Experimental review of Vector Boson Scattering

Monte-Carlo description of VBS - VBSCAN 16/11/2017

Lucrezia Stella Bruni

Introduction

- Why are VBS studies important?
- Test of electroweak sector of the SM and of the EW Symmetry Breaking
- processes:

2

1 -

0.5 -

0.2 -

- The Higgs boson unitarizes the interactions of longitudinally polarized VBS
- Unitarity still violated in case of
 deviations of gHWW
- Sensitive to BSM physics allowing indirect searches by studying anomalous triple and quartic gauge couplings (aTGC, aQGC)

L. S. Bruni

Probing the role of the Higgs mechanism in unitarization of quartic coupling

2

VBS Processes

Standard Model Production Cross Section Measurements

L. S. Bruni

Status: July 2017

VBS, VBF and **triboson** are main processes to probe the QGC and TGC at LHC.

Rare processes, cross sections typically ~ 1 pb.

Vector Boson Scattering contains:

- Triple gauge boson vertices (**TGC**)
- Quartic gauge boson vertices (**QGC**)

Anomalous quartic gauge couplings The presence of **new physics** can alter the **couplings** between bosons The presence of aQGC enhances the EW cross-section at high-energy tails Study Effective Field Theory scenarios with higher order dimensions operators

EFT can be translated to EW chiral Lagrangian approach and vice versa

Dimension 4

WWWW/WWZZ

D

W

EW Chiral Lagrangian non linear representation

 $\alpha 4, \alpha 5$

imension 6	Dimension 8
WZγ/WWγγ	all VVVV
	effective operators
	linear representation
$rac{a_0}{\Lambda^2}, \ rac{a_c}{\Lambda^2}$	$rac{f_{S,i}}{\Lambda^4}, \; rac{f_{T,i}}{\Lambda^4}, \; rac{f_{M,i}}{\Lambda^4}$

Ex. translation dim4 \Leftrightarrow dim8 operators: $\frac{f_{S,0(1)}}{\Lambda^4} = \alpha_{4(5)} \times \frac{16}{v^4}$

Anomalous quartic gauge couplings

Anomalous couplings are probed using Effective Field Theory

- Dimension 6 Operators → Triple Gauge Couplings
- Dimension 8 Operators → Quartic Gauge Coupling

Dim 6: TGC

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} +$$

$$+\sum_{i=WWW,W,B,\Phi W,\Phi B}rac{\mathcal{C}_{i}}{\Lambda^{2}}\mathcal{O}_{i}+$$

Nonzero value in aQGCs lead to tree-level **unitarity violation** at high energy ➡Form factors of the form $\overline{(1+\hat{s}/\Lambda_{\rm EE}^2)^2}$

can be introduced to unitarize the high energy contribution (ATLAS approach). (mainly from VBFNLO) but don't use any form factor (**CMS** approach)

L. S. Bruni

arXiv:1309.7890v1

- Provide only validity bound: scattering energy at which observed limit would violate unitarity,

VBS Signature

VBS has a characteristic final states topology

- Two highly energetic jets (3,4)
- Large invariant mass of di-jet system
- Large pseudo rapidity gap between jets
- No hadronic activity in the rapidity gap of the two tagging jets
- Decay products of the vector bosons lying between the tagging jets (1,2)

Analyses on VBS ATLAS+CMS

	ATLAS	CMS	Reference
W±W± +2jets	8 TeV	8, 13 TeV	arXiv:1611.02428v2 arXiv:1709.05822
Zy +2 jets	8 TeV	8 TeV	arXiv:1705.01966v2 arXiv:1702.03025
Wy + 2jets	_	8 TeV	arXiv:1612.09256
ZZ + 2jets	_	13 TeV	arXiv:1708.02812
WZ + 2jets	8 TeV		arxiv:1603.02151v1
WV semi-lept + 2jets	8 TeV		arxiv:1609.05122v2
Datacote ·			

ATLAS: 8 TeV (20.2 fb-1) CMS: 8 TeV (19.7 fb-1) and 13 TeV (35.9 fb-1)

Vector Boson Scattering of same-charge W

Vector Boson Scattering of same-charge W

Main backgrounds:

- **Prompt bkg**: WZjj, ttV, ZZjj: estimated from MC
- **Non prompt bkg**: jets misidentified as leptons and leptons from hadron decays: estimated from the data

Two SR defined:

ATLAS at 8 TeV

WWJJ sample: LO Sherpa 1.4.5 QCD and EW Cross section scaled to NLO (Powheg-Box) QCD /EW interference studied with dedicated samples, enhances the XS of 10.7% in the inclusive SR, 6.5 in the VBS SR

Main sources

Source of uncertainty		$W^{\pm}W^{\pm}jj$ -EW		W [±] W [±] jj-QCD	
		Inclusive	VBS	Inclusive	VBS
	MC sample size	1%	2%	4%	8%
	Showering model	2%	4%	3%	7%
	Scale	2%	2%	12%	13%
	PDF	2%	3%	2%	2%
	Generator	5%	3%	5%	5%
	Total uncertainty	6%	6%	14%	18%

L. S. Bruni

- **Inclusive SR:** Both EW and QCD production as signal:
- defined requiring two leptons and at least two jets with mjj>500 GeV
- **VBS SR:** EW only as signal: all inclusive SR cuts + $|\Delta Y_{jj}| > 2.4$

Jet-related uncertainties are the main exp. uncertainties (up to 20% in the VBS SR)

ssWWjj - Fiducial cross section measurement ATLAS at 8 TeV

SSVVVjj CMS at 13 TeV

whij sample

LO Madgraph 5.2 QCD and EW

➡Interference between QCD and EW small in the SR and considered with a syst. uncertainty (up to 4.5%). Estimated with **PHANTOM 1.2.8**

Main sources of uncertainty

Main theory uncertainty: QCD scales in the WWjj sample: 13% **Other uncertainties**: Jet-related uncertainties: 7% Background uncertainties (DD, theory, extrapolation to SR): 20-40%

Fiducial SR defined requiring two jets with m_{jj} > 500 GeV and $|\Delta \eta_{jj}|$ > 2.5

ssWWjj - Fiducial cross section measurement

CMS at 13 TeV Signal strength evaluated by 2D fit of m_{jj} and m_{ll} distributions

Fiducial XS: $\sigma_{fid}(W \pm W \pm jj) = 3.83 \pm 0.66(stat) \pm 0.35(syst)$ fb In agreement with the SM expectation 4.25±0.21 fb (MG5 LO)

ssWWjj - aQGC

L. S. Bruni

mass scales

ATLAS at 8 TeV

Improved expected sensitivity to a4 and a5 is improved significantly selecting a phase-space region that is more sensitive to anomalous contributions to the WWWW vertex $\rightarrow m_{WW,T} = \sqrt{(\mathbf{P}_{\ell_1} + \mathbf{P}_{\ell_2} + \mathbf{P}_{E_T^{miss}})^2} > 400 \text{ GeV}.$

SSWWjj - aQGC CMS at 13 TeV

Limits on nine independent CP-conserving dimension-eight effective operators to modify the quartic couplings

	Observed limits	Expected limits	Run-I limit
	(TeV ⁻⁴)	(TeV ⁻⁴)	(TeV ⁻⁴)
f_{S0}/Λ	[-7.7, 7.7]	[-7.0, 7.2]	[-38, 40] [11
f_{S1}/Λ	[-21.6,21.8]	[-19.9,20.2]	[-118 , 120] [1
f_{M0}/Λ	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6 , 4.6] [2
f_{M1}/Λ	[-8.7 ,9.1]	[-7.9, 8.5]	[-17 , 17] [29
f_{M6}/Λ	[-11.9,11.8]	[-11.1,11.0]	[-65 , 63] [11
f_{M7}/Λ	[-13.3,12.9]	[-12.4,11.8]	[-70,66][11
f_{T0}/Λ	[-0.62,0.65]	[-0.58,0.61]	[-3.8 , 3.4] [3
f_{T1}/Λ	[-0.28,0.31]	[-0.26,0.29]	[-1.9 , 2.2] [1
f_{T2}/Λ	[-0.89,1.02]	[-0.80,0.95]	[-5.2 , 6.4] [1

→95% CL limits on aQGC using the the measured mildistributions.

➡ Greatly improved w.r.t. Run1

Zγ + 2 jets final states

Main backgrounds:

QCD: from MC, yield validated **Z+jets** (jet faking photon): extracted from data **ttbar γ**: from simulation **Dibosons**: almost negligible in SR, from MC

$Z\gamma + 2jets$ ATLAS at 8 TeV

 Inclusive signal region with two leptons, two high-mass jets and a high energy photon. Channels: $\mu^+\mu^-\gamma jj$ and $e^+e^-\gamma jj$

•QCD production constrained with data in a CR requiring $150 < m_{jj} < 500 GeV$

• Search signal region (VBS EW) $m_{jj} > 500 \ GeV$

Zyjj Sample

Sherpa v1.4.5 at LO for both EWK and QCD EWK-QCD interference treated as system. uncertainty. Predicted from Madgraph to be less than 10% of the EWK XS in the Search Region

The contribution of the uncertainty in the n-intercalibration method of the JES is quite large, signal characterized by jets with high rapidity.

and EWK processes

L. S. Bruni

Sources of uncertainty				
Source of	EWK [%]	Tota	I (EWK+QCD) [%]	
uncertainty		SR	CR	
Statistical	40	9	4	
Jet energy scale	36)	9	4	
Theory	10)	5	4	
All other	8	5	6	
Total systematic	38	11	8	

Sherpa modelling of the Z_{γ} j j production processes and interference between the QCD

$Z\gamma + 2jets$ ATLAS at 8 TeV

 Inclusive signal region with two leptons, two high-mass jets and a high energy photon. Channels: $\mu^+\mu^-\gamma jj$ and $e^+e^-\gamma jj$

•QCD production constrained with data in a CR requiring $150 < m_{ij} < 500 GeV$

• Search signal region (VBS EW) $m_{jj} > 500 \ GeV$

 $\sigma_{fid}(EWK) = 1.1 \pm 0.5(stat) \pm 0.4(syst)$ in agreement with the SM expectations

	Ζγ +	2jets	- aQC	jC >
	Two final st	tates consid	lered:	Events / 6 10 ²
	$\ell^+\ell^-\gamma jj$	and $\nu\bar{\nu}\gamma$	<i>jj</i>	1 10 ⁻¹
	aQ $m_{ii} > 500 G$	GC region eV $m_{ii} > 600$) GeV	10 ⁻² Ju-2 Ju-2 Ju-2 Ju-2 Ju-2 Ju-2 Ju-2 Ju-2 Ju-2 Ju-2 Ju-2 Ju-1. Ju-1
	$E_{\rm T}^{\gamma} > 250 {\rm Ge}$ $\ell^+ \ell^- \gamma j j$	$EV = E_{\rm T}^{\gamma} > 150$ $v \bar{v} \gamma j$	i GeV	Data /
	95% CL intervals	Measured [TeV ⁻⁴]	Expected [TeV ⁻⁴]	$\Lambda_{\rm FF}$ [TeV]
	$f_{T9}/\Lambda^4 \ f_{T8}/\Lambda^4 \ f_{T0}/\Lambda^4$	$[-4.1, 4.2] \times 10^3$ $[-1.9, 2.1] \times 10^3$ $[-1.9, 1.6] \times 10^1$	$[-2.9, 3.0] \times 10^3$ $[-1.2, 1.7] \times 10^3$ $[-1.6, 1.3] \times 10^1$	n = 0→infinite F scale: non-
<i>n</i> = 0	f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M2}/Λ^4 f_{M2}/Λ^4	$[-1.6, 1.8] \times 10^{2}$ $[-3.5, 3.4] \times 10^{2}$ $[-8.9, 8.9] \times 10^{2}$ $[-1.7, 1.7] \times 10^{3}$	$[-1.4, 1.5] \times 10^{2}$ $[-3.0, 2.9] \times 10^{2}$ $[-7.5, 7.5] \times 10^{2}$ $[-1.4, 1.4] \times 10^{3}$	initarized 95% CL ntervals
<i>n</i> = 2		$[-6.9, 6.9] \times 10^4$ $[-3.4, 3.3] \times 10^4$ $[-7.2, 6.1] \times 10^1$	$[-5.4, 5.3] \times 10^4$ $[-2.6, 2.5] \times 10^4$ $[-6.1, 5.0] \times 10^1$	0.7 0.7 1.7
	f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M2}/Λ^4 f_{M2}/Λ^4	$[-1.0, 1.0] \times 10^{3}$ $[-1.6, 1.7] \times 10^{3}$ $[-1.1, 1.1] \times 10^{4}$ $[-1.6, 1.6] \times 10^{4}$	$[-8.8, 8.8] \times 10^{2}$ $[-1.4, 1.4] \times 10^{3}$ $[-9.2, 9.6] \times 10^{3}$ $[-1.4, 1.3] \times 10^{4}$	1.0 1.2 0.7 0.8
	J M151	[[

accessible only via neutral QGC vertices

L. S. Bruni

Upper limit on cross section (log-likelihood fit, CLs technique) :

1.06 fb (0.99 exp.) vvy and 1.03 fb (1.01 fb exp.) $II\gamma$

One dim. 95%CL intervals on aQGC parameters Best expected interval: vvγ (improved of 10-30% with including IIγ)

Main uncertainties: QCD scales (~8%)

Expected intervals are a factor ~2 better than CMS (without Form Factors)

 $Z\gamma + 2jets$

CMS at 8 TeV

Zyjj Sample

Madgdaph at LO for both EWK and QCD with 0-3 additional jets + NLO k-factor of 1.1 for mjj<400 GeV for QCD

- MG5 matched to Parton shower based on MLM prescription

> Dominated by the large stat uncertainty in the CR used for normalization

Sources of uncertainty

Summary of the major uncertainties.

	Source	Uncertainty
3	QCD $Z\gamma$ + jets normalization	22% (400 < $M_{\rm jj}$ < 800 GeV) 24% ($M_{\rm jj}$ > 800 GeV)
	Fake photon from jet $(p_T^{\gamma} \text{ dependent})$	15% (20–30 GeV) 22% (30–50 GeV) 49% (>50 GeV)
	Trigger efficiency Lepton selection efficiency Jet energy scale and resolution tiy cross section Pileup modeling	1.2% $(Z \rightarrow \mu^{+}\mu^{-})$, 1.7% $(Z \rightarrow e^{+}$ 1.9% $(Z \rightarrow \mu^{+}\mu^{-})$, 1.0% $(Z \rightarrow e^{+}$ 14% $(M_{jj} > 400 \text{ GeV})$ 20% [3] 1.0%
	Renormalization/factorization scale (signal)	9.0% (400 $< M_{jj} <$ 800 GeV) 12% ($M_{jj} >$ 800 GeV) (SM) 14% (aQGC)
	PDF (signal) from MadGraph	4.2% (400 < M _{jj} < 800 GeV) 2.4% (M _{jj} > 800 GeV) (SM) 4.3% (aQGC)
	Interference (signal)	18% (400 < M_{jj} < 800 GeV) 11% (M_{jj} > 800 GeV) (SM)
	Luminosity	2.6%

$Z\gamma + 2jets$

CMS at 8 TeV

QCD/EW discriminant variables used to build an EW-enriched region

EW SR:

Common selection

 $p_{\rm T}^{\rm j1,j2}$ > 30 GeV, $|\eta^{\rm j1,j2}| < 4.7$ $p_{\rm T}^{\ell 1,\ell 2}$ > 20 GeV, $|\eta^{\ell 1,\ell 2}|$ < 2.4 $|\eta^{\gamma}| < 1.4442$ $M_{ii} > 150 \text{ GeV}$ $70 < M_{\ell\ell} < 110 \text{ GeV}$

Inclusive SR:

Fiducial cross section EW signal measurement $p_{\rm T}^{\gamma} > 25 \,\,{\rm GeV}$ $p_{\rm T}^{\gamma} > 20 {
m GeV}$ $|\Delta \eta_{\rm ii}| > 1.6$ $|\Delta \eta_{\rm ii}| > 2.5$ $\Delta R_{j\ell} > 0.3, \Delta R_{jj,\gamma j,\gamma \ell} > 0.5$ $\Delta R_{jj,\gamma j,\gamma \ell,j\ell} > 0.4$ $|y_{Z\gamma} - (y_{j1} + y_{j2})/2| < 1.2$ $M_{ii} > 400 \,\,{\rm GeV}$ $\Delta \phi_{Z\nu,ii} > 2.0$ radians $M_{\rm ii}$ > 400 GeV with two divided regions $400 < M_{ii} < 800 \text{ GeV}$ and $M_{ii} > 800 \text{ GeV}$

> expectations $\sigma_{MG5(LO)} = 1.27 \pm 0.11(scale) \pm 0.05(PDF)$ fb observed (exp.) significance of 3.0 σ (2.1 σ)

Zγ + 2jets - aQGC

- aQGC search •Baseline selection + $p_{\rm T}^{\gamma} > 60 {
 m ~GeV}$ $|\Delta \eta_{\rm ii}| > 2.5$ $\Delta R_{j\ell} > 0.3, \ \Delta R_{jj,\gamma j,\gamma \ell} > 0.5$ $M_{11} > 400 \text{ GeV}$
- •Used shape of M_{ZY} distribution to extract limits on aQGC contributions

CMS at 8 TeV

•The Lagrangian of the aQGCs is implemented in MadGraph.

•For each aQGC the unitarity bound has been checked with VBFNLO: the limits on all aQGC parameters are set

in the unitary unsafe region (except for fT9)

No form factors introduced

Observed and expected shape-based exclusion limits for each aQGC parameter at 95% CL, without a form factor applied.

Observed limits (TeV ⁻⁴)	Expected limits (TeV ⁻⁴)
$-71 < f_{\rm M0}/\Lambda^4 < 75$	$-109 < f_{\rm M0}/\Lambda^4 < 111$
$-190 < f_{\rm M1}/\Lambda^4 < 182$	$-281 < f_{\rm M1}/\Lambda^4 < 280$
$-32 < f_{\rm M2}/\Lambda^4 < 31$	$-47 < f_{\rm M2}/\Lambda^4 < 47$
$-58 < f_{\rm M3}/\Lambda^4 < 59$	$-87 < f_{\rm M3}/\Lambda^4 < 87$
$-3.8 < f_{\rm T0}/\Lambda^4 < 3.4$	$-5.1 < f_{\rm T0}/\Lambda^4 < 5.1$
$-4.4 < f_{\rm T1}/\Lambda^4 < 4.4$	$-6.5 < f_{\rm T1}/\Lambda^4 < 6.5$
$-9.9 < f_{\rm T2}/\Lambda^4 < 9.0$	$-14.0 < f_{\rm T2}/\Lambda^4 < 14.5$
$-1.8 < f_{\rm T8}/\Lambda^4 < 1.8$	$-2.7 < f_{ m T8}/\Lambda^4 < 2.7$
$-4.0 < f_{\rm T9}/\Lambda^4 < 4.0$	$-6.0 < f_{\rm T9}/\Lambda^4 < 6.0$

24

Wγ + 2 jets final states

$W\gamma + 2jets$

•VBS channel with one of the largest XS •Main Backgrounds: QCD $W\gamma$ jj production, jets mis-identified as photons or electrons (DD), $WV\gamma$ events with hadronically decaying V bosons, $Wt\gamma$

CMS at 8 TeV

Wyjj Sample

- EWK sample with MG5 LO, NLO QCD correction included with kfactor=1.2 (VBFNLO)
- QCD sample MG5 LO with MLM matching method, NLO correction included with kfactor =0.93
- Interference neglected

Search for EW Wyjj on the binned mij distribution,

	EW measurement	EW+QCD measurement
5	$1.78^{+0.99}_{-0.76}$	$0.99^{+0.21}_{-0.19}$
d) significance	2.7 (1.5) standard deviations	7.7 (7.5) standard deviations
ection (fb)	6.1 ± 1.2 (scale) ± 0.2 (PDF)	23.5 ± 5.3 (scale) ±0.8 (PDF)
ction (fb)	10.8 ± 4.1 (stat) ±3.4 (syst) ±0.3 (lumi)	23.2 ± 4.3 (stat) ±1.7 (syst) ±0

Consistent with the SM expectations

$W\gamma + 2jets - aQGC$

- Presence of aQGC should enhance the XS at high energy tails •Shape of p_T^W used to set limits
- •Baseline selection + $|y_{W\gamma} (y_{j1} + y_{j2})/2| < 1.2, |\Delta \eta(j1, j2)| > 2.4, p_T^{\gamma} > 200 \,\text{GeV}.$
- •Search performed on each aQGC separately, while setting the others to the SM value

CMS at 8 TeV

Main sources of uncertainty: QCD scales EW W γ (QCD) signal 20(30)% Jet-uncertainties 12-31% MisID jets as γ/l : 10-40%

L. S. Bruni

ZZ + 2 jets final states

CMS at 13 TeV

Fully leptonic final state considered
Low cross section but the clean final state results in a small reducible bkg

Main backgrounds:

 OCD production: from simulation, yields checked while extracting EW
 Irriducible bkg (4 prompt and isolated leptons): ttbarZ, WWZ, estimated with simulations
 Reducible bkg (secondary leptons, jets misID as leptons): Zjets, ttbar, WZjets, estimated from data

zzjj sample

MG5_aMC at LO for EWK, cross-checked with PHANTOM MG5_aMC at NLO for QCD with 0,1,2 partons at born level with FxFx merging interference evaluated at LO with MG5_aMC ~1% -> Neglected 29

ZZ+2 jets

Multivariate classifier is used to separate signal and QCD using a set of variables that can discriminate between QCD and EW production (as m_{jj}, Δ Y_{jj}, mzz ...)

OCD bkg modeling validated by a OCD-enriched control region: $m_{jj} < 400 \text{GeV}$ or $|\Delta \eta_{jj}| < 2.4$

The BDT distribution is used to extract the significance of the EW signal by a **maximum-likelihood fit**

Main sources of systematics Scales for QCD (EW): 10 (7)% JES 4/20% (low-high BDT score), JER 8%

- $\sigma_{\rm fid} = 0.40^{+0.21}_{-0.16} (\text{stat})^{+0.13}_{-0.09} (\text{syst}) \,\text{fb}$
 - 0.29±0.03 fb expected
- Background-only hypothesis excluded with 1.6 σ expect. 2.7 σ observed

ZZ+2 jets - aQGC CMS

Mzz to constrain aQGC

- The increase of the yield exhibits a quadratic dependence ú on the anomalous coupling → parabolic function is fitted to the per-mass bin yields: this allows an interpolation between the discrete coupling parameters of the simulated signals
- ZZjj sensitive in particular to operators
 - **T0**, **T1** and **T2** (SU_L(2) gauge fileds)
 - Neutral current operators T8 and T9 (U $_{Y}(1)$ field)

Coupling	Exp. lower	Exp. upper	O
$f_{\rm T0}/\Lambda^4$	-0.53	0.51	
$f_{\rm T1}/\Lambda^4$	-0.72	0.71	
$f_{\rm T2}/\Lambda^4$	-1.4	1.4	
$f_{\rm T8}/\Lambda^4$	-0.99	0.99	
$f_{\rm T9}/\Lambda^4$	-2.1	2.1	

WZ + 2 je	ets and all	TLAS
		q''' W [±] Z
	Variable	VBS
a	Lepton $ \eta $	< 2.5
q q	$p_{\rm T}$ of ℓ_Z , $p_{\rm T}$ of ℓ_W [GeV]	> 15, > 20
d G_W	m _Z range [GeV]	$ m_Z - m_Z^{PDO} $
g	$m_{\rm T}^W$ [GeV]	> 30
γZ	$\Delta R(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$	> 0.2, > 0.
	$p_{\rm T}$ two leading jets [GeV]	> 30
<i>q</i> =	$ \eta_i $ two leading jets	< 4.5
	Jet multiplicity	≥ 2
	$\frac{m_{jj}}{\Lambda P(j,\ell)}$	> 0.2
	$\Delta A(W, Z)$	≥ 0.5
L. S. Bruni	$\sum p_{\mathrm{T}}^{\ell} $ [GeV]	

S at 8 TeV

Leptonic final state: $\ell \nu \ell \ell$ Bigger XS than ZZ, cleaner signature than WW

Main Backgrounds:

WZjj QCD (~70%), tZj (~10%), misID leptons, ZZ

WZJj Sample

Sherpa LO for both EW and QCD (matching CKKW) Interference neglected

> 20	95% CL upper	limit on $\sigma_{W^{\pm}Z_{jj}}^{\text{fid.}}$	-EW→ℓ'νℓℓ [fb]
$m_Z^{\text{PDG}} < 10$		VBS only	VBS + tZj
> 0.3	V	BS phase space	;
> 0.3	Observed	0.63	0.67
	Expected	0.45	0.49
	$\pm 1\sigma$ Expected	[0.28; 0.62]	[0.33;0.67]
	$\pm 2\sigma$ Expected	[0.08;0.80]	[0.19;0.84]

WZ + 2 jets -aQGC

Limits on dim4 opertarors a4 and a5 contributing to aQGC Whizard used to compute the ratio of the fiducial XS for different a4/a5 values to the SM XS (unitarization scheme included)

function of a4 and a5

L. S. Bruni

WV semi-leptonic

WV semi-leptonic **ATLAS at 8 TeV**

Search for VBS in the WVjj final state, where the W decays into leptons and the V (W/Z) into hadrons: larger BR than the leptonic channel, easier to reconstruct

Main backgrounds: W-jets (MC, validated with data), ttbar, single top, di-boson (MC), multi-jet (DD)

WVJJ EW Sample Whizard +Pythia8 (LO)

> Selection Strategy 1) **Resolved selection**: reconstructs V_{had} as two small-R jets (V \rightarrow jj): 2) Merged selection: reconstructs V_{had} as a single large-R jet (V \rightarrow J): improves the aQGC sensitivity

L. S. Bruni

Main sources of uncertainty WVjj modelling: resolved (merged) 13 (29) % Jet reconstruction: resolved (merged) 21(17)%

WV semi-leptonic

Search of aQGC performed studying m_T(WV)

 No evidence of aQGC \rightarrow set 95% CL limits on dim-4 operators a4 and a5 with binned profile-likelihood fit to m_T(WV)

expected!

lower limit, α_4 upper limit, α_4 lower limit, α_5 upper limit, α_5

Observed confidence intervals are more stringent than existing ones from ssWW and WZ \rightarrow IvII

Summary - Simulations

	ssWW ATLAS	ssWW CMS	Zg ATLAS	Zg CMS	Wg CMS	ZZ CMS	WZ ATLAS	W ATI
EW	Sherpa LO XS scaled NLO Powheg	Sherpa LO	Sherpa LO XS NLO: VBFNLO	MG5 LO kFactor 1.1 (mjj<400GeV)	MG5 LO kFactor 1.2 VBFNLO	MG5_aMC LO	Sherpa LO	Whiza
QCD	Sherpa LO	Sherpa LO	Sherpa LO	MG5 LO + matching MLM	MG5 LO + matching MLM	MG5_aMC NLO matching FxFx	Sherpa LO matching CKKM	Whiza
aQGC	Whizard LO	Sherpa LO	MG5 LO	MG5 LO	MG5 LO	MG5_aMC + ME Reweighting	Whizard LO	Whiza
Interference	studied with dedicated samples 10.7(6.5)% in incl (SR)	syst. uncertainty (up to 4.5%) . Estimated with PHANTOM	syst. uncertainty. (~10%) Estimated with MG5	syst. uncertainty. (~11%) MG5	Neglected	Neglected	Neglected	Negle

Summary - Fiducial cross-section

	September 2017	, , , , , , , , , , , ,	<u> </u>	S Prelimi
	CMS	EWK measurements vs.	7 TeV CMS measurement (stat,stat+sys)	⊢⊢○ − −
		Theory	8 TeV CMS measurement (stat,stat+sys)	⊢┼●┼ ┤
			13 TeV CMS measurement (stat,stat+sys)	┝╌╞╾╋╾┥╾┥
	qqW	<mark>⊢ + ● +</mark>	$0.84 \pm 0.08 \pm 0.18$	19.3 fb ⁻¹
	qqZ	⊦+o <mark></mark> +I	$0.93 \pm 0.14 \pm 0.32$	5.0 fb ⁻¹
	qqZ	k + ● <mark>k 1</mark>	$0.84 \pm 0.07 \pm 0.19$	19.7 fb ⁻¹
	qqZ	k <mark>-∤●</mark> k1	$1.02 \pm 0.03 \pm 0.10$	35.9 fb ⁻¹
	γγ→WW	<u>⊢</u>	1.74 ± 0.00 ± 0.74	19.7 fb ⁻¹
ľ	qqWγ	⊢ +●	→ 1.77 ± 0.67 ± 0.56	19.7 fb ⁻¹
I	ss WW \mu	+I	$0.69 \pm 0.38 \pm 0.18$	19.4 fb ⁻¹
I	ss WW	HH	$0.90 \pm 0.16 \pm 0.08$	35.9 fb ⁻¹
I	qqZγ	⊢ + <mark>●</mark>	1.48 ± 0.65 ± 0.48	19.7 fb⁻¹
	qqZZ	<u>⊢</u> ,	1.38 ± 0.64 ± 0.38	35.9 fb ⁻¹
L	0 All results at: ://cern.ch/go/pN	<u></u> 1 j7 Pr	² oduction Cross Section Ratio:	σ _{exp} / c

All recent measurements are statistic limited Generally good agreement between experiment and theory

Summary - aQGC

- No deviations from the SM seen so far

Conclusions

- Reviewed VBS analyses in ATLAS and CMS at 8 and 13 TeV: W±W± +2jets ,Zγ +2 jets,Wγ + 2jets ,ZZ + 2jets, WZ + 2jets, WV semi-lept + 2jets Analyses still limited by statistical uncertainties, so far only W±W± +2jets
 - observed
 - New physics could induce charged and neutral **aQGCs**
 - The presence of aQGC enhances the EW cross-section at high-energy tails
 - → discrimination with variables that carry the energy of the system like mT
 - Stringent limits to constraint on EFT operators for aQGC have been set
 - No deviations from the SM seen so far

More exiting results at 13 TeV results expected soon!

L. S. Bruni

Dim 8 operators

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$
$$\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$
$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$
$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$
$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\mu} \Phi \right]$$
$$\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Inclusive

ATLAS theory uncertainties

Course of uncontainty	$W^{\pm}W^{\pm}jj$	i-EW	W [±] W [±] jj-QCD		
Source of uncertainty	Inclusive	VBS	Inclusive	VBS	
MC sample size	1%	2%	4%	8%	VBS
Showering model	2%	4%	3%	7%	aQGC
Scale	2%	2%	12%	13%	
PDF	2%	3%	2%	2%	
Generator	5%	3%	5%	5%	_
Total uncertainty	6%	6%	14%	18%	-

 $W^{\pm}W$

 $W^{\pm}W$ $W^{\pm}Z_{\perp}$

 $W^{\pm}Z_{j}$

MC s

Lumi

Trigg

Lepto

- Jet-re
- $E_{\mathrm{T}}^{\mathrm{miss}}$
- b-tag
- Non-j
- Conv
- $W\gamma$ c

Total

gion		Selection Criteria
C	Lepton	Exactly two tight same-electric-charge leptons with $p_{\rm T} > 2$
13	Jet	At least two jets with $p_{\rm T} > 30$ GeV and $ \eta < 4.5$
	$m_{\ell\ell}$	$m_{\ell\ell} > 20 \text{ GeV}$
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$
	Z veto	$ m_{\ell\ell} - m_Z > 10 \text{ GeV} \text{ (only for the } e^{\pm}e^{\pm} \text{ channel)}$
	Third-lepton veto	No third veto-lepton
	<i>b</i> -jet veto	No identified <i>b</i> -jets with $p_{\rm T} > 30$ GeV and $ \eta < 2.5$
	m_{jj}	$m_{jj} > 500 \mathrm{GeV}$
	Δy_{jj}	$ \Delta y_{jj} > 2.4$
	m _{WW,T}	$m_{WW,T} > 400 \text{ GeV}$

Relative Systemat	ic Uncertainties	$e^{\pm}e^{\pm}/e^{\pm}\mu^{\pm}/\mu^{\pm}\mu$	ι [±] [%]	
	Backgrour	nd Yield	Signal Yield	
	Inclusive SR	VBS SR	Inclusive SR	VBS SI
V [±] jj-EW cross-section			5	6
V [±] jj-QCD cross-section			3.1	_
<i>jj</i> -EW cross-section	6/8/11	5/5/8		
<i>jj</i> -QCD cross-section	_	0.9/1.5/2.6		
statistics	8/6/8	9/6/8	4/2.1/2.8	5/2.7/4
inosity	1.7/2.1/2.4	1.7/2.1/2.4	2.8	2.8
ger efficiency	0.1/0.2/0.4	0.1/0.2/0.4	0.1/0.3/0.5	0.1/0.3/0
on reconstruction and identification	1.6/1.2/1.2	1.7/1.1/1.1	1.9/1.0/0.7	1.9/1.0/0
elated uncertainties	11/13/13	13/20/20	6	5
reconstruction	2.2/2.4/1.8	2.9/3.2/1.4	1.1	1.1
ging efficiency	1.0/1.1/1.0	0.8/0.9/0.7	0.6	0.6
prompt	4/7/7	4/7/7		
versions	6/4/-	6/4/-		
cross-section	2.8/2.6/-	3.1/2.6/-		
	17/19/21	18/20/21	10/9/9	10/9/9

ssWWjj

CMS selection

- •max $(zl^*) < 0.75$, where $zl^* = Zeppenfeld$ variable
- •ETmiss > 40 GeV (to reduce DY)
- •b-jet veto (ttbar)
- •|m|| mZ| > 15 GeV (to reduce DY)

•Only two leptons (I = μ , e) of same charge with pT1(2) > 25(20) GeV mII > 20 GeV •Two jets with pT > 30 GeV, leading jets taken as tagging jets, mjj > 500 GeV, $|\Delta\eta j|$ > 2.5,

Z γ + 2jetsLimits 95% CLMeaLimits 95% CLMea f_{T9}/Λ^4 f_{T9}/Λ^4 f_{T0}/Λ^4 f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M1}/Λ^4

CMS results

 f_{M2}/Λ^4 f_{M3}/Λ^4 f_{T9}/Λ^4 f_{T8}/Λ^4 f_{T0}/Λ^4 f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M2}/Λ^4 f_{M3}/Λ^4

asured [TeV ⁻⁴]	Expected [TeV ⁻⁴]
[-3.9, 3.9]	[-2.7, 2.8]
[-1.8, 1.8]	[-1.3, 1.3]
[-3.4, 2.9]	[-3.0, 2.3]
[-76, 69]	[-66, 58]
[-147, 150]	[-123, 126]
[-27, 27]	[-23, 23]
[-52, 52]	[-43, 43]
[-4.0, 4.0]	[-6.0, 6.0]
[-1.8, 1.8]	[-2.7, 2.7]
[-3.8, 3.4]	[-5.1, 5.1]
[-71, 75]	[-109, 111]
[-190, 182]	[-281, 280]
[-32, 31]	[-47,47]
[-58, 59]	[-87, 87]

$W\gamma + 2jets$

Baseline selection

Single-lepton (e, μ) trigger Lepton, photon ID and is Second lepton veto Muon (electron) $p_{\rm T} > 25$ Photon $p_{\rm T}^{\gamma} > 22 \, \text{GeV}, |\eta|$ W boson transverse mass $|\vec{p}_{\rm T}^{\rm miss}| > 35 \,{\rm GeV}$

- EW VBS selection: Baseline + $|\Delta \phi_{W\gamma,ii}| > 2.6 \text{ rad};$

L. S. Bruni

Table 1: Summary of the baseline selection criteria.

er
solation
(30) GeV, η < 2.1 (2.4) < 1.44 s > 30 GeV

$$|M_{e\gamma} - M_Z| > 10 \text{ GeV}$$
 (electron cf
 $p_T^{j1} > 40 \text{ GeV}, p_T^{j2} > 30 \text{ GeV}$
 $|\eta^{j1}| < 4.7, |\eta^{j2}| < 4.7$
 $|\Delta \phi_{j1,\vec{p}_T^{\text{miss}}}| > 0.4, |\Delta \phi_{j2,\vec{p}_T^{\text{miss}}}| > 0.4$
b quark jet veto for tag jets
Dijet invariant mass $m_{jj} > 200 \text{ GeV}$
 $\Delta R_{jj}, \Delta R_{j\gamma}, \Delta R_{j\ell}, \Delta R_{\ell\gamma} > 0.5$

• $|y_{W\gamma} - (y_{j1} + y_{j2})/2| < 0.6;$ • $m_{ii} > 700 \,\text{GeV};$ • $|\Delta \eta(j1, j2)| > 2.4.$

