

Mike Wilking
Stony Brook University
CENF-ND WG1 Meeting
December 11th, 2017

How to Measure Neutrino Oscillations

In a near/far experiment, σ uncertainties will cancel?

$$ND(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, A) \times \epsilon_{ND} \times M_{E_{true}}^{E_{rec}}$$

$$FD(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, A) \times \epsilon_{FD} \times P_{osc} \times M_{E_{true}}^{E_{rec}}$$

Cancelations of uncertainties in both flux and cross sections are spoiled by energy migrations

Near Detector Measures:

- v_{μ} energy spectrum
- Small v_e component

Far Detector Measures:

- Osc. v_{μ} energy spectrum
- Large $m v_e$ appearance signal

- \blacksquare E_{true} \rightarrow E_{rec} migration matrix is (quite) non-diagonal! (next slides)
 - Several important cross section uncertainties will not cancel

Measuring E_v

Must assume mass of recoiling hadron(s)

Problematic!
due to
Multi-nucleon
interactions

http://public.lanl.gov/friedland/LBNEApril2014/ LBNEApril2014talks/McGrew_LANL_Apr2014.pdf

Lepton + Hadronic Energy:

Missing hadronic energy from n, unseen π⁺, etc.

Energy loss is different for v and anti-v

- Both effects lead to underestimating the neutrino energy (feed down)
- Need to calibrate both leptonic (e & μ) & hadronic energy scales and shapes (e.g. long E_{rec} tails)

GEANT4 Simulation of a large LAr volume

(True deposited hadronic energy)/
(True initial hadronic energy)

Ev Feed Down

- Feed down & σ are poorly understood
 - Factor of ~3 disagreements in existing (effective theory) models
 - Different for v & anti-v
- E_V feed down fills in the
 V_µ disappearance dip
 - Results in large biases in θ₂₃ and Δm²₃₂ measurements
- Conventional near detectors lack sensitivity to feed down tail
 - Many degenerate solutions
 - Cannot constrain effect at far detector

Fake Data Studies

- If we had a model we could believe at the sub-% level (in rate and shape), our jobs would be much easier
 - We would simply design a near detector to constrain the parameters of that model
- However, our models are not very good
 - It is unlikely that any combination of model parameters will reproduce our data
- We can try to probe this using fake data studies, where the data contains features not accessible by the MC model in the fit
 - In T2K, such studies show that, even with a standard near detector constraint, large biases occur in the fitted oscillation parameters

Example Fake Data Study

- Create fake data samples with flux and cross section variations
 - 2 versions: with and without multi-nucleon events (i.e. T2K 2013 model vs 2015 model)
- For each fake data set, full T2K near/far oscillation fit is performed
 - For each variation, plot difference with and without multi-nucleon events
- **Resulting error on \theta_{23} at the ~4% level**
 - This is would be one of the largest systematic uncertainties for T2K
- But this is not a "real" systematic uncertainty; it is just the comparison of 2 models

-0.05

0.05

1.5

 E_{v} (GeV)

Benefits of a Monoenergetic Beam

- Fully specified initial state!
 - Electron-scattering-like measurements with neutrinos!
- First ever measurements of σ^{NC}(E_ν)
 - Much better constraints on NC oscillation backgrounds
- First ever "**correct**" measurements of σ^{cc}(E_ν)
 - No longer rely on final state particles to determine E_v
- It is now possible to separate the various components of single-µ events!

E61 in an Oscillation Experiment

E61 in an Oscillation Experiment

A. Bealth

Take different linear combinations!

E61 in an Oscillation Experiment

p, (GeV/c)

Linear Combination Technique

- Flux is now the same at the near and far detector
 - Can just measure observed muon p vs θ for any oscillated flux
- Same signal selection as used at Super-K
 - Single, muon-like ring
- Signal events can be defined as all true single-ring, muon-like events
 - A muon above Cherenkov threshold
 - All other particles below Cherenkov threshold
 - Signal includes CCQE, multi-nucleon, CCπ+, etc.
- No need to make individual measurements of each process and extrapolate to oscillated E_v spectrum
 - Some corrections are needed for different detector acceptance, flux fit differences, and remaining backgrounds

"Oscillations" in a Near Detector

- Red region is directly measured by E61
- Blue region is flux difference correction
- Green is SK non-CC0π background
- Partially cancels with already-subtracted E61 CC0π background
- Magenta is acceptance correction
- (geometric muon acceptance)
- SK prediction is largely from directly measured component

Flux Uncertainties

- Haven't we just replaced unknown cross section errors with unknown flux errors?
 - Yes! But only relative flux errors are important!
 - Significant cancelation between E61 and far detector variations
- Normalization uncertainties will cancel in the E61 analysis
 - This is not the case for a standard near+far analysis, due to different near/far fluxes, and energy migrations due to cross sections
 - T2K without E61: hadron prod. errors dominate;
 T2K with E61: hadron prod. errors are negligible
- Variations that affect off-axis angle shape are most important (although still not the dominant systematic uncertainty)
 - Horn current, beam direction, alignment, etc.

E61 v_µ Disappearance Constraint

E61 Analysis

- Fake data studies show the bias in θ₁₃ is reduced from 4.3%/3.6% to 1.2%/1.0%
- More importantly, this is now based on a data constraint, rather than a model-based guess
- Expect the E61 constraints to get significantly better as additional constraints are implemented (very conservative errors)

DUNE-PRISM

- The DUNE beam points directly at the far detector (on-axis)
- Therefore, it is impossible to access a higher energy E_v spectrum at the near detector
 - Higher E_V spectra are needed to subtract high-E_V tail
 - "First" oscillation maximum is at 2.5 GeV
- However, the on-axis flux is broad, so it is possible to utilize to higher energy portion of the flux peak (~3.5 GeV; next slides)

ν_μ Energy (GeV)

DUNE-PRISM Monoenergetic Linear Combinations

- Monoenergetic fluxes can be produced up to ~3.5 GeV
 - This is above the peak neutrino energy of the on-axis flux!
 - Good cancelation in high energy tail
- Fits begin to develop features at low energy as higher energies are attempted

Monoenergetic Fluxes

- DUNE-PRISM off-axis measurements can resolve features up to 3.5 GeV
 - The lower limit is below the 600 MeV peak of 2nd oscillation maximum

ND "Oscillated" Fluxes

- The far detector oscillated spectrum can be mostly reproduced with near detector linear combinations
 - Cannot quite cover the bump just above the oscillation maximum at 4 GeV
 - Is it still possible to point the beam slightly off-axis and slightly increase beam power?
 - just kidding; it is now too late to make major changes to the beam
- However, this is still quite promising!
 - Some residual model dependence at high energy, but DIS may be more understandable in this region
 - The poorly understood, low energy CCQE +
 MEC + CCpi+ region is well covered

Varying the Oscillation Parameters

 Far detector oscillated spectrum can be mostly reproduced at the near detertor across the interesting oscillation parameter space

DUNE Fake Data Studies

- To demonstrate the danger of trusting an incorrect cross section model, we can make fits to fake data
 - The fake data contain a modification to the cross section that the fitting model does not know about
 - The fitting framework we use is a version of CAFAna (i.e. the NOvA fitting framework)
- The hadronic final state from neutrino interactions has been less studied than the leptonic final state
- As a first example, fake data have been produced with 20% of the charged pion energy transferred to neutrons

Fake Data Example

- Fake data has 20%
 charged pion energy
 converted to neutron
 energy
- Fit has energy scale uncertainty, and standard flux & cross section uncertainties
- Fit can reproduce fake data distributions, but at the cost of biasing the oscillation result (next slide)

Fit Biases

 Summary: it is possible to get biased fit results if the wrong cross section model is assumed

Power of Off-Axis Measurements

- Best fit of on-axis near detector + far detector distributions causes a problem at 1.7° off-axis
 - Now have evidence something is wrong in the model, and we may have a bias in the oscillation fit
- Next step is to demonstrate that a far detector prediction built from a linear combination of off-axis near detector measurements is insensitive to any feasible fake data sample

Role of Flux Uncertainties I

- For a standard near+far fit, flux model parameters are constrained along with cross section model parameters (as was done in the fake data study just shown)
 - The more the flux can be constrained a priori, the better these fits can disentangle flux & cross section effects (although degeneracies can still be present)
- For a standard near+far fit, flux variations, even those that are identical at the near and far detector, will produce systematic errors due to poorly understood energy migrations in the cross section model

Role of Flux Uncertainties II

- Linear combinations of off-axis near detector measurements can be used to make a more robust far detector prediction
 - For flux variations that produce the same effect in the far detector and the linear combination, effects in the charged current cross section will cancel (both known and unknown)
- For E61 & DUNE-PRISM, beam optics effects become more important (but still not the dominant systematic error for E61 + T2K)
 - However, off-axis measurements also provide another dimension (beyond E_v) with which flux and cross section effects can be disentangled

Summary

- Current neutrino oscillation experiments are beginning to face limitations due to cross section uncertainties
 - Poorly understood "feed down" can bias oscillation parameter measurements due to very different near & far detector v_e & v_µ fluxes
 - These effects will be enhanced by flux uncertainties, even those that produce the same fractional change at the (on-axis) near and far detector
 - For DUNE and Hyper-K, constraining these effects will be even more critical
- Making measurements at an (ideally continuous) set of off-axis angles can provide a direct constraint on $E_{true} \rightarrow E_{rec}$ and significantly reduce the dependence of oscillation parameter measurements on cross section modeling
- With extra off-axis angle information, beam optics uncertainties become more important (but still not dominant for E61 + T2K)
 - However, measurements across many off-axis angles provide an extra dimension to disentangle this and other flux effects from cross section effects