EW, QCD, and interference contributions

Mathieu PELLEN

Institute for Theoretical Physics and Astrophysics, University Würzburg

Based on: [arXiv:1611.02951] Phys.Rev.Lett. 118 (2017) no.26, 261801, [arXiv:1708.00268] JHEP 1710 (2017) 124

in collaboration with: Benedikt Biedermann and Ansgar Denner

[arXiv:1801.XXXX]

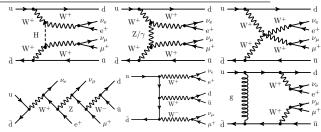
+ VBSCAN MC team (incomplete list): Brass, Dittmaier, Grossi, Karlberg, Pelliccioli, Rauch, Reuter, Rothe, Schwan, Stienemeier, Zaro

Monte-Carlo description of VBS Amsterdam, the Netherlands

16th of November 2017

Outline

- ① Contributions to $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$
- 2 Complete NLO corrections to $pp \to \mu^+ \nu_\mu e^+ \nu_e jj$
- 3 Large NLO EW corrections to VBS
- 4 Conclusion


Content

- ① Contributions to $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$
- ② Complete NLO corrections to $pp o \mu^+ \nu_\mu e^+ \nu_e jj$
- 3 Large NLO EW corrections to VBS
- 4 Conclusion

$$\mathrm{pp} \to \mu^+ \nu_\mu \mathrm{e}^+ \nu_\mathrm{e} \mathrm{jj}$$

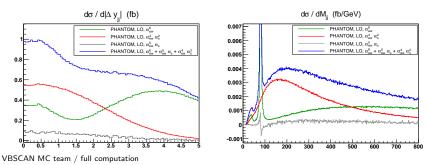
- → All partonic channels taken into account
- uu $\rightarrow \mu^+ \nu_\mu e^+ \nu_e dd$
- $u\bar{d} \rightarrow \mu^+ \nu_{\mu} e^+ \nu_{e} d\bar{u}$

- $u\bar{d} \rightarrow \mu^+ \nu_{\mu} e^+ \nu_{e} s\bar{c}$
- $u\bar{s} \to \mu^+ \nu_\mu e^+ \nu_e d\bar{c}$
- uc $\rightarrow \mu^+ \nu_{\mu} e^+ \nu_{e} sd$
- $\bar{sd} \rightarrow \mu^+ \nu_\mu e^+ \nu_e \bar{u}\bar{c}$
- $\bar{\mathrm{d}}\bar{\mathrm{d}} \to \mu^+ \nu_{\mu} \mathrm{e}^+ \nu_{\mathrm{e}} \bar{\mathrm{u}}\bar{\mathrm{u}}$
- \rightarrow Tree amplitudes of order $\mathcal{O}(g^6)$ and $\mathcal{O}(g_s^2g^4)$

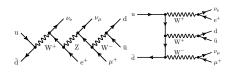
$$pp o \mu^+ \nu_\mu e^+ \nu_e jj$$

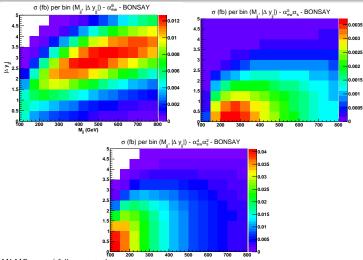
Three contributions at LO:

- $\mathcal{O}(\alpha^6)$ (= "EW contribution")
- $\mathcal{O}(\alpha_s \alpha^5)$ (= "interference")
- $\mathcal{O}(\alpha_s^2 \alpha^4)$ (= "QCD contribution")


Cuts: inspired by Refs. [1405.6241, 1611.02428, 1410.6315, CMS-PAS-SMP-17-004]

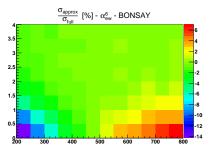
charged lepton:
$$p_{T,\ell} > 20 \,\text{GeV}, \quad |y_\ell| < 2.5, \quad \Delta R_{\ell\ell} > 0.3$$


jets:
$$p_{T,j} > 30 \text{ GeV}, \quad |y_j| < 4.5, \quad \Delta R_{j\ell} > 0.3$$


missing energy: $p_{T.miss} > 40 \text{ GeV}$,

- + Extra VBS cuts on m_{ii} and Δy_{ii}
- \rightarrow "Play the experimentalist" and scan over m_{ii} and Δy_{ii}

→ Background contributions become very relevant on the peak



VBSCAN MC team / full computation

 \rightarrow Experimentalist are doing a good job! ($m_{\rm ji} > 500 \, {\rm GeV}$ and $|\Delta y_{\rm ji}| > 2.5$ are good values)

 \rightarrow Check the validity of the VBS approximation (implemented in different variants in: BONSAY, POWHEG, VBFNLO, and MG_aMC@NLO)

→ Comparison at LO: full vs. VBS approximation

VBSCAN MC team

→ Reasonable agreement away from the resonance region

Message: do not use the VBS for $m_{
m jj} < 200\,{
m GeV}$ and $|\Delta y_{
m jj}| < 2.0$

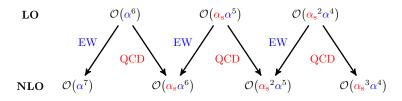
\rightarrow Follow up

- NLO computations running (now):
 - → full vs. VBS approximation (as implemented in BONSAY)
 - $\rightarrow m_{ii} > 200 \, \text{GeV}$ and $|\Delta y_{ii}| > 2.0$
- Is the approximation failing?
- If yes, by how much?

\rightarrow Stay tuned

Content

- 1 Contributions to $pp \to \mu^+ \nu_\mu e^+ \nu_e jj$
- 2 Complete NLO corrections to $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$
- 3 Large NLO EW corrections to VBS
- 4 Conclusion


→ Calculation of both NLO QCD and EW corrections to

$$pp o \mu^+ \nu_\mu e^+ \nu_e jj$$

- Off-shell and non-resonant contributions
 - → Realistic final state
- Full calculations vs. VBS approximation
- EW corrections can be large in certain phase space regions
 - → Sudakov logarithms
- Theoretical and numerical challenge to consider $2 \rightarrow 6$ process
 - → Virtual corrections involving up to 8-point functions

$$pp o \mu^+ \nu_\mu e^+ \nu_e jj$$

LO cross sections at $\mathcal{O}\left(\alpha^6\right)$, $\mathcal{O}\left(\alpha_{\rm s}\alpha^5\right)$, and $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^4\right)$

NLO cross sections at $\mathcal{O}\left(\alpha^7\right)$, $\mathcal{O}\left(\alpha_{\rm s}\alpha^6\right)$, $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^5\right)$, and $\mathcal{O}\left(\alpha_{\rm s}^3\alpha^4\right)$

ightarrow Order $\mathcal{O}\left(\alpha_{\rm s}\alpha^6\right)$ and $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^5\right)$: QCD and EW corrections mix ightarrow Combined measurement

Predictions for
$$\sqrt{s}=13 {\rm TeV}$$
 at the LHC pp $\to \mu^+ \nu_\mu {\rm e}^+ \nu_{\rm e} {\rm jj}$

- NNPDF3.0QED [NNPDF collaboration]
- dynamical renormalisation and factorisation scale:

$$\mu_{\mathrm{ren}} = \mu_{\mathrm{fac}} = \sqrt{p_{\mathrm{T,j_1}} p_{\mathrm{T,j_2}}}$$

Cuts inspired by Refs. [1405.6241, 1611.02428, 1410.6315, CMS-PAS-SMP-17-004] :

charged lepton:
$$p_{T,\ell} > 20 \, \text{GeV}, \quad |y_\ell| < 2.5, \quad \Delta R_{\ell\ell} > 0.3$$

jets: $p_{T,j} > 30 \text{ GeV}, \quad |y_j| < 4.5, \quad \Delta R_{j\ell} > 0.3$

missing energy: $p_{T,miss} > 40 \, \mathrm{GeV}$,

 \rightarrow For the two leading jet in p_T :

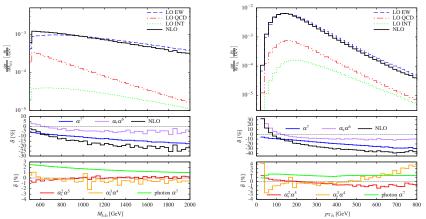
jet-jet:
$$m_{jj} > 500 \,\text{GeV}$$
, $|\Delta y_{jj}| > 2.5$.

- \rightarrow Final state: 2 jets, missing $p_{T,}$, and 2 same sign leptons
- anti-k_T jet algorithm [Cacciari, Salam, Soyez; 0802.1189]

R = 0.4 for jet recombination and R = 0.1 for photon recombination

→ LO fiducial cross sections:

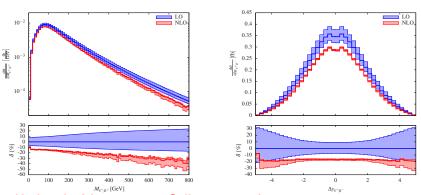
Order	$\mathcal{O}(\alpha^6)$	$\mathcal{O}(\alpha_{s}\alpha^{5})$	$\mathcal{O}(\alpha_s^2 \alpha^4)$	Sum
$\sigma_{ m LO}$ [fb]	1.4178(2)	0.04815(2)	0.17229(5)	1.6383(2)


\rightarrow NLO fiducial cross sections: (normalised to σ_{LO})

Order	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{s}\alpha^{6})$	$\mathcal{O}(\alpha_s^2 \alpha^5)$	$\mathcal{O}(\alpha_{s}^3 \alpha^4)$	Sum
$\delta\sigma_{ m NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\delta \sigma_{ m NLO}/\sigma_{ m LO}$ [%]	-13.2	-3.5	0.0	-0.4	-17.1

Updated with respect to Split presentation [Biedermann, Denner, MP; 1708.00268]

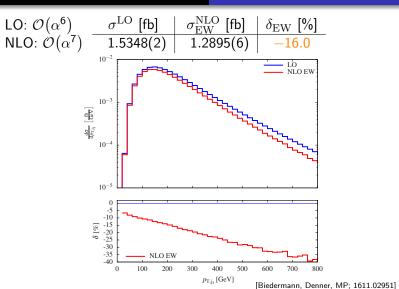
- \rightarrow Large EW corrections at $\mathcal{O}(\alpha^7)$
- \rightarrow Negative corrections at $\mathcal{O}(\alpha_s \alpha^6)$:
 - $\sim 0.6\%$ difference with respect to VBS approximation (negelecting s-channel and t-/u-channel interferences)
 - → Tuned comparison against [Denner, et al.; 1209.2389] and [Jäger, et al.; 0907.0580]
 - → VBS approximation in Recola
- → Photon PDF contribution at NLO (not included in NLO definitions):
- +1.50% with LUXqed [Manohar et al.; 1607.04266]


Separated contributions

Updated with respect to Split presentation [Biedermann, Denner, MP; 1708.00268]

- ightarrow Clear hierarchy of LO contributions
- ightarrow Different behaviour of the NLO corrections (normalised to the full LO)

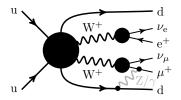
Combined predictions



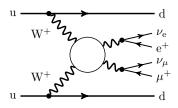
Updated with respect to Split presentation [Biedermann, Denner, MP; 1708.00268]

- → Large negative corrections for the full process
- → Corrections dominated by EW correction to EW process
 - → Bands do not overlap

Content


- 1 Contributions to $pp \to \mu^+ \nu_\mu e^+ \nu_e jj$
- 2 Complete NLO corrections to $pp \to \mu^+ \nu_\mu e^+ \nu_e jj$
- 3 Large NLO EW corrections to VBS
- 4 Conclusion

→ Huge NLO electroweak correction (!)


- Leading behaviour dominated by: Sudakov logarithms (bosonic part of the virtual), $\log^2\left(\frac{Q^2}{M_W^2}\right)$
 - ightarrow Usually in the tail of the distribution (suppressed)
 - → Usually small for total cross section
 - → Usually smaller than the QCD corrections
- Large corrections not due to VBS cuts
 - \rightarrow remove $m_{\rm ii} > 500 \, {\rm GeV}$ and $|\Delta y_{\rm ii}| > 2.5$
 - ightarrow relax $p_{\mathsf{T},\mathsf{j}}$ and $p_{\mathsf{T},\mathsf{miss}}$

Double-pole approximation: [Dittmaier, Schwan; 1511.01698]
 leading contribution of expansion about the resonance poles
 → Required two W bosons for the virtual contributions

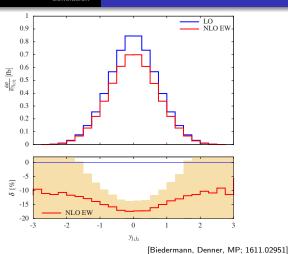
- Agree within 1% with full calculation
- Dominated by factorisable corrections
 - → Large corrections driven by the scattering process

Effective Vector Boson approximation:

- \bullet Simplify the discussion to $W^+W^+ \to W^+W^+$
- Leading logarithm approximation [Denner, Pozzorini; hep-ph/0010201]

$$\sigma_{\rm LL} = \sigma_{\rm LO} \bigg[1 - \frac{\alpha}{4\pi} 4 \mathit{C}_{\rm W}^{\rm ew} \log^2 \bigg(\frac{\mathit{Q}^2}{\mathit{M}_{\rm W}^2} \bigg) + \frac{\alpha}{4\pi} 2 \mathit{b}_{\rm W}^{\rm ew} \log \bigg(\frac{\mathit{Q}^2}{\mathit{M}_{\rm W}^2} \bigg) \bigg]$$

(double EW logs, collinear single EW logs, and single logs from parameter renormalisation included) (angular-dependant logarithms omitted)


$$\sigma_{\rm LL} = \sigma_{\rm LO} \bigg[1 - \frac{\alpha}{4\pi} 4 \mathit{C}_{\rm W}^{\rm ew} \log^2 \bigg(\frac{\mathit{Q}^2}{\mathit{M}_{\rm W}^2} \bigg) + \frac{\alpha}{4\pi} 2 \mathit{b}_{\rm W}^{\rm ew} \log \bigg(\frac{\mathit{Q}^2}{\mathit{M}_{\rm W}^2} \bigg) \bigg]$$

ullet For $Q=\langle m_{4\ell}
angle\sim 390\,{
m GeV}$

$$\delta_{\rm EW}^{\rm LL} = -16\%$$
 (!)

- \rightarrow Corrections 3-4 times larger than for $q\bar{q} \rightarrow W^+W^+$
 - C^{ew} larger for bosons than fermions
 - $\langle m_{4\ell} \rangle$ larger for VBS (massive *t*-channel [Denner, Hahn; hep-ph/9711302]) NB: $\langle m_{4\ell} \rangle \sim 250\,\text{GeV}$ for $q \bar q \to \text{W}^+\text{W}^+$

Large NLO EW corrections: intrinsic feature of VBS at the LHC

- Near $y_{j_1j_2} = 0$: two jets back-to-back Bulk of the cross section, $\sim -16\%$ corrections
- \rightarrow Band: $\pm 1/\sqrt{N_{\rm obs}}$ for 3000 fb⁻¹ \rightarrow probe of the EW sector

Content

- ① Contributions to $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$
- 2 Complete NLO corrections to $pp \to \mu^+ \nu_\mu e^+ \nu_e jj$
- 3 Large NLO EW corrections to VBS
- 4 Conclusion

Conclusion

- Study of the fiducial region
 - → Validity of the VBS approximation
- Full NLO corrections to pp $\rightarrow \mu^+ \nu_{\mu} e^+ \nu_{e} jj$:

[Biedermann, Denner, MP; 1708.00268]

- At NLO VBS and QCD-induced contributions mix:
 - → Combined measurement
- Full computations:
 - → Small differences with respect to the VBS approximation
- NLO EW corrections to VBS:

[Biedermann, Denner, MP; 1611.02951]

- Unexpected large EW corrections
 - → Probe of the EW sector

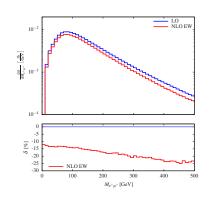
Back-up slides

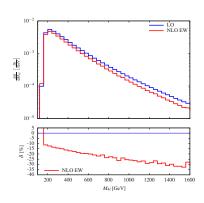
BACK-UP

Tools

- ightarrow Virtual corrections: RECOLA [Actis, Denner, Hofer, Lang, Scharf, Uccirati]
- + COLLIER [Denner, Dittmaier, Hofer]
- \rightarrow Private Monte Carlos (MoCaNLO [Feger] + another one)
- → Dipole subtraction scheme [Catani, Seymour], [Dittmaier]
- → Complex-mass scheme [Denner et al.]
- Inputs
 - \rightarrow G_{μ} scheme:

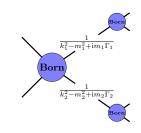
$$lpha = rac{\sqrt{2}}{\pi} G_{\mu} M_{
m W}^2 \left(1 - rac{M_{
m W}^2}{M_{
m Z}^2}
ight) \quad {
m with} \quad G_{\mu} = 1.16637 imes 10^{-5} \, {
m GeV}$$

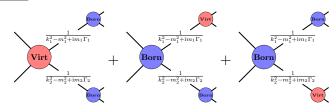

→ Parameters:


$$m_{
m t} = 173.21 \, {
m GeV}, \qquad \Gamma_{
m t} = 0 \, {
m GeV}$$
 $M_{
m Z}^{
m OS} = 91.1876 \, {
m GeV}, \qquad \Gamma_{
m Z}^{
m OS} = 2.4952 \, {
m GeV}$ $M_{
m W}^{
m OS} = 80.385 \, {
m GeV}, \qquad \Gamma_{
m W}^{
m OS} = 2.085 \, {
m GeV}$ $M_{
m H} = 125 \, {
m GeV}$ $\Gamma_{
m H} = 4.07 \times 10^{-3} \, {
m GeV}$

Validations

- Two independent Monte Carlo integrators
- Tree-level matrix elements: MADGRAPH5_AMC@NLO [Alwall et al.; 1405.0301]
- One-loop matrix elements:
 - $\bullet~$ VS. MADLOOPS [Hirschi et al.; 1103.0621]:
 - $\bullet~\mathcal{O}\!\left(\alpha^{7}\right)$ and $\mathcal{O}\!\left(\alpha_{\rm s}^{3}\alpha^{4}\right)$
 - Two libraries in COLLIER [Denner, Dittmaier, Hofer; 1407.0087, 1604.06792]:
 - $\mathcal{O}(\alpha_s \alpha^6)$, $\mathcal{O}(\alpha_s^2 \alpha^5)$, and $\mathcal{O}(\alpha_s^3 \alpha^4)$
- NLO computations:
 - DPA for $\mathcal{O}(\alpha^7)$ (automatised in [MP et al.; 1607.05571, 1612.07138] following [Dittmaier, Schwan; 1511.01698])
 - $\bullet~\mathcal{O}\left(\alpha_{s}\alpha^{6}\right)$ vs. [Denner, et al.; 1209.2389] in the VBS approximation
- IR-subtraction/finiteness:
 - Variation of α parameter [Nagy, Troscanyi; hep-ph/9806317]
 - Variation of technical cuts
 - Variation of IR-scale


Distributions extra



DPA (1) [Dittmaier, Schwan; 1511.01698]

At LO

At NLO

DPA (2) [Dittmaier, Schwan; 1511.01698]

Factorisable corrections

$$\mathcal{M}_{\text{virt,fact,PA}} = \sum_{\lambda_{1},\dots,\lambda_{r}} \left(\prod_{i=1}^{r} \frac{1}{K_{i}} \right) \left[\mathcal{M}_{\text{virt}}^{I \to N,\overline{R}} \prod_{j=1}^{r} \mathcal{M}_{\text{LO}}^{j \to R_{j}} + \mathcal{M}_{\text{LO}}^{I \to N,\overline{R}} \sum_{k=1}^{r} \mathcal{M}_{\text{virt}}^{k \to R_{k}} \prod_{j \neq k}^{r} \mathcal{M}_{\text{LO}}^{j \to R_{j}} \right]_{\left\{ \overline{k}_{l}^{2} \to \widehat{k}_{l}^{2} = M_{l}^{2} \right\}_{l \in \overline{R}}}$$

Non-factorisable corrections:

$$2\mathrm{Re}\left\{\mathcal{M}_{\mathrm{LO},\mathrm{PA}}^{*}\mathcal{M}_{\mathrm{virt},\mathrm{nfact},\mathrm{PA}}\right\} = |\mathcal{M}_{\mathrm{LO},\mathrm{PA}}|^{2}\delta_{\mathrm{nfact}}$$

- On-shell projection
- DPA applied to virtual corrections and I-operator
- Full Born and Real contributions: