Comparison of tools for VBS simulation: status and future plans

Marco Zaro

In collaboration with

Michele Grossi, Alexander Karlberg, Mathieu Pellen, Giovanni Pellicioli, Michael Rauch, Vincent Rothe, Christopher Schwan, Pascal Stienemeier

for Scientific Research

Plan

- Compare the various tools/generators that can be used for VBS simulations
- Comparison are performed at different levels of complexity: LO, NLO QCD, NLO QCD+PS, NLO EW,

• • •

- Process to consider: $pp \rightarrow e^+\mu^+\nu\nu jj$
- We do not just want to check that generators agree; we want to see if/how the different approximations that are used have an impact on the phenomenological results

Anatomy of radiative corrections in VBS More in Mathieu's talk

• The production of two vector bosons and two jets can proceed via different order combinations

Setup, cuts and parameters

Couplings, masses and widths

$$G_{\mu} = 1.16637 \times 10^{-5} \, \text{GeV}$$

$$m_{t} = 173.21 \, \text{GeV}, \qquad \Gamma_{t} = 0 \, \text{GeV},$$

$$M_{Z}^{OS} = 91.1876 \, \text{GeV}, \qquad \Gamma_{Z}^{OS} = 2.4952 \, \text{GeV},$$

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{W}^{2} \left(1 - \frac{M_{W}^{2}}{M_{Z}^{2}}\right)$$

$$M_{W}^{OS} = 80.385 \, \text{GeV}, \qquad \Gamma_{W}^{OS} = 2.085 \, \text{GeV},$$

$$M_{H} = 125.0 \, \text{GeV}, \qquad \Gamma_{H} = 4.07 \times 10^{-3} \, \text{GeV}$$

- NNPDF 3.0 PDFs $\alpha_s(M_Z)=0.118$, $\mu^2_{R/F}=p_T(j_1)\cdot p_T(j_2)$
- Selection cuts:
 - At least two (anti- k_T , R=0.4) jets with $p_T>30$ GeV, |y|<4.5, with jet-lepton distance $\Delta R_{il}>0.3$
 - The two hardest jet must have $\Delta y > 2.5$, $m_{jj} > 500$ GeV
 - Two leptons with $p_T>20$ GeV, |y|<2.5, $E_T^{miss}>40$ GeV
 - Lepton-lepton distance: $\Delta R_{\parallel} > 0.3$

People and code comparison

Contact person	Code	$\mathcal{O}(\alpha^6)$	$\mathcal{O}(\alpha^6)$ in-	Non-res.	NF QCD	EW
		$ s ^2/$	terf.			corr. to
		$ t ^2/ u ^2$				$\mathcal{O}(lpha^5lpha_s)$
A. Karlberg	POWHEG	t/u	No	Yes	No	No
M. Pellen	RECOLA+MoCANLO	Yes	Yes	Yes	Yes	Yes
M. Rauch	VBFNLO	Yes	No	Yes	No	No
C. Schwan	Bonsay	t/u	No	Yes, virt.	No	No
				No		
M. Zaro	$\mathrm{MG5}$ _AMC	Yes	Yes	No virt.	No	No
V. Rothe	Whizard	Yes	Yes	Yes	Yes	Yes
t-channel	s-cha	✓✓ ✓✓ nnel		Factoriz	able	Non-Factorizable
+Phanto	m			QCD c	orr.	QCD corr.
only, ful	I ME)		W			

Off-shell and non resonant

Comparison at LO

 Agreement at the 1% level among tools at LO (to be improved)

Comparison at NLO QCD

 Different contributions included or not by the various tools give larger (~10%) discrepancies at NLO

Comparison at NLO QCD

Code	$\mathcal{O}(\alpha^6)$	$\mathcal{O}(\alpha^6)$	Off-	NF	EW
	$ s ^2/$	interf.	shell	QCD	corr. to
	$ t ^2/ u ^2$				$\mathcal{O}(\alpha^5\alpha_s)$
POWHEG	t/u	No	Yes	No	No
RECOLA	Yes	Yes	Yes	Yes	Yes
VBFNLO	Yes	No	Yes	No	No
BONSAY	t/u	No	Yes,	No	No
			virt. No		
\longrightarrow MG5_AMC	Yes	Yes	No virt.	No	No

- Bonsay and Powheg are equivalent
- VBFNLO adds the s-channel diagrams
- MG5_aMC includes interferences and part of NF QCD
- Recola also includes EW corrections to the $\alpha^5\alpha_s$ contribution

Remember: s-channels are less-suppressed at NLO because extra radiation can give extra jets

Comparison at NLO+PS

- Work in this direction has just started!
- The plan is to compare predictions from
 - Powheg+PY8
 - MG5_aMC@NLO+(PY8, HW++)
 - VBFNLO+Herwig7 (matching both in the Powheg and MC@NLO scheme)
- Predictions are done after hadronization (no MPI)
- Try to use common shower-parameters (not always possible with different showers / matching schemes)

Comparison at NLO+PS

 Matching to parton shower adds further dependence on the matching scheme and on the given partonshower used.

Conclusions & Outlook

- LO and NLO comparison is at quite an advanced stage, differences among tools are negligible or understood
- NLO+PS adds larger discrepancies, to be investigated
- We profited of this week together to advance with the comparison and set the basis for the future work, including drafting a paper