

Correcting the hadron production in the beam line to constrain to external hadron production data.

2. Use in-situ measurements

Checking our results with the low recoil event rates (low-nu method): flux shape measurement.

Applying an additional constraint from the neutrino - electron scattering events.

3. Package to Predict the FluX

Develop every tool in such a way they can be used by any experiment at NuMI (PPFX).

Some geometrical improvements

Effect of 1mm water layer around the Horn 1 inner conductor

• 4% effect around the LE flux peak.

- More accurate description of the inner conductor (IC) of Horn 1 designed for LBNF
 - Improved segmentation of the IC surface
 - Check the neck shape (cylinder).
 - 5% (14%) effect in the LE (ME) falling edge of the flux peak at MINERvA.

External Data? What Sort of Data is Available?

Hadron production data at the relevant energies for NuMI (references in the

backup slides):

Thin Target Data

Thick Target Data

р — К п р К п п

- Inelastic/absorption
 - Belletinni, Denisov, etc. cross sections of pC, πC , πAl etc.
 - NA49: *pC* @ 158 GeV.
 - NA61 pC @ 31 GeV.
- Hadron Production:
 - Barton: $pC \rightarrow \pi^{\pm}X$ @ 100 GeV $x_F > 0.3$.
 - NA49: $pC \to \pi^{\pm}X$ @ 158 GeV $x_F < 0.5$.
 - NA49: $pC \rightarrow n(p)X$ @ 158 GeV for $x_F < 0.95$.
 - NA49: $pC \rightarrow K^{\pm}X$ @ 158 GeV for $x_F < 0.2$.
 - NA61: $pC
 ightarrow \pi^{\pm} X$ @ 31 GeV .
 - MIPP: π/K from pC at 120 GeV for $p_Z > 20 GeV/c$.

Fermilab

- MIPP: proton on a spare NuMI target at 120 GeV:
 - π^{\pm} up to 80 GeV/c.
 - K/π for $p_Z > 20 GeV/c$.

Checking the consistency with the MINERvA low-nu measurement, we decided to use a prediction based only on thin target correction

1. Beam Attenuation

When the particle interacts in a volume

$$correction(r) = \frac{\sigma_{Data}}{\sigma_{MC}} e^{-r \frac{N_A \rho(\sigma_{Data} - \sigma_{MC})}{A}}$$

 N_A : Avogadro Number, ρ : density, A: mass number

🛟 Fermilab

When the particle passes through the

$$correction(r) = e^{-r \frac{N_A \rho(\sigma_{Data} - \sigma_{MC})}{A}}$$

Two variables are important here:

• The amount of material: $rN_A\rho/A$.

The OData and OMC disagreement.

Amount of Material Traversed

Muon neutrino parent:

Data - MC Comparison

Inelastic cross section

Absorption cross section

2. Hadron Production

For thin target data (NA49 for instance):

$$correction(x_F, p_T, E) = \frac{f_{Data}(x_F, p_T, E = 158GeV) \times scale(x_F, p_T, E)}{f_{MC}(x_F, p_T, E)}$$

(f=Ed³o/dp³: invariant production cross section)

The scale allows us to use NA49 for proton on carbon in 12-120 GeV (calculated with FLUKA).

It was checked by comparing with NA61 at 31 GeV (negligible difference).

For thick target data (MIPP):

$$correction(p_Z, p_T) = \frac{n_{Data}(p_Z, p_T)}{n_{MC}(p_Z, p_T)}$$

Example: NA49 Data/MC comparison (closed circles = statistical error < 2.5%, Open circles = statistical error 2.5-5.0%, Crosses > 5%).

If There is not Direct Data

Extending the data coverage

Constrain pA interactions with pC adding an additional uncertainty found by comparing A dependence of Barton, Skubic and Eichten.

• Use theoretical guidance (isospin arguments, quark counting arguments, etc.)

What if data is not available?

Guided by the agreement with other datasets: processes categorized by projectile and produced particle. 40% error assigned in 4 x_F bins.

🛟 Fermilab

Average Number of Interactions

π, *K* and *nucleons*

 nucleon-A (quasi-elastics, extension from carbon to other materials, production outside data coverage, etc).

💠 Fermilab

A Priori Flux Results for LE MINERvA

 MINERvA published the flux prediction for LE NuMI beam based on thin target data correction

Phys. Rev. D 94, 092005 (2016)

🛟 Fermilab

A Priori Flux Results for NOvA Near Detector

The same procedure has been fully implemented by NOvA

for its a priori flux prediction in NOvA NOvA Simulation

😎 Fermilab

Conclusions

- For NOvA, MINERvA (and MINOS+) and other experiments it is crucial to have a precise measurement of the flux with small uncertainties.
- The hadron production is the main source of uncertainties. Applied all relevant existing data to constrain the flux reduce the uncertainties.
- We develop an open and free computational tool called **PPFX** to share our result with other NuMI experiments.
 - Currently use by MINERvA and NOvA .
 - It has been adapted for DUNE and it is being used by the ND systematics

Conclusions FOR MINERvA

- This work also indicates where additional data is needed
 - π->πat 30 GeV.
 - proton quasi-elastic cross section.

3

2.5

2

1.5

0.5

interactions / v_{μ}

Average Number of Interactions $l = v_{\mu}$

 \cdots pC \rightarrow KX

----- nucleon-A

— total HP

----- $pC \rightarrow nucleonX$

 $\mathbf{pC} \rightarrow \pi \mathbf{X}$

 $nC \rightarrow \pi X$ meson inc.

others

Advantage to use thick target data

MIPP NuMI Data/MC comparison (closed circles = statistical error < 2.5%, Open circles = statistical error 2.5-5.0%, Crosses > 5%).

LE Mode On-Axis

Contours: 2.5, 10, 25, 50 and 75 % of the pion yields.

- Systematics are highly correlated bin-to-bin.
- Systematics and statistical errors are considered uncorrelated each other.

$E_v \approx 2.0$ 5.0 8.0 14.0 20.0 GeV .0. 4.0 ⊥ 0.8 1.8 0 1.6 <u>-</u> 0.7 Transverse Momentum 0.6 1.4 _ 0.5 1.2 Ó Ó Ó Ó Ó Ó 0.4 0 Ó Ó Ó Ó ٠ 0.3 Ó Ó Ó Ó ٠ 0.2 0.8 ٠ ٠ 0.1 0.6 0000 Ø ٥ 30 20 50 60 40 10 Longitudinal Momentum - p _(GeV/c) systematic uncertainties = 3.8%(added in quadrature).

😎 Fermilab

pNuMI -> π⁺*X*

Focusing Components

