
Aleksei Fedotov

November 29, 2017

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda

• An overview of the Intel® Threading Building Blocks (Intel® TBB) library

• It’s three high-level execution interfaces and how they map to the
common three layers of parallelism in applications

• The heterogeneous programming extensions in Intel TBB

• async_node, streaming_node, opencl_node, etc…

2

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Threading Building Blocks (Intel® TBB)
Celebrated it’s 10 year anniversary in 2016!

A widely used C++ template library for shared-memory parallel programming

What
Parallel algorithms and data structures
Threads and synchronization primitives
Scalable memory allocation and task scheduling

Benefits
Is a library-only solution that does not depend on special compiler support
Is both a commercial product and an open-source project
Supports C++, Windows*, Linux*, OS X*, Android* and other OSes
Commercial support for Intel® AtomTM, CoreTM, Xeon® processors and for Intel® Xeon PhiTM coprocessors

http://threadingbuildingblocks.org http://software.intel.com/intel-tbb

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Threading Building Blocks
threadingbuildingblocks.org

4

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Applications often contain multiple levels of parallelism

Task Parallelism /
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels

5

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Applications often contain multiple levels of parallelism

Task Parallelism /
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels

Flow Graph

6

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel Threading Building Blocks flow graph
Efficient implementation of dependency graph and data flow algorithms

Initially designed for shared memory applications

Enables developers to exploit parallelism at higher levels

graph g;

continue_node< continue_msg > h(g,

[](const continue_msg &) {

cout << “Hello “;

});

continue_node< continue_msg > w(g,

[](const continue_msg &) {

cout << “World\n“;

});

make_edge(h, w);

h.try_put(continue_msg());

g.wait_for_all();

Hello World

7

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

8

Example with nonlinear dependencies
struct body {
std::string my_name;
body(const char *name) : my_name(name) {}
void operator()(continue_msg) const {
printf("%s\n", my_name.c_str());

}
};
int main() {
graph g;
broadcast_node< continue_msg > start(g);
continue_node< continue_msg > a(g, body("A"));
continue_node< continue_msg > b(g, body("B"));
continue_node< continue_msg > c(g, body("C"));
continue_node< continue_msg > d(g, body("D"));
continue_node< continue_msg > e(g, body("E"));
make_edge(start, a); make_edge(start, b);
make_edge(a, c); make_edge(b, c);
make_edge(c, d); make_edge(a, e);
for (int i = 0; i < 3; ++i) {
start.try_put(continue_msg());
g.wait_for_all();

}
return 0;

}

A B

E C

D

A B

E C

D

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

9

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

struct cube {

int operator()(int v) {

return v * v * v;

}

};

class sum {

int &my_sum;

public:

sum(int &s) : my_sum(s) {}

int operator()(tuple<int, int> v) {

my_sum += get<0>(v) + get<1>(v);

return my_sum;

}

};

struct square {

int operator()(int v) {

return v * v;

}

};

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

10

Data flow graph example

int main() {
int result = 0;
graph g;
broadcast_node<int> input(g);
function_node<int, int> squarer(g, unlimited, square());
function_node<int, int> cuber(g, unlimited, cube());
join_node< tuple<int, int>, queueing > j(g);
function_node< tuple<int, int>, int > summer(g, serial, sum(result));

make_edge(input, squarer);
make_edge(input, cuber);
make_edge(squarer, input_port<0>(j));
make_edge(cuber, input_port<1>(j));
make_edge(j, summer);

for (int i = 1; i <= 3; ++i)
input.try_put(i);

g.wait_for_all();
printf("Final result is %d\n", result);
return 0;

}

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

11

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer1

broadcast_node<int> input(g);

input.try_put(1);

Max concurrency = 1

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

12

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

1

Max concurrency = 3

1

2

broadcast_node<int> input(g);

input.try_put(2);

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

13

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

1

Max concurrency = 5

1

function_node<int, int> squarer(g, unlimited, square());

function_node<int, int> cuber(g, unlimited, cube());

2

2

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

14

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

1

Max concurrency = 5

1

broadcast_node<int> input(g);

input.try_put(3);

2

2

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

15

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

1

Max concurrency = 4

1

join_node< tuple<int, int>, queueing > j(g);

4

2

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

16

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

1

Max concurrency = 6

1

function_node<int, int> squarer(g, unlimited, square());

function_node<int, int> cuber(g, unlimited, cube());

4

2

3

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

17

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

1

Max concurrency = 5

1

join_node< tuple<int, int>, queueing > j(g);

4

2

3

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

18

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

1

Result = 0
Max concurrency = 6

4

int result = 0;

function_node< tuple<int, int>, int >

summer(g, serial, sum(result));

1

2

3

3

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

19

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

Result = 0
Max concurrency = 4

4

join_node< tuple<int, int>, queueing > j(g);

function_node< tuple<int, int>, int >

summer(g, serial, sum(result));

1

3

3

1

8

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

20

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

Result = 0
Max concurrency = 2

4

join_node< tuple<int, int>, queueing > j(g);

function_node< tuple<int, int>, int >

summer(g, serial, sum(result));

1

1

8
9

27

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

21

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

Result = 5
Max concurrency = 2

1

join_node< tuple<int, int>, queueing > j(g);

function_node< tuple<int, int>, int >

summer(g, serial, sum(result));

8

9

27

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

22

Data flow graph example

f(x)

f(x)

f(x)squarer

cuber

summer

Result = 14
Max concurrency = 2

9

join_node< tuple<int, int>, queueing > j(g);

function_node< tuple<int, int>, int >

summer(g, serial, sum(result));

27

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

23

Data flow graph example

Result = 50
Max concurrency = 1

g.wait_for_all();

printf("Final result is %d\n", result);

f(x)

f(x)

f(x)squarer

cuber

summer

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

24

Cholesky decomposition (𝐴 = 𝐿𝐿𝑇)

(a) flow based implementation

(b) dependence based implementation

Aparna Chandramowlishwaran, Kathleen Knobe, and Richard Vuduc, “Performance
Evaluation of Concurrent Collections on High-Performance Multicore Computing Systems”,
2010 Symposium on Parallel & Distributed Processing (IPDPS), April 2010.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

graph g;
function_node< int, int > n(g, unlimited,

[](int v) -> int {
cout << v;
spin_for(v);
cout << v;
return v;

}
);
function_node< int, int > m(g, serial,

[](int v) -> int {
v *= v;
cout << v;
spin_for(v);
cout << v;
return v;

}
);
make_edge(n, m);
n.try_put(1); n.try_put(2); n.try_put(3);
g.wait_for_all();

How nodes map to Intel TBB tasks

One possible execution – stealing is random

25

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

An example feature detection algorithm

buffer

get_next_image
preprocess

detect_with_A

detect_with_B

make_decision

Can express pipelining, task parallelism and data parallelism

26

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Applications often contain multiple levels of parallelism

Task Parallelism /
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels

27

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Possible Problems with Parallelism

Applying parallelism only for the innermost loop can be inefficient: scalability

• Over-synchronized: overheads become visible if there is not enough work inside

• Over-utilization: distribution to the whole machine can be inefficient

• Amdahl law: serial regions limit scalability of the whole program

Applying parallelism on the outermost level only:

• Under-utilization: it does not scale if there is not enough tasks or/and load imbalance

• Provokes oversubscription if nested level is threaded independently&unconditionally

Frameworks can be used from both levels

• To parallel or not to parallel? That is the question

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel TBB Flow Graph node types:

Functional

f() f() f(x)

f(x)

source_node continue_node function_node

multifunction_node

Buffering

buffer_node queue_node

priority_queue_node sequencer_node

1 023

Split / Join

queueing join reserving join tag matching join

split_node indexer_node

write_once_node

overwrite_node

async_node

broadcast_node limiter_node

Other

composite_node

streaming_node

29

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Node types used in examples

f()

source_node

f(x)

function_node

template < typename OutputType > class source_node;

template < typename Body > source_node::source_node(graph &g, Body body, bool is_active=true);

The Body is repeatedly invoked until it returns false. The Body updates one of its arguments.

template < typename InputType, typename OutputType, graph_buffer_policy = queueing,
typename Allocator = cache_aligned_allocator<InputType> > class function_node;

template < typename Body > function_node::function_node(graph &g, size_t concurrency, Body body);

For each input message, outputs a single output message. Users can set concurrency limit and buffer policy.

multifunction_node
template <typename Input, typename Output, graph_buffer_policy = queueing,

typename Allocator=cache_aligned_allocator<Input> > class multifunction_node;

template < typename Body > multifunction_node::multifunction_node(graph &g, size_t concurrency, Body body);

For each input message, zero or more outputs can be explicitly put to the output ports from within the body. Users
can set concurrency limit and buffer policy.

f(x)

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Node types used in examples

reserving join

tag matching join

template < typename OutputTuple, class JoinPolicy = queueing > class join_node;

join_node<OutputTuple, reserving>::join_node(graph &g);

Creates a tuple<T0, T1, …> from the set of messages received at its input ports. The tuple is only created when a
message can be reserved at a successor for each input port. A reservation holds the value in the predecessor
without consuming it. If a reservation cannot be made at each input port all reservations are released. Useful
when using a join to control resource usage – e.g. pairing with a limited number of buffers or tokens.

template < typename B0, typename B1, …. >
join_node<OutputTuple, tag_matching>::join_node(graph &g, B0 b0, B1 b1, …);

Creates a tuple<T0, T1, …> from the set of messages received at its input ports. Tuples are created for messages
with matching tags. The tags are calculated for each input message type by applying the corresponding user-
provided functor. Useful when streaming in a graph, and related messages must be joined together.

queueing join join_node<OutputTuple, queueing>::join_node(graph &g);

Creates a tuple<T0, T1, …> from the set of messages received at its input ports. Messages are joined in to the
output tuple using a first-in-first-out policy at the input ports.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Node types used in examples

buffer_node template < typename T, typename A = cache_aligned_allocator<InputType> > class buffer_node;

template < typename Body > buffer_node::buffer_node(graph &g);

An unbounded buffer of messages of type T.

composite_node template<typename InputTuple, typename OutputTuple> class composite_node;

composite_node::composite_node(graph &g);

A node that encapsulates a sub-graph of other nodes, exposing input and output ports that are aliased
to input and output ports of contained nodes.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Hands-on exercises

ex0: Inspect and execute the serial stereoscopic 3D example
1. Read left image
2. Read right image
3. Apply effect to left image
4. Apply effect to right image
5. Merge left and right images
6. Write out resulting image

ex1: Convert stereo example in to a TBB flow graph

Read left image

Read right image

Apply effect to left image

Apply effect to right image

Merge images

Write image

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Flow Graph Analyzer for Intel® Threading Building Blocks

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Flow Graph Analyzer for Intel® TBB (Designer Workflow)

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Flow Graph Analyzer for Intel® TBB (Analyzer Workflow)

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The heterogeneous programming features of
Intel® Threading Building Blocks

37

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Heterogeneous support in Intel® TBB
Intel TBB flow graph as a coordination layer for heterogeneity that retains
optimization opportunities and composes with existing models

Intel TBB as a composability layer for library implementations

• One threading engine underneath all CPU-side work

Intel TBB flow graph as a coordination layer

• Be the glue that connects hetero HW and SW together

• Expose parallelism between blocks; simplify integration

+
Intel® Threading Building Blocks
OpenVX*
OpenCL*
COI/SCIF
….

FPGAs, integrated and discrete GPUs, co-processors, etc…

38

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel TBB Flow Graph node types (for Heterogeneous Computing):

Functional

f() f() f(x)

f(x)

source_node continue_node function_node

multifunction_node

Buffering

buffer_node queue_node

priority_queue_node sequencer_node

1 023

Split / Join

queueing join reserving join tag matching join

split_node indexer_node

write_once_node

overwrite_node

async_node

broadcast_node limiter_node

Other

composite_node

streaming_node

39

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Feature Description Diagram

async_node<Input,Output> Basic building block. Enables
asynchronous communication from a
single/isolated node to an
asynchronous activity. User is
responsible for managing
communication. Graph runs on host.

Heterogeneous support in the Intel TBB flow graph (1 of 3)

40

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

graph g;
function_node< int, int > n(g, unlimited, [](int v) -> int {

cout << v;
spin_for(v);
cout << v;
return v;

});
function_node< int, int > m(g, serial, [](int v) -> int {

BLOCKING_OFFLOAD_TO_ACCELERATOR();
});
make_edge(n, m);
n.try_put(1);
n.try_put(2);
n.try_put(3);
g.wait_for_all();

Why is extra support needed?

One possible execution – stealing is random

41

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

graph g;
my_async_activity_type my_async_activity;
function_node< int, int > n(g, unlimited, [](int v) -> int {

cout << v;
spin_for(v);
cout << v;
return v;

});
typedef typename async_node<int, int>::gateway_type gw_t;
async_node< int, int > m(g, serial, [](int v, gw_t &gw) {

my_async_activity.push(v, gw);
});
make_edge(n, m);
n.try_put(1);
n.try_put(2);
n.try_put(3);
g.wait_for_all();

With async_node

One possible execution – stealing is random

42

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

async_node example
• Allows the data flow graph to offload data to any asynchronous

activity and receive the data back to continue execution on the CPU

• Avoids blocking a worker thread

async_node makes coordinating with
any model easier and efficient

cpu

igpu

tokens

dispatcher

tile generator

CPU

iGPU

43

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Feature Description Diagram

streaming_node

Available as preview feature

Higher level abstraction for
streaming models; e.g. OpenCL*,
Direct X Compute*, Vulkan*, GFX,
etc.... Users provide Factory that
describes buffers, kernels, ranges,
device selection, etc… Uses
async_msg so supports chaining.
Graph runs on the host.

async_msg<T>

Available as preview
feature

Basic building block. Enables async
communication with chaining across
graph nodes. User responsible for
managing communication. Graph
runs on the host.

Heterogeneous support in the Intel TBB flow graph (2 of 3)

44

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

async_node vs streaming_node

f(x) f(x)

f(x) f(x)

T0

T1

T0

T1

T1

T2

T2

T3

T3

T4

T1

async_msg<T2>

async_msg<T2>

async_msg<T3>

T3

T4

• async_node receives and sends unwrapped message types
• output message is sent after computation is done by asynchronous activity
• simpler to use when offloading a single computation and chaining is not needed

• streaming_node receives unwrapped message types or async_msg types
• sends async_msg types after enqueueing kernel, but (likely) before computation is done by

asynchronous activity
• handles connections to non-streaming_nodes by deferring receive until value is set
• simple to use with pre-defined factories (like OpenCL* factory)
• non-trivial to implement factories

45

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

async_node vs streaming_node

f(x) f(x)

f(x) f(x)

T0

T1

T0

T1

T1

T2

T2

T3

T3

T4

T1

async_msg<T2>

async_msg<T2>

async_msg<T3>

T3

T4

• async_node receives and sends unwrapped message types
• output message is sent after computation is done by asynchronous activity
• simpler to use when offloading a single computation and chaining is not needed

• streaming_node receives unwrapped message types or async_msg types
• sends async_msg types after enqueueing kernel, but (likely) before computation is done by

asynchronous activity
• handles connections to non-streaming_nodes by deferring receive until value is set
• simple to use with pre-defined factories (like OpenCL* factory)
• non-trivial to implement factories

T2 T3

46

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Feature Description Diagram

opencl_node

Available as preview feature

A factory provided for
streaming_node that supports
OpenCL*. User provides OpenCL*

program and kernel and the runtime
handles the initialization, buffer
management, communications, etc..
Graph runs on host.

Heterogeneous support in the Intel TBB flow graph (3 of 3)

47

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

opencl_node example

• Provides a first order node type that takes in
OpenCL* programs or SPIR* binaries that can
be executed on any supported OpenCL device

• Is a streaming_node with opencl_factory

• https://software.intel.com/en-us/blogs/2015/12/09/opencl-
node-overview

48

#define TBB_PREVIEW_FLOW_GRAPH_NODES 1
#define TBB_PREVIEW_FLOW_GRAPH_FEATURES 1

#include "tbb/flow_graph.h“
#include "tbb/flow_graph_opencl_node.h“

#include <algorithm>

int main() {
using namespace tbb::flow;
const char str[] = "Hello from ";
opencl_buffer<cl_char> b(sizeof(str));
std::copy_n(str, sizeof(str), b.begin());

graph g;
opencl_program<> program("hello_world.cl");
opencl_node<tuple<opencl_buffer<cl_char>>>

gpu_node(g, program.get_kernel("print"));

std::array<unsigned int, 1> range{1};
gpu_node.set_range(range);
input_port<0>(gpu_node).try_put(b);

g.wait_for_all();

return 0;
}

__kernel void print(global char *str) {
for(; *str; ++str) printf("%c", *str);
printf("GPU!\n");

}

https://software.intel.com/en-us/blogs/2015/12/09/opencl-node-overview

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Hands-on exercises

ex2: Encapsulate stereo in a composite_node

Read left image

Read right image

Write image

tokens dispatcher

cpu node

OpenCL node

ex3: Hello OpenCL*

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
50

Hands-on exercises

ex4: Run OpenCL* Stereo

Read left image

Read right image

Write image

stereo_node

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
51

Hands-on exercises

ex5: Run a Stereoscopic 3D Fractal Generator that uses Tokens

Generate tiles

Tokens

Dispatcher

token

image

token

token

image

image

FractalInput

Display

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FPGAs and other non-GPU devices

• OpenCL* supports more than CPU and GPU

• The Intel® FPGA SDK for Open Computing Language (OpenCL)

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

• Working on improved support from within Intel TBB

52

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Notes on opencl_node for FPGAs

• Current opencl_node executes a single kernel

• Communication is optimized between consecutive kernels through chaining

• But this does not map well to FPGAs

• Typically, FPGA kernels will communicate via channels or pipes

• Future work on OpenCL support for FPGAs

• Define an API more appropriate for FPGAs

• Multiple kernels in a single node

• Kernels directly communicating through channels instead of async_msg
through host

• async_node can be used for communication with FPGAs

53

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Using other GPGPU models with Intel TBB

• CUDA*, Vulkan*, Direct Compute*, etc…

• Two approaches

1. Use an async_node to avoid blocking a worker thread

2. Create (or advocate for) a streaming_node factory

 Intel TBB accepts contributions!

54

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
55

To Learn More:
See Intel’s The Parallel Universe Magazine

https://software.intel.com/en-us/intel-parallel-universe-magazine

http://threadingbuildingblocks.org http://software.intel.com/intel-tbb

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
56

Contacts

• Ask questions:

• By email: inteltbbdevelopers@intel.com

• Use forum: https://software.intel.com/en-us/forums/intel-threading-
building-blocks

• Create pull requests:

• https://github.com/01org/tbb

mailto:inteltbbdevelopers@intel.com
https://software.intel.com/en-us/forums/intel-threading-building-blocks
https://github.com/01org/tbb

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

57

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A simple asynchronous activity with async_node

1. We need an asynchronous activity

 Can receive an incoming message without blocking

 Executes work outside of the context of the task that sent the message

 Can send result back through a call to async_node gateway.

 Graph lifetime must be managed

2. We need to implement an async_node body

 Passes incoming message and gateway to asynchronous activity

 Does not block waiting for message to be processed

3. We need to build and execute the flow graph

60

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1. We need an asynchronous activity

template <typename MessageType>
class user_async_activity {
public:

static user_async_activity* instance();
static void destroy();
void addWork(const MessageType& msg);

private:
user_async_activity();
struct my_task { …. };
static void threadFunc(user_async_activity<MessageType>* activity) :

myThread(&user_async_activity::threadFunc, this) {
tbb::concurrent_bounded_queue<my_task> myQueue;
std::thread myThread;
static user_async_activity* s_Activity;

};

61

template<typename AsyncNodeType>
class user_async_msg {
public:

typedef typename AsyncNodeType::input_type input_type;
typedef typename AsyncNodeType::gateway_type gateway_type;
user_async_msg() : mGateway(NULL) {}
user_async_msg(const input_type& input, gateway_type &gw) :

mInputData(input), mGateway(&gw) {}
const input_type& getInput() const { return mInputData; }
gateway_type& getGateway() const { return *mGateway; }

private:
input_type mInputData;
gateway_type *mGateway;

};

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1. We need an asynchronous activity

template< typename MessageType >
void user_async_activity<MessageType>::addWork(const MessageType& msg) {

msg.getGateway().reserve_wait();
myQueue.push(my_task(msg));

}

template< typename MessageType >
void user_async_activity<MessageType>::threadFunc(user_async_activity<MessageType>* activity) {

my_task work;

for(;;) {
activity->myQueue.pop(work);
if (work.myFinishFlag) {

std::cout << "async activity is done." << std::endl;
break;

} else {
std::cout << work.myMsg.getInput() << ' ' << std::flush;
typename MessageType::gateway_type &gw = work.myMsg.getGateway();
gw.try_put(std::string("Processed: ") + work.myMsg.getInput());
gw.release_wait();

}
}

}

62

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

2. We need to implement an async_node body

int main() {
typedef async_node<std::string, std::string> node_t;
typedef user_async_msg< node_t > msg_t;
typedef user_async_activity<msg_t> activity_t;

graph g;
node_t node(g, unlimited, [](const node_t::input_type &s, node_t::gateway_type &gw) {

activity_t::instance()->addWork(msg_t(s, gw));
});

std::string final;
function_node< std::string > destination(g, serial, [&final](const std::string& result) { final += result + "; "; });

make_edge(node, destination);
node.try_put("hello");
node.try_put("world");

g.wait_for_all();
activity_t::destroy();
std::cout << std::endl << "done" << std::endl << final << std::endl;
return 0;

}

63

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

3. We need to build and execute the flow graph

int main() {
typedef async_node<std::string, std::string> node_t;
typedef user_async_msg< node_t > msg_t;
typedef user_async_activity<msg_t> activity_t;

graph g;
node_t node(g, unlimited, [](const node_t::input_type &s, node_t::gateway_type &gw) {

activity_t::instance()->addWork(msg_t(s, gw));
});

std::string final;
function_node< std::string > destination(g, serial, [&final](const std::string& result) { final += result + "; "; });

make_edge(node, destination);
node.try_put("hello");
node.try_put("world");

g.wait_for_all();
activity_t::destroy();
std::cout << std::endl << "done" << std::endl << final << std::endl;
return 0;

}

64

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

3. We need to build and execute the flow graph

int main() {
typedef async_node<std::string, std::string> node_t;
typedef user_async_msg< node_t > msg_t;
typedef user_async_activity<msg_t> activity_t;

graph g;
node_t node(g, unlimited, [](const node_t::input_type &s, node_t::gateway_type &gw) {

activity_t::instance()->addWork(msg_t(s, gw));
});

std::string final;
function_node< std::string > destination(g, serial, [&final](const std::string& result) { final += result + "; "; });

make_edge(node, destination);
node.try_put("hello");
node.try_put("world");

g.wait_for_all();
activity_t::destroy();
std::cout << std::endl << "done" << std::endl << final << std::endl;
return 0;

}

65

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A simple asynchronous activity with streaming_node

1. We need an asynchronous activity

 Can receive an incoming async_msg message without blocking

 Executes work outside of the context of the task that sent the message

 Sets result in the async_msg

 Graph lifetime must be managed

2. We need to implement device_factory and device_selector

 Passes incoming message and gateway to asynchronous activity

 Does not block waiting for message to be processed

3. We need to build and execute the flow graph

66

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1. We need an asynchronous activity

template <typename MessageType>
class user_async_activity {
public:

static user_async_activity* instance();
static void destroy();
void addWork(const MessageType& msg);

private:
user_async_activity();
struct my_task { …. };
static void threadFunc(user_async_activity<MessageType>* activity) :

myThread(&user_async_activity::threadFunc, this) {
tbb::concurrent_bounded_queue<my_task> myQueue;
std::thread myThread;
static user_async_activity* s_Activity;

};

67

template<typename T>
class user_async_msg : public tbb::flow::async_msg<T>
{
public:

typedef tbb::flow::async_msg<T> base;
user_async_msg() : base() {}
user_async_msg(const T& input) : base(), mInputData(input) {}
const T& getInput() const { return mInputData; }

private:
T mInputData;

};

Inherits a set(const T& v) function from async_msg

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1. We need an asynchronous activity

template< typename MessageType >
void user_async_activity<MessageType>::addWork(const MessageType& msg) {

myQueue.push(my_task(msg));
}

template< typename MessageType >
void user_async_activity<MessageType>::threadFunc(user_async_activity<MessageType>* activity) {

my_task work;
for(;;) {

activity->myQueue.pop(work);
if (work.myFinishFlag)

break;
else {

std::cout << work.myMsg.getInput() << ' ';
work.myMsg.set("Processed: " + work.myMsg.getInput());

}
}

}

68

Note: Unlike with async_node example, the graph lifetime is not managed by activity

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

2. We need to implement device_factory and device_selector

class device_factory {
public:

typedef int device_type;
typedef int kernel_type;

device_factory(graph &g) : mGraph(g) {}

/* … some empty definitions … */

void send_kernel(device_type /*device*/, const kernel_type& /*kernel*/, user_async_msg<std::string>& msg) {
mGraph.increment_wait_count();
activity_t::instance()->addWork(msg);

}
private:

graph &mGraph;
};

template<typename Factory>
class device_selector {
public:

typename Factory::device_type operator()(Factory&) { return 0; }
};

69

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

3. We need build and execute the flow graph
int main() {

typedef streaming_node< tuple<std::string>, queueing, device_factory > streaming_node_type;

graph g;
device_factory factory(g);
device_selector<device_factory> device_selector;

streaming_node_type node(g, 0, device_selector, factory);

std::string final;
function_node< std::string > destination(g, serial, [&g,&final](const std::string& result) {

final += result + "; ";
g.decrement_wait_count();

});

make_edge(node, destination);
input_port<0>(node).try_put("hello");
input_port<0>(node).try_put("world");

g.wait_for_all();
activity_t::destroy();

std::cout << std::endl << "done" << std::endl << final << std::endl;
return 0;

}

70

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

3. We need build and execute the flow graph
int main() {

typedef streaming_node< tuple<std::string>, queueing, device_factory > streaming_node_type;

graph g;
device_factory factory(g);
device_selector<device_factory> device_selector;

streaming_node_type node(g, 0, device_selector, factory);

std::string final;
function_node< std::string > destination(g, serial, [&g,&final](const std::string& result) {

final += result + "; ";
g.decrement_wait_count();

});

make_edge(node, destination);
input_port<0>(node).try_put("hello");
input_port<0>(node).try_put("world");

g.wait_for_all();
activity_t::destroy();

std::cout << std::endl << "done" << std::endl << final << std::endl;
return 0;

}

71

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

3. We need build and execute the flow graph
int main() {

typedef streaming_node< tuple<std::string>, queueing, device_factory > streaming_node_type;

graph g;
device_factory factory(g);
device_selector<device_factory> device_selector;

streaming_node_type node(g, 0, device_selector, factory);

std::string final;
function_node< std::string > destination(g, serial, [&g,&final](const std::string& result) {

final += result + "; ";
g.decrement_wait_count();

});

make_edge(node, destination);
input_port<0>(node).try_put("hello");
input_port<0>(node).try_put("world");

g.wait_for_all();
activity_t::destroy();

std::cout << std::endl << "done" << std::endl << final << std::endl;
return 0;

}

72

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Support for Distributed Programming

73

Feature Description Diagram

distributor_node

Proof of concept

Enables communication between
different memory domains. Each
device is capable of running a
graph; e.g. hosts, Xeon Phi cards,
etc…

Graphs runs on all devices.

Communication can be initiated
from any device to any device.

Whole sub-graphs may execute
on a device between
communication points.

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Streamed FFT example

The host generates 4000 arrays of floating point
numbers

On each array, FFT is performed (serially)

Execution of FFT is offloaded to KNC

Parallelism comes from multiple arrays processed at
the same time

74

Generate many arrays
of floats

FFT for each array

Result post processing

