
Intel® Threading Building Blocks
Overview
Alex Katranov

Intel Software and Services Group

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

What
 Widely used C++ template library for task parallelism.

Features
 Parallel algorithms and data structures.
 Threads and synchronization primitives.
 Scalable memory allocation and task scheduling.

Benefits
 Rich feature set for general purpose parallelism.
 Available as an open source (Apache 2.0) and a commercial license.
 Supports C++, Windows*, Linux*, OS X*, other (non-HPC) OS’s like Android*.
 Commercial support for Intel® Atom™, Core™, Xeon® processors, and for Intel® Xeon

Phi™ coprocessors

2

Intel® Threading Building Blocks (Intel® TBB)

Also available as open source at
http://threadingbuildingblocks.org

http://software.intel.com/intel-tbb

Simplify Parallelism with a Scalable Parallel Model

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Classic threading models (OpenMP*, pthreads) describe the implementation
 Threads are the fundamental concern
 You know how many threads you have
 You can find out which thread is executing
 You have to work out how to map work onto threads

Intel® Threading Building Blocks describes the algorithm
 You don’t describe threads or know how many there are
 You do describe the parts of your code that can run in parallel

– An algorithmic concept, not an implementation one
 The runtime chooses

– How much of the available parallelism to use
– How to map the work onto the hardware resources available to it at any instant
– You can provide more tuning information, but don’t have to

3

Fundamental Philosophical Difference between
Intel® TBB and “classic” threading models

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
4

Rich Feature Set for Parallelism

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Applications often contain multiple levels of parallelism

Task Parallelism /
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels

5

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
6

Rich Feature Set for Parallelism

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Loop parallelization

parallel_for
parallel_reduce
- load balanced parallel execution

- fixed number of independent iterations

parallel_deterministic_reduce

- run-to-run reproducible results

parallel_scan

- computes parallel prefix

y[i] = y[i-1] op x[i]

Parallel Algorithms for Sequences and Streams

parallel_do

- Use for unstructured stream or pile of work

- Can add additional work to pile while running

parallel_for_each

- parallel_do without an additional work feeder

pipeline / parallel_pipeline

- Linear pipeline of stages

- Each stage can be parallel or serial in-order or serial out-of-order.

- Uses cache efficiently

Parallel function invocation

parallel_invoke
task_group
- Parallel execution of a number of user-specified functions

Parallel sorting

parallel_sort

7

Generic parallel algorithms

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

template <typename Range, typename Body>
void parallel_for (const Range& range, const Body &body);

parallel_for partitions the original range into subranges, and deals out
subranges to worker threads in way that:
 Balances load
 Uses cache efficiently
 Scales

Library provides range classes:
 blocked_range models a one-dimensional range
 blocked_range2d models a two-dimensional range
 blocked_range3d models a three-dimensional range

8

parallel_for generic form

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
9

parallel_for simple form for 1D loops

template <typename Index, typename Body>
void parallel_for (Index lower, Index upper, const Body &body);

Example:

void sum(const int* in, const int* in2,
std::size_t size, int* out)

{
tbb::parallel_for(std::size_t(0), size,

[=](std::size_t i) {
out[i] = in[i] + in2[i];

});
}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
10

Rich Feature Set for Parallelism

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Terminology
 Thread refers to a physical thread (logicalCPU in Linux-speak)
 Task refers to a piece of work

Scheduler
 Maps tasks to threads (M:N relation)
 Balances resource consumption and parallelism
 Runtime-dynamic and lock-free
 Essential component of Intel® TBB

Task queuing
 LIFO: thread-local queue (spawned tasks)
 ~FIFO: shared global queue (enqueued tasks)
 ~FIFO: Task-stealing (random foreign queue)

11

How does it work? What is a Task Scheduler?

N Threads

M Tasks

S
ch

e
d

u
le

r

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

The Intel® TBB runtime
dynamically maps tasks
to threads

Automatic load balance,
lock-free whenever
possible, unfair

12

Task Execution in Intel® TBB (simplified)

Worker
thread

task

task
task

Local task pool

Execution

Worker
thread

task

task

Worker
thread

task

Steal

task

Task starting

task

task task task

Abstract version of the scheduler

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
13

Recursive parallelism
[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

Tasks available
to other threads

Split range...

.. recursively...

...until 
GrainSize

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Recursive parallelism
[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data,
Data+GrainSize)

A thread executes
depth first, thus
exploiting locality

14

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

15

Recursive parallelism

Other threads steal
work breadth first,
taking older, larger
pieces of work

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
16

Rich Feature Set for Parallelism

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
17

Motivation for data flow and graph-parallelism
Serial implementation (perhaps vectorized)

Loop-parallel implementation (“Classic OpenMP*”)

Loop- and graph-parallel implementation

x = A();

y = B(x);

z = C(x);

D(y, z);

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Users express dependencies between computational nodes

 The runtime extracts the implicit parallelism

 Schedules computations using Intel TBB

Use cases

 Streaming of images, frames, financial data etc…

 Reacting to GUI events

 Expressing dependencies in computations to enable parallelism

 Offloading computations to other devices (“accelerators”)

18

Intel® TBB flow graph

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Users create nodes and edges, interact with the graph and wait for it to
complete

19

Hello World Example

tbb::flow::graph g;

tbb::flow::make_edge(h, w);

tbb::flow::continue_node< tbb::flow::continue_msg >

h(g, [](const continue_msg &) { std::cout << “Hello “; });

tbb::flow::continue_node< tbb::flow::continue_msg >

w(g, [](const continue_msg &) { std::cout << “World\n“; });

h.try_put(continue_msg());

g.wait_for_all(); f() f()

h w

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
20

Rich Feature Set for Parallelism

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Several STL-like containers

 Similar concepts, partially compatible API

Better thread safety guarantees

 Basic C++ guarantee: safe concurrent reads, i.e. const methods

 Intel TBB guarantee: some modifying methods can be invoked concurrently

 Data modifications might require additional protection

Better performance compared to external lock protection

 Intel TBB uses fine grained locks or lock-free implementation

Can be mixed with OpenMP*, C++ or native threads, …

 A simple way to start using Intel TBB

21

Concurrent Containers

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Associative tables

 concurrent_hash_map

 concurrent_unordered_[multi]map, concurrent_unordered_[multi]set

Queues

 concurrent_queue, concurrent_bounded_queue

 concurrent_priority_queue

Random access

 concurrent_vector

Thread-local data storage

 enumerable_thread_specific, combinable

22

Concurrent Containers

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
23

Rich Feature Set for Parallelism

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

 Memory allocation can be (and often is) a bottleneck in concurrent/parallel
programs

 Thread-friendly, scalable allocators are known to be important for many real-
world applications

 If memory allocation is bottleneck, changing the allocator can be an easy,
non-intrusive, way to improve performance

Why yet another memory allocator?

24

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Shipped as a separate library: tbbmalloc

Convenient interfaces:

 Substitution for malloc/realloc/free etc. calls (C and C++)

 Allocator classes to use with STL and Intel® TBB containers (C++)

 Dynamic replacement of standard memory allocation routines for the whole program (C and C++) (can
be achieved using LD_PRELOAD on some OSes)

 Preview feature: Special classes for memory pools (C++)

Used internally by the main Intel TBB library

 “If available”, which means: found in the same directory

25

Using the allocator

tbbmalloc can be used without any of the rest of TBB

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
26

Rich Feature Set for Parallelism

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Parallel C++ Standard Template Library (STL)

 Extension of C++ Standard Template
Library algorithms with the “execution
policy” argument

 Support for parallel execution policies is
approved for C++17

 Support for vectorization policies is
being developed in Parallelism Technical
Specification (TS) v2

C++17 Parallelism TS v2

seq

par

par_unseq

unseq

vec

SIMD

Preserve

Fwd. Dep.

Threaded

27

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Simple example

#include <algorithm>
#include <execution>

void increment(float *in, float *out, int N) {
using namespace std::execution;
transform(par, in, in + N, out, [](float f) {

return f+1;
}

}

28

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

The implementation of Parallel STL

Goal: provide first-class implementation for Intel® processors

 Scalable parallel execution

 Efficient vector execution

 Vector+parallel execution is a combination of above

 Relies on the standard library for sequential execution and not yet implemented other
policies for an algorithm

C++ compiler prerequisites

 C++11 and OpenMP 4.0 vectorization (#pragma omp simd)

Parallel runtime

 The first version is based on Intel TBB. Other back-ends might be added later, based on
customer demand.

29

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
30

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Choice of parallel model matters

Intel® TBB is a good choice for C++ codes

Even if you already have threaded code Intel TBB may have some components
that can help you
 Better memory allocator
 Concurrent containers
 Low level locks, timers, …

Intel TBB is open-source, portable, and has commercial and non-commercial
licenses

Try it http://www.threadingbuildingblocks.org/

31

Conclusions

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
32

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

32

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Didn’t we solve the Threading problem in the 1990s?

Pthreads standard: IEEE 1003.1c-1995
OpenMP* 1.0 standard: 1997

Yes, but…
 How to split up work?
 How to keep caches hot?
 How to balance load between threads?
 What about nested parallelism (call chain)?

Programming with threads is HARD
 Atomicity, ordering, and/vs. scalability
 Data races, dead locks, etc.

35

Threads are too low level a model.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

A piece of work represented by a (lambda) function and its captured arguments
that we can run in parallel with other tasks

Modern C++ uses lambda functions in the STL, e.g. std::for_each
std::vector<float> array;
// Replace each element in an array with its square root
std::for_each (array.begin(), array.end(),

[=](float & elem) { elem = sqrt(elem);});

Intel® TBB also exploits them, e.g. parallelize the code above
std::vector<float> array;
// Replace each element in an array with its square root
tbb::parallel_for_each (array.begin(), array.end(),

[=](float & elem) { elem = sqrt(elem);});

36

What Do We Mean by “Task” ?

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Generic Parallel Algorithms

• parallel_for
• parallel_reduce
• parallel_for_each
• parallel_do
• parallel_invoke
• parallel_sort
• parallel_deterministic_reduce
• parallel_scan
• parallel_pipeline
• pipeline

Concurrent Containers

• concurrent_unordered_map
• concurrent_unordered_multimap
• concurrent_unordered_set
• concurrent_unordered_multiset
• concurrent_hash_map

• concurrent_queue
• concurrent_bounded_queue
• concurrent_priority_queue
• concurrent_vector
• concurrent_lru_cache

Thread Local Storage

• combinable
• enumerable_thread_specific

Task Scheduler

• task
• task_group
• structured_task_group
• task_group_context

• task_scheduler_init
• task_scheduler_observer
• task_arena

Threads

Thread

Synchronization Primitives

• atomic
• mutex
• recursive_mutex
• spin_mutex
• spin_rw_mutex
• speculative_spin_mutex
• speculative_spin_rw_mutex

• queuing_mutex
• queuing_rw_mutex
• null_mutex
• null_rw_mutex
• reader_writer_lock
• critical_section
• condition_variable
• aggregator (preview)

Flow Graph

• graph
• continue_node
• source_node
• function_node
• multifunction_node
• overwrite_node
• write_once_node
• limiter_node
• buffer_node
• queue_node
• priority_queue_node
• sequencer_node
• broadcast_node
• join_node
• split_node
• indexer_node

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task
scheduling

Features and Functions List

Timers and
Exceptions

• tbb_exception
• captured_exception
• movable_exception
• tick_count

Memory Allocation

• tbb_allocator
• scalable_allocator

• cache_aligned_allocator
• zero_allocator

• aligned_space
• memory_pool (preview)

37

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
38

Work Stealing Task Scheduler Implementation
The simple version:

Each thread has a deque of tasks
 Newly created tasks are pushed onto the front
 Other threads steal from the back
Allows local task creation and use to be lock-free (so fast)

When looking for tasks the thread pops from the front
 Task is likely still to be hot in the cache since it was the most recently pushed

If it has no work
 Pick a random victim
 Attempt to steal a task from the back of their deque

Stolen tasks are likely to be
 Large, so the cost of stealing is amortized over a lot of work
 Old, so cold in the cache

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
39

task_arena provides control of the number of
threads used and work isolation
tbb::task_arena limited(2);

tbb::task_group tg;

limited.execute([&]{ // use at most 2 threads

tg.run([]{ // run in task group

tbb::parallel_for(1, N, unscalable_work());

});

});

tbb::parallel_for(1, M, scalable_work());

limited.execute([&]{ tg.wait(); });

Run another job concurrently with the loop above
It will use the default number of threads

Put the wait for the task group inside execute()
This will wait only for the tasks that are in
this task group.

Use no more than 2 threads in this arena

task_group is used to submit a job
and wait for it later

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Application-level control of resources

– Imposes high composability risks, and thus is highly discouraged to use in libraries

tbb::global_control (parameter, value)

where parameter could be:

max_allowed_parallelism

– Limits total number of worker threads that can be active in the library

thread_stack_size

– Sets stack size for the threads created by the library

40

global_control

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Linear pipeline of stages
 You specify maximum number of items that can be in flight
 Handle arbitrary DAG by mapping onto linear pipeline (though flow::graph

may be a better match now it exists!)

Each stage can be serial or parallel
 Serial stage processes one item at a time, in order.
 Parallel stage can process multiple items at a time, out of order.

Uses cache efficiently
 Each worker thread pushes an item through as many stages as possible
 Biases towards finishing old items before tackling new ones

Improves on the naïve one thread/stage implementation

41

Parallel Pipeline

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Structure used to organize parallel computations

42

Algorithm Structure Design Space

Pipeline

Linear? Recursive?Linear? Recursive?

Organized by data

Recursive
Data

Regular? Irregular?

Task
Parallelism

Geometric
Decomposition

Divide and
Conquer

Event-based
Coordination

How is the computation structured?

Organized by
tasks

Organized by flow
of data

How is the computation
structured?

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Structure used to organize parallel computations

43

Algorithm Structure Design Space

Pipeline

Linear? Recursive?

Organized by tasks

Linear? Recursive?

Recursive
Data

Regular? Irregular?

Task
Parallelism

Geometric

Decomposition

Divide and
Conquer

Event-based
Coordination

parallel_for task_group parallel_pipeline

flow::graphparallel_invoke

Organized by data Organized by flow
of data

How is the computation
structured?

task_group, parallel_invoke

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
44

Evolution of STL

Standard Template Library

C++ Extensions for Parallelism

vec, unseq policies indexed based loops

C++ Standard

Technical
Specification

Intel proposals

(deferred to separate presentation)

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice
45

Example Supported by Technical Specification

extern std::vector<float> x, y;
using namespace std::experimental::parallel;
auto f = [](auto a) {return a*a;};

// Sequential
transform(seq, x.begin(), x.end(), y.begin(), f);

// Parallel
transform(par, x.begin(), x.end(), y.begin(), f);

// Dynamically-selected policy
execution_policy e = seq;
if(x.size()>10000)

e = par;
transform(e, x.begin(), x.end(), y.begin(), f);

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization NoticeOptimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

46

