(lntel) _
experience
what’s inside”

PROGRAMMING WITH TBB FLOW GRAPH

Aleksei Fedotov

November 29, 2017

Agenda

* An overview of the Intel® Threading Building Blocks (Intel® TBB) library

* It's three high-level execution interfaces and how they map to the
common three layers of parallelism in applications

* The heterogeneous programming extensions in Intel TBB

« async_node, streaming_node, opencl_node, etc...

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Threading Building Blocks (Intel® TBB)

Celebrated it's 10 year anniversary in 2016!

A widely used C++ template library for shared-memory parallel programming

What

Parallel algorithms and data structures
Threads and synchronization primitives
Scalable memory allocation and task scheduling

Benefits

Is a library-only solution that does not depend on special compiler support

Is both a commercial product and an open-source project

Supports C++, Windows*, Linux*, OS X*, Android* and other OSes

Commercial support for Intel® Atom™, Core™, Xeon® processors and for Intel® Xeon Phi™ coprocessors

http://threadingbuildingblocks.org http://software.intel.com/intel-tbb

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Threading Building Blocks

threadingbuildingblocks.org

Parallel Execution Interfaces

Generic
Parallel
Patterns

Flow Graph

IEREICUES

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Interfaces Independent of Execution Model

Concurrent Containers

EEHNEIES

Parallel STL
Memory Allocation

Cache Aligned

alable Allocator
sealabicialionalo Allocator

Primitives and Utilities

Global
Control

Thread Local
Storage

Synchronization
Primitives

Vectors

Applications often contain multiple levels of parallelism

Task Parallelism /
Message Passing

ol ool ool o [l svo W s

Intel TBB helps to develop composable levels

Optimization Notice

Copyr ghOZOWI lC orpo n. All rights reserved.
*Other and brands ybllmed hppyfh

Applications often contain multiple levels of parallelism

()

Task Parallelism /

Flow Graph .
Message Passing

.

ol ool ool o [l svo W s

Intel TBB helps to develop composable levels

J

Optimization Notice

Copyr ghOZOWI lC orpo n. All rights reserved.
*Other and brands ybllmed hppyfh

Intel Threading Building Blocks flow graph

Efficientimplementation of dependency graph and data flow algorithms

Initially designed for shared memory applications

Enables developers to exploit parallelism at higher levels

Graph object

Graph node

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hello World o o
h w

graph g;

continue node< continue msg > h(g,

[](const continue msg &) {
cout << “Hello “;
Py
continue node< continue msg > w(g,
[](const continue msg &) {
cout << “World\n"“;
Py
make edge(h, w);
h.try put(continue msg());
g.wait for all();

Example with nonlinear dependencies

struct body {

std::string my name;
- body(const char *name) : my name(name) {}
void operator()(continue msg) const {
printf("%ss\n", my name.c str());

}

b

int main() {
graph g;
broadcast node< continue msg > start(g);

continue node< continue msg > a(g, body("A"));
continue node< continue msg > b(g, body("B"));
continue node< continue msg > c(g, body("C"));
continue node< continue msg > d(g, body("D"));
continue node< continue msg > e(g, body("E"));
make edge(start, a); make edge(start, b);
make edge(a, c); make edge(b, c);

make edge(c, d); make edge(a, e);

for (int 1 = 0; 1 < 3; ++1i) {
start.try put(continue msg());
g.wait for all();

}

return 0;

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

struct square {
int operator () (int v) ({
return v * v;

}
};

_/l cuber class sum {
int &my sum;

summer

struct cube { PUbliC:_
int operator () (int v) { sum(int &s) : my_sum(s) {}
return v * v * v; int operator () (tuple<int, int> v) {
} my sum += get<0>(v) + get<i>(v);
}; return my sum;
}
}s

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

int main() {
int result = 0;
graph g;
broadcast node<int> input(g);
function node<int, int> squarer(g, unlimited, square());
function node<int, int> cuber(g, unlimited, cube());
join node< tuple<int, int>, queueing > j(g);
function node< tuple<int, int>, int > summer(g, serial, sum(result));

make edge(input, squarer);

make edge(input, cuber);

make edge(squarer, input port<0>(j));
make edge(cuber, input port<i>(j));
make edge(j, summer);

for (int 1 = 1; 1 <= 3; ++1)
input.try put(i);
g.wait for all();
printf("Final result is %d\n", result);
return 0;

}

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

broadcast node<int> input(g);
input. try put(1l);

Max concurrency =1

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

broadcast node<int> input(g);
input. try put(2);

Max concurrency = 3

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

function node<int, int> squarer(g, unlimited, square());
function node<int, int> cuber(g, unlimited, cube());

Max concurrency =5

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

broadcast node<int> input(g);
input. try put(3);

Max concurrency =5

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

join node< tuple<int, int>, queueing > j(g)’

Max concurrency = 4

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

function node<int, int> squarer(g, unlimited, square());
function node<int, int> cuber(g, unlimited, cube());

Max concurrency = 6

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

join node< tuple<int, int>, queueing > j(g)’

Max concurrency =5

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

int result = 0;
function node< tuple<int, int>, int >
summer (g, serial, sum(result));

Result=0
Max concurrency = 6

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

join node< tuple<int, int>, queueing > j(g)’
function node< tuple<int, int>, int >
summer (g, serial, sum(result));

Result=0
Max concurrency = 4

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

join node< tuple<int, int>, queueing > j(g)’
function node< tuple<int, int>, int >
summer (g, serial, sum(result));

Result=0
Max concurrency = 2

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

join node< tuple<int, int>, queueing > j(g)’
function node< tuple<int, int>, int >
summer (g, serial, sum(result));

Result =5
Max concurrency = 2

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

join node< tuple<int, int>, queueing > j(g)’
function node< tuple<int, int>, int >
summer (g, serial, sum(result));

Result = 14
Max concurrency = 2

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Data flow graph example

summer

g.wait for all();
printf ("Final result is %d\n", result);

Result = 50
Max concurrency =1

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cholesky decomposition (4 = LL")

Aparna Chandramowlishwaran, Kathleen Knobe, and Richard Vuduc, “Performance
Evaluation of Concurrent Collections on High-Performance Multicore Computing Systems”,
2070 Symposium on Parallel & Distributed Processing (IPDPS), April 2010.

I?’3.,1 I?'3,2 33,3 Ba,1 B3,2 Ba.a trisolve

cholesky update

Bs1|Baz|Bas|Baa By1|Baz|Bas|Bas

(a) serial Cholesky (b) Triangular solve (c) Symmetric rank-k
Factorization update

L =

(b) dependence based implementation

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Task starting

e

Local task pool

Worker | Worker
thread J thread

Execution

graph g;
function node< int, int > n(g, unlimited,
[1(int v) -> int {
cout << v;
spin _for(v);
cout << v;
return v;
}
);
function node< int, int > m(g, serial,

[1(int v) -> int {
Vv *= v;
cout << v;
spin _for(v);
cout << v;
return v;
}
);
make edge(n, m);
n.try put(1); n.try put(2); n.try put(
g.wait for all();

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

=8 How nodes map to Intel TBB tasks

Main Worker 1 Worker 2 Worker 3
n.try_put(1)
n.try_put(2)
n.try_put(3) An(1)
g.wait_for_all() Anl2)
m.try put(1) Aa(3)
Am(1)
m.try_put(2)
Am(2)
m.try_put(3)
Am(3)

One possible execution — stealing is random

An example feature detection algorithm

detect_with_A

- :_ fix) .:.
get_r.1.g>ft:|mage preprocess e
N
<)

make_decision

[9 F

buffer =
detect_with_B

Can express pipelining, task parallelism and data parallelism

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. |nte‘ l 26
*Other names and brands may be claimed as the property of others.

Applications often contain multiple levels of parallelism

Task Parallelism /
Message Passing

ol ool ool o [l svo W s

Intel TBB helps to develop composable levels

Optimization Notice

Copyr ghOZOWI lC orpo n. All rights reserved.
*Other and brands ybllmed hppyfh

Possible Problems with Parallelism

Applying parallelism only for the innermost loop can be inefficient: scalability
* Over-synchronized: overheads become visible if there is not enough work inside
* Over-utilization: distribution to the whole machine can be inefficient
 Amdahl law: serial regions limit scalability of the whole program
Applying parallelism on the outermost level only:
* Under-utilization: it does not scale if there is not enough tasks or/and load imbalance

* Provokes oversubscription if nested level is threaded independently&unconditionally

Frameworks can be used from both levels

« To parallel or not to parallel? That is the question

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel TBB Flow Graph node types:

Functional

continue_node

/ source_node

multifunction_node

function_node\

%

async_node streaming_node
Buffering
/ buffer_node queue_node write_once_node \

|
& r ®

» \\/»\\/"

priority_queue_node

sequencer_node

overwrite_node

{2 ®13]2|1]0

_

o

Split / Join

queuemg join

i

split_node

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

&<

reserving join

indexer_node

tag matching joir\

<
<
4

Other

broadcast_node

g

composite_node

gES:

limiter_node

Node types used in examples

source_node template < typename OutputType > class source_node;
template < typename Body > source_node:source_node(graph &g, Body body, bool is_active=true);

The Body is repeatedly invoked until it returns false. The Body updates one of its arguments.

function_node template < typename InputType, typename OutputType, graph_buffer_policy = queueing,
typename Allocator = cache_aligned_allocator<InputType> > class function_node;

template < typename Body > function_node:function_node(graph &g, size_t concurrency, Body body);

For each input message, outputs a single output message. Users can set concurrency limit and buffer policy.

itunction nod template <typename Input, typename Output, graph_buffer_policy = queueing,
meunetion noce typename Allocator=cache_aligned_allocator<Input> > class multifunction_node;

template < typename Body > multifunction_node:multifunction_node(graph &g, size_t concurrency, Body body);

For each input message, zero or more outputs can be explicitly put to the output ports from within the body. Users
can set concurrency limit and buffer policy.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Node types used in examples

template < typename OutputTuple, class JoinPolicy = queueing > class join_node;

queueing join - join_node<OutputTuple, queueing>:join_node(graph &g);

Creates a tuple<TO, T1, ...> from the set of messages received at its input ports. Messages are joined in to the
output tuple using a first-in-first-out policy at the input ports.

reserving join

join_node<OutputTuple, reserving>:join_node(graph &g);

Creates a tuple<TO, T1, ...> from the set of messages received at its input ports. The tuple is only created when a
message can be reserved at a successor for each input port. A reservation holds the value in the predecessor
without consuming it. If a reservation cannot be made at each input port all reservations are released. Useful
when using a join to control resource usage - e.g. pairing with a limited number of buffers or tokens.

- template < typename BO, typename B1, >
tag matching join - i5in node<OutputTuple, tag_matching>:join_node(graph &g, BO b0, B1 b1, ...);
< Creates a tuple<TO, T1, ...> from the set of messages received at its input ports. Tuples are created for messages
with matching tags. The tags are calculated for each input message type by applying the corresponding user-
provided functor. Useful when streaming in a graph, and related messages must be joined together.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Node types used in examples

buffer_node

template < typename T, typename A = cache_aligned_allocator<InputType> > class buffer_node;

& Ip template < typename Body > buffer_node:buffer_node(graph &g);
]

An unbounded buffer of messages of type T.

composite_node template<typename InputTuple, typename OutputTuple> class composite_node;

composite_node:composite_node(graph &g);

A node that encapsulates a sub-graph of other nodes, exposing input and output ports that are aliased
to input and output ports of contained nodes.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hands-on exercises

ex0: Inspect and execute the serial stereoscopic 3D example

1. Read left image

Read right image

Apply effect to left image
Apply effect to right image
Merge left and right images
Write out resulting image

oA WN

ex1: Convert stereo example in to a TBB flow graph

Read leftimage
Apply effect to left image

7N 7 A
{ A i Y
| f0 p——0f £)
\ / \ / Merge images
N N A iy o
VA SN
}>_°D{ £(x) b—no{ izl D
- 3, / \ y)
o — g _J/ R
N SN o
[e0 p——od £uo Write image
LY / \ /
Ny A S A

- App_l;/ effect to right image
Read right image

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Flow Graph Analyzer for Intel® Threading Building Blocks

Flow Graph Analyzer Technology Preview 1.17367

File Edit Layouts Analytics Trace Data Collection Help
~C++ PNG a7 Q[0 pPo (oG8 (A o &
L s 4 B ~ - ? I LI_| 4 o LY L - C?
6 = @ Z @ @ i QIR B WY il P2 e & e
?esigner Mode | Analysis Mode (4P pnnl_sim.graphml Reports Debug Output

Mode Properties | Analytics Report | 4|}

g e e e T : everity Results Cost(ms)
ontinue_node: RO e e 2 . i (7

Critical P...
Critical P...
Critical P...
Critical P...
Critical P...
Critical P...

——
. Timeline Charts | Statistics =~ Modeling Projection Chart

1 m Thread View

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Flow Graph Analyzer for Intel® TBB (Designer Workflow)

Toolbar supporting basic file and editing operations,
visualization and analytics that operate on the graph or
performance traces

Palette of supported
Intel® TBB node
types organized in
like groups

Displays the output
generated by custom
analytics and allows
interactions with this
output

Canvas for visualizing and
drawing flow graphs

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

]

Flow Graph Analyzer for Intel® TBB (Analyzer Workflow)

ACRCAS A AR . li & @, il

Selection on the timeline
highlights the nodes that were
executing at that point in time.

The concurrency histogram shows
the parallelism achieved by the
graph over time. You can interact
with this chart by zooming in to a
region of time, for example
during low concurrency.

The concurrency histogram
remains at the initial zoom level,
and the zoomed 1n region 1s
displayed below it.

Treemap view gives you the The per-thread task view shows the tasks executed by each thread along with the task
general health of the graph’s durations.

performance along with the
ability to dive to the node level.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

The heterogeneous programming features of
Intel® Threading Building Blocks

Heterogeneous supportin Intel® TBB

Intel TBB flow graph as a coordination layer for heterogeneity that retains
optimization opportunities and composes with existing models

Intel® Threading Building Blocks
OpenVX*

+ OpenCL*
COI/SCIF

FPGAs, integrated and discrete GPUs, co-processors, etc...

Intel TBB as a for library implementations

* One threading engine underneath all CPU-side work @

Intel TBB flow graph as a coordination layer @ ‘

* Bethe glue that connects hetero HW and SW together

* Expose parallelism between blocks; simplify integration

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel TBB Flow Graph node types (for Heterogeneous Computing):

Functional Split / Join
/ source_node continue_node function_nodm / queueing join reserving join tag matching joim
() L () j \ j] ==
) 1 1
-

multifunction_node

async_node streaming_node split_node indexer_node
2 B >
E
) ot : 4
K). K). j
Buffering Other
/ buffer_node queue_node write_once_node\ / broadcast_node limiter_node
5

SRSS | W ' N

priority_queue_node sequencer_node overwrite_node composite_node

3210 VVEE Qﬁg}i
- J _ Y,

o s s e

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Heterogeneous support in the Intel TBB flow graph (1 of 3)

Feature Description Diagram

async_node<Input,Output> Basic building block. Enables async_node
asynchronous communication from a

/
single/isolated node to an {
asynchronous activity. Useris AN
responsible for managing / cateway

communication. Graph runs on host.

Asynchronous activity

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

| Task starting

Worker Worker Worker |
thread thread
—L ™ =

Local task pool

| Execution

graph g;

function_node< int, int > n(g, unlimited, [J(int v) -> int {
cout <<v;
spin_for(v);
cout <<v;
return v;

});

function_node< int, int > m(g, serial, [](int v) -> int {
BLOCKING_OFFLOAD_TO_ACCELERATOR();

});

make_edge(n, m);

n.try_put(1);

n.try_put(2);

n.try_put(3);

g.wait_for_all();

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Main

n.try_put(1)
n.try_put(2)
n.try_put(3)
g.wait_for_all()

Why is extra support needed?

Worker 3

An(3)

m.try_put(3)

Worker 1 Worker 2
(1)
Aa(2)
m.try_put(1)
Am(1)
---BLOCKED---
m.try_put(2)
Am(2)
---BLOCKED---
Am(3)
---BLOCKED---

One possible execution — stealing is random

| Task starting

° e With async_node

| Execution
Main Worker 1 Worker 2 Worker 3 Async Activity
n.try_put(1)
n.try_put(2)
n.try_put(3) (1)
graph 2 g-wait_for_all{) Mnl2)
my_async_activity_type my_async_activity; m.try_put(1) An(3)
function_nodec< int, int > n(g, unlimited, [](int v) -> int { (1) T
cout <<v;
. .t (2
spin_for(v); fn(g_pu 2)
Al
cout <<v;
return v; m.try_put(3) Am_offioad(2)
1) Am(3)

typedef typename async_nodec<int, int>:gateway_type gw_t;

async_nodec< int, int > m(g, serial, [J(int v, gw_t &gw) {
my_async_activity.push(v, gw);

)%

make_edge(n, m);

n.try_put(1);

n.try_put(2);

n.try_put(3);

g.wait_for_all();

Am_offioad(3)

One possible execution — stealing is random

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

async_node example

* Allows the data flow graph to offload data to any asynchronous

activity and receive the data back to continue execution on the CPU iGPU

» Avoids blocking a worker thread

async_node
Vd
/
/
AN
b A\
/ Gateway cpl{J/’-“-\\‘
/ _ dispatcher { foo |
3 ._ ,r/’-_ —-._\\‘ '\\‘-_ _-//,’
.f/’- -\\\. >—q:>{ £ix) []
l\ £0 NS AT tokens
N S i {’ N

tile generator

Asynchronous activity

async_node makes coordinating with
any model easier and efficient

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Heterogeneous support in the Intel TBB flow graph (2 of 3)

Feature Description Diagram

streaming_node Higher level abstraction for
streaming models; e.g. OpenCL*,

Available as preview feature ~ Direct X Compute*, Vulkan*, GFX,
etc... Users provide Factory that other nodes in othernodes n

describes buffers, kernels, ranges, graph graph
device selection, etc... Uses
async_msg so supports chaining.

Graph runs on the host.

async_msg<T> Basic building block. Enables async m
- . R . .. async_msg<T> async_msg<T>
communication with chaining across prv——" n2 n3
Available as preview graph nodes. User responsible for - T
feature managing communication. Graph

runs on the host.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

async_node vs streaming_node

U T2 T3 T4
o L T2 T3

* async_node receives and sends unwrapped message types
* output message is sent after computation is done by asynchronous activity
* simpler to use when offloading a single computation and chaining is not needed

async_msg<T3>

T1 async_msg<T2>
TO T1 m async_msg<T2>

* streaming_node receives unwrapped message types or async_msg types

* sends async_msg types after enqueueing kernel, but (likely) before computation is done by
asynchronous activity

* handles connections to non-streaming_nodes by deferring receive until value is set

+ simple to use with pre-defined factories (like OpenCL* factory)

* non-trivial to implement factories

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

async_node vs streaming_node

U T2 T3 T4
o L T2 T3

* async_node receives and sends unwrapped message types
* output message is sent after computation is done by asynchronous activity
* simpler to use when offloading a single computation and chaining is not needed

T2 T3
T1 m 3 sync_msg<T2>\ async_msg<T3> T4
T1

async_msg<T2>

TO

* streaming_node receives unwrapped message types or async_msg types

* sends async_msg types after enqueueing kernel, but (likely) before computation is done by
asynchronous activity

* handles connections to non-streaming_nodes by deferring receive until value is set

+ simple to use with pre-defined factories (like OpenCL" factory)

* non-trivial to implement factories

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Heterogeneous support in the Intel TBB flow graph (3 of 3)

Feature Description Diagram

opencl_node A factory provided for
streaming_node that supports

Available as preview feature OpenCL". User provides OpenCL’ . other niodesin
program and kernel and the runtime St hads i flow graph
handles the initialization, buffer '
management, communications, etc..
Graph runs on host.

flow graph

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

l d l #define TBB PREVIEW FLOW GRAPH NODES 1
OpenC nO e exal I |p e #define TBB PREVIEW FLOW GRAPH FEATURES 1
#include "tbb/flow graph.h*
#include "tbb/flow graph opencl node.h”

#include <algorithm>

. int main() {
5 other nodes in N
other nodes in flow graph using namespace tbb::flow;

const char str[] = "Hello from ";
opencl buffer<cl char> b(sizeof(str));
std::copy n(str, sizeof(str), b.begin());

flow graph

* Provides a first order node type that takes in graph g; , ,
Y L . opencl program<> program(“hello world.cl");
OpenCL" programs or SPIR™ binaries that can opencl_node<tuple<opencl buffer<cl chars>>

be executed on any supported OpenCL device gpu_node(g, program.get_kernel("print?));

std::array<unsigned int, 1> range{l};
* Isastreaming_node with opencl_factory gpu_node.set_range(range);
- - input port<0>(gpu node).try put(b);
. https: software.intel.com en-us/blogs/2015/12/09/opencl- g.wait for all();
node-overview

return 0;

}

__kernel void print(global char *str) {
for(; *str; ++str) printf("%c", *str);
printf("GPU!\n");

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview

Hands-on exercises

ex2: Encapsulate stereo in a composite_node

Read leftimage

Apply effect to left image Reaqileft Image

s N
f \ f \ [!
b : - B . [0 |}
L“\ o /"l {.\\\E[J/" Merge"“ages \\\ ,/i 'a stereo_node N —_—
— — T N e — 4 TN
}»—E‘ £ .\3—-0} £ P o sesn Pt flx) P
~ / | L _ S A N / NS
‘ ‘ y - . VN o
(0 pb——of tm P i e (o) Write image
_ \ o/
Apply effecttorightimage —

Read rightimage q q
5 € Read right image

ex3: Hello OpenCL’

cpu node
N
' 3\
{ £ Pp
. S A
S dispatcher
I ;/"__'“\‘. y
D%‘)—Dl o 1
Nk
-l
| ei@ b
'

OpenCL node

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Hands-on exercises

ex4: Run OpenCL" Stereo

stereo_node
Read leftimage > " lefttransform
N -
N A T EEETEE o gl - ;
- .1/ \\. = B .
% - buffar t >—n:| £(x))D })
— N |
7N .
(z0) Write image P (" right_transform
|] -
A A <>| \1# .

Read right image

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Hands-on exercises

ex5: Run a Stereoscopic 3D Fractal Generator that uses Tokens

i (" render fractal_cpu
Generate tiles render_fractal_cpu L
a 2t buffer 10

,/-_\\ \-'::::,::-:- 9
[e

__ /

Dispatcher

© render_left_fractal_gpu

(" stereo_node

O+ 0 buffer 1
H 1 buffer s
render_right_fractal_gpu g

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

FPGAs and other non-GPU devices

* OpenCL’ supports more than CPU and GPU
* The Intel® FPGA SDK for Open Computing Language (OpenCL)

Modify Kernel

Emulator

Optimization

m

Optimizing FPGA Build

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

* Working on improved support from within Intel TBB

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*
e

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

Notes on opencl _node for FPGAs

* Current opencl_node executes a single kernel
« Communication is optimized between consecutive kernels through chaining
* But this does not map well to FPGAs
« Typically, FPGA kernels will communicate via channels or pipes
e Future work on OpenCL support for FPGAs
* Define an APl more appropriate for FPGAs
« Multiple kernels in a single node

» Kernels directly communicating through channels instead of async_msg
through host

* async_node can be used for communication with FPGAs

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using other GPGPU models with Intel TBB

 CUDA" Vulkan’, Direct Compute’, etc...
« Two approaches
1. Use an async_node to avoid blocking a worker thread

2. Create (or advocate for) a streaming_node factory

= [ntel TBB accepts contributions!

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

To Learn More:
See Intel’s The Parallel Universe Magazine
https://software.intel.com/en-us/intel-parallel-universe-magazine

neoats |
UNIVERSE

Driving Code Performance with
Intel” Threading Building Intel® Advisor's Flow Graph Analyzer
Blocks Celebrates 10 Years!

Modernize your Code with
Intel® Pa io XE

http://threadin blocks.org

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Contacts

* Ask questions:

* By email: inteltbbdevelopers@intel.com

* Use forum: https://software.intel.com/en-us/forums/intel-threading-
building-blocks

* Create pull requests:

* https://github.com/010org/tbb

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

mailto:inteltbbdevelopers@intel.com
https://software.intel.com/en-us/forums/intel-threading-building-blocks
https://github.com/01org/tbb

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

(lntel) |
experience
what'’s inside”

BACKUP

A simple asynchronous activity with async_node

1. We need an asynchronous activity
= (Can receive an incoming message without blocking
= Executes work outside of the context of the task that sent the message
= (Can send result back through a call to async_node gateway.
= Graph lifetime must be managed
2. We need to implement an async_node body
= Passesincoming message and gateway to asynchronous activity
= Does not block waiting for message to be processed

3. We need to build and execute the flow graph

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1. We need an asynchronous activity

template <typename MessageType> < template<typename AsyncNodeType>
class user_async_activity { —— class user_async_msg {
public: public:
static user_async_activity* instance(); typedef typename AsyncNodeType:input_type input_type;
static void destroy(); typedef typename AsyncNodeType::gateway_type gateway_type;
void addWork(const MessageType& msg); user_async_msg() : mGateway(NULL) {}
user_async_msg(constinput_type& input, gateway type &gw):
private: minputData(input), mGateway(&gw) {}
user_async_activity(); const input_type& getlnput() const { return minputData; }
struct my_task{.... }; gateway_type& getGateway() const { return *mGateway; }
static void threadFunc(user_async_activity<MessageType>* activity):
myThread(&user_async_activity:ithreadFunc, this) { private:
tbb::concurrent_bounded_queue<my_task> myQueue; input_type minputData;
std:ithread myThread; gateway_type *mGateway;
static user_async_activity* s_Activity; };
I

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1. We need an asynchronous activity

template< typename MessageType >

void user_async_activity<MessageType>:addWork(const MessageType& msg) {
msg.getGateway().reserve_wait();
myQueue.push(my_task(msg));

}

template< typename MessageType >
void user_async_activity<MessageType>:threadFunc(user_async_activity<MessageType>* activity) {
my_task work;

for(;;) {

activity->myQueue.pop(work);

if (work.myFinishFlag) {
std::cout << "async activity is done." << std::endl;
break;

}else {
std::cout << work.myMsg.getinput() <<'' << std:flush;
typename MessageType:gateway_type &gw = work.myMsg.getGateway();
gw.try_put(std::string("Processed: ") + work.myMsg.getinput());
gw.release_wait();

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2. We need to implement an async_node body

int main() {
typedef async_node<std::string, std::string> node_t;
typedef user_async_msg< node_t > msg_t;
typedef user_async_activity<msg_t> activity_t;

graph g;

node_t node(g, unlimited, [](const node_t:input_type &s, node_t::gateway_type &gw) {
activity_t:instance()->addWork(msg_t(s, gw));

hE

std:string final;

function_nodex< std::string > destination(g, serial, [&final](const std::string& result) { final +=result+";"; });
make_edge(node, destination);

node.try_put("hello");

node.try_put("world");

g.wait_for_all();

activity _t:destroy();

std:icout << std::endl << "done" << std::endl << final << std::end|;
return O;

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. We need to build and execute the flow graph

int main() {
typedef async_node<std:string, std::string> node_t;
typedef user_async_msg<node_t > msg t;
typedef user_async_activity<msg_t> activity_t;

graph g;

node_t node(g, unlimited, [J(const node_t:input_type &s, node_t::gateway type &gw) {
activity_tinstance()->addWork(msg_t(s, gw));

»;

std::string final;
function_nodec< std::string > destination(g, serial, [&final](const std::string& result) { final +=result +";"; });

make_edge(node, destination);
node.try_put("hello");
node.try_put("world");

g.wait_for_all();

activity _t:destroy();

std::cout << std::endl << "done" << std::endl << final << std::endl;
return O;

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. We need to build and execute the flow graph

int main() {
typedef async_node<std:string, std::string> node_t;
typedef user_async_msg<node_t > msg t;
typedef user_async_activity<msg_t> activity_t;

graph g;
node_t node(g, unlimited, [J(const node_t:input_type &s, node_t::gateway type &gw) {
activity_tinstance()->addWork(msg_t(s, gw));

N

std::string final;
function_nodec< std::string > destination(g, serial, [&final](const std::string& result) { final +=result +";"; });

make_edge(node, destination);
node.try_put("hello");

node.try_put("world"); Tutorial= ./async node.exe
hello world async activity is done.

g.wait_for_all();
activity _t:destroy();

std:cout << std::endl << "done" << std::endl << final << std::endl; done
return O: Processed: hello: Processed: world:

Tutorial=

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A simple asynchronous activity with streaming_node

1. We need an asynchronous activity
= (Can receive an incoming async_msg message without blocking
= Executes work outside of the context of the task that sent the message
= Setsresultinthe async_msg
= Graph lifetime must be managed
2. We need to implement device_factory and device selector
= Passesincoming message and gateway to asynchronous activity
= Does not block waiting for message to be processed

3. We need to build and execute the flow graph

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1. We need an asynchronous activity

template <typename MessageType> < template<typename T>
class user_async_activity { —— class user_async_msg: public tbb::flow::async_msg<T>
public: {

static user_async_activity* instance(); public:

static void destroy(); typedef tbb::flow:async_msg<T> base;

void addWork(const MessageType& msg); user_async_msg() : base() {3

user_async_msg(const T& input) : base(), mInputData(input) {}

private: const T& getlnput() const { return minputData; }

user_async_activity();

structmy_task {.... }; private:

static void threadFunc(user_async_activity<MessageType>* activity) : T minputData;

myThread(&user_async_activity:ithreadFunc, this) { };

tbb::concurrent_bounded_queue<my_task> myQueue;

std:ithread myThread;

static user_async_activity* s_Activity;

Inherits a set(const T& v) function from async_msg

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

1. We need an asynchronous activity

template< typename MessageType >

void user_async_activity<MessageType>:addWork(const MessageType& msg) {
myQueue.push(my_task(msg));

}

template< typename MessageType >
void user_async_activity<MessageType>:threadFunc(user_async_activity<MessageType>* activity) {
my_task work;
for(;;) {
activity->myQueue.pop(work);
if (work.myFinishFlag)
break;
else{
std::cout << work.myMsg.getlnput() <<'"
work.myMsg.set("Processed: " + work.myMsg.getinput());

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2. We need to implement device_factory and device_selector

class device_factory {
public:
typedef int device_type;
typedef int kernel_type;

device_factory(graph &g) : mGraph(g) {}
/* ... some empty definitions ... */

void send_kernel(device_type /*device*/, const kernel_type& /*kernel*/, user_async_msg<std:string>& msg) {
mGraph.increment_wait_count();
activity_t:instance()->addWork(msg);
}
private:
graph &mGraph;
J7

template<typename Factory>
class device_selector {
public:
typename Factory::device type operator()(Factory&) { return O; }
K

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. We need build and execute the flow graph

int main() {
typedef streaming_node< tuple<std::string>, queueing, device_factory > streaming_node_type;

graph g;
device_factory factory(g);
device_selector<device_factory> device_selector;

streaming_node_type node(g, 0, device_selector, factory);

std:string final;

function_node< std:string > destination(g, serial, [&g,&final](const std::string& result) {
final +=result +"";

g.decrement_wait_count();

»;

make_edge(node, destination);
input_port<0>(node).try_put("hello");
input_port<0>(node).try_put("world");

g.wait_for_all();
activity_t:destroy();

std::cout << std::endl << "done" << std:endl << final << std::endl;
return O;

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. We need build and execute the flow graph

int main() {
typedef streaming_node< tuple<std:string>, queueing, device_factory > streaming_node_type;

graph g;
device_factory factory(g);
device_selector<device_factory> device_selector;

streaming_node_type node(g, O, device_selector, factory);

std::string final;

function_nodec< std::string > destination(g, serial, [&g,&final](const std::string& result) {
final +=result + "; ";
g.decrement_wait_count();

3

make_edge(node, destination);
input_port<0>(node).try_put("hello");
input_port<0>(node).try_put("world");

g.wait_for_all();
activity_t:destroy();

std::cout << std::endl << "done" << std:endl << final << std::endl;
return O;

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3. We need build and execute the flow graph

int main() {
typedef streaming_node< tuple<std:string>, queueing, device_factory > streaming_node_type;

graph g;
device_factory factory(g);
device_selector<device_factory> device_selector;

streaming_node_type node(g, O, device_selector, factory);

std::string final;

function_nodec< std::string > destination(g, serial, [&g,&final](const std::string& result) {
final +=result +"; ™;
g.decrement_wait_count();

A
make_edge(node, destination); Tutorial= ./streaming node.exe
input_port<0>(node).try_put("hello"); hello world
input_port<0>(node).try_put("world"); done

, Processed: hello; Processed: world;
g.wait_for_all(); Tutorial>
activity t:destroy();

std::cout << std:endl << "done" << std::endl << final << std:endl;
return O;

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Support for Distributed Programming

Feature Description Diagram

distributor_node Enables communication between i distibutor node
different memory domains. Each g | Ef;}:;i?::r;:;:blemdei}pes: 1B

Proof of concept ~ device is capable of running a e aoome node R

graph; e.g. hosts, Xeon Phi cards, 11 et device >
etc... :

de-serialize

Graphs runs on all devices.

Communication can be initiated :
from any device to any device. i S,

Asynchronous data
transfer activity

Whole sub-graphs may execute
on a device between
communication points.

async_node

- o

Optimization Notice

Cgp;'?;/right © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Streamed FFT example

The host generates 4000 arrays of floating point
numbers

Generate many arrays
of floats

On each array, FFT is performed (serially)

Execution of FFT is offloaded to KNC FFT for each array

Parallelism comes from multiple arrays processed at
the same time

Result post processing

Optimization Notice
Cgpﬂnight © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

