SuperChic MC: Updates

Lucian Harland-Lang, University of Oxford

LHC WG on Forward Physics and Diffraction, 7
December, 2017, CERN

In collaboration with Valery Khoze and Misha Ryskin

Outline

- ▶ CEP brief introduction
- ▶ SuperChic what is it? Processes generated.
- Updates new processes.
- Ongoing work heavy ions.

SuperChic 2 - A Monte Carlo for Central Exclusive Production

SuperChic - overview

Central Exclusive Production

Central Exclusive Production (CEP) is the interaction:

$$hh \rightarrow h + X + h$$

- Diffractive: colour singlet exchange between colliding protons, with large rapidity gaps ('+') in the final state.
- Exclusive: hadron lose energy, but remain intact after the collision.
- Central: a system of mass M_X is produced at the collision point and only its decay products are present in the central detector.

Production mechanisms

Exclusive final state can be produced via three different mechanisms, depending on kinematics and quantum numbers of state:

SuperChic

- A MC event generator for CEP processes. Common platform for:
- QCD-induced CEP.
- Photoproduction.
- Photon-photon induced CEP.
- With fully differential treatment of survival effects.
- Fortran-based. Generates histograms and unweighted (LHE/HEPEVT) events with arbitrary user-defined cuts.

arXiv:1508.02718

Exclusive physics at the LHC with SuperChic 2

L.A. Harland–Lang¹, V.A. Khoze^{2,3}, M.G. Ryskin³

¹Department of Physics and Astronomy, University College London, WC1E 6BT, UK
²Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE
³Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina,
St. Petersburg, 188300, Russia

Abstract

We present a range of physics results for central exclusive production processes at the LHC, using the new SuperChic 2 Monte Carlo event generator. This includes

Availability

• Code and user manual available on Hepforge:

https://superchic.hepforge.org

SuperChic 2 - A Monte Carlo for Central Exclusive Production

- Home
- Code
- References
- Contact

SuperChic is a Fortran based Monte Carlo event generator for central exclusive production. A range of Standard Model final states are implemented, in most cases with spin correlations where relevant, and a fully differential treatment of the soft survival factor is given. Arbitrary user-defined histograms and cuts may be made, as well as unweighted events in the HEPEVT and LHE formats. For further information see the user manual.

Users guide

SuperChic v2.04

A Monte Carlo for Central Exclusive Production

A list of references can be round here and the code is available here.

Comments to Lucian Harland-Lang < I.harland-lang (at) ucl.ac.uk >.

Lucian Harland-Lang (1.harland-lang@ucl.ac.uk)

QCD-mediated production

- SM Higgs to $b\bar{b}$.
- Dijets $-q\overline{q}, gg, b\overline{b}(c\overline{c})$
- Trijets $q\overline{q}g$, ggg
- Light meson pairs $\pi\pi$, $\eta(')\eta(')$, KK, $\phi\phi$
- Quarkonium pairs $J/\psi, \psi(2S)$
- $\chi_{c,b}$ quarkonia, via 2/3 body decays
- $\rightarrow \eta_{c,b}$.
- $ightharpoonup \gamma \gamma$.
- Applies 'Durham' pQCD-based model.

LHL, V.A. Khoze, M. G. Ryskin. Int.J.Mod.Phys. A29 (2014) 1430031

Photoproduction

$$\rho(\to \pi^+\pi^-)$$

$$I/\psi(\rightarrow \mu^+\mu^-)$$

•
$$\Upsilon(\to \mu^+ \mu^-)$$

 $\psi(2S)(\to \mu^+ \mu^-, J/\psi \pi^+ \pi^-)$

• Takes simple power-law fit to HERA/LHC data.

Photon-induced production

- SM Higgs to $b\bar{b}$
- $W^+W^- \to ll\nu\nu$, including spin correlations.
- $\gamma\gamma$ (light-by-light).

Updates

Updates

- Various updates to photon-induced CEP:
 - ▶ Light-by-light W loop contribution ($\gamma \gamma \to W^*W^* \to \gamma \gamma$).
 - Axion-like particle
 - Monopole/monopolium

all implemented and available on request.

• Work ongoing to include ultra-peripheral heavy ions.

Light-by-light scattering

• Possibility for first observation of light-by-light scattering: until recently not seen experimentally, sensitive to new physics in the loop. Same final state sensitive to axion-like particle production.

- Analysis of d'Enterria and Silveira (arXiv:1305.7142,1602.08088): realistic possibility, in particular in PbPb collisions.
- Subsequently, first evidence presented by ATLAS (arXiv:1702.01625)

LbyL - W loops

- Light-by-light scattering mediated in the SM by virtual lepton, quark and W boson loops. Latter not relevant until $M_{\gamma\gamma} \sim 2 M_W$.
- Earlier versions omitted W loop contribution. Fine for $M_{\gamma\gamma} \lesssim 2M_W$ but not above.
 - → Must include to get high mass region right.

Figure 2: $\gamma\gamma \to \gamma\gamma$ process EW diagrams

- ullet Earlier version used explicit implementation of fermion loop amplitudes, with no W loops.
- Now, instead interface SANC implementation directly to MC:
 - W loops included.
 - More precise treatment of $s_{\gamma\gamma} \sim m_f^2$ transition.

Standard Model light-by-light scattering in SANC: analytic and numeric evaluation.

D. Bardin, L. Kalinovskaya, E. Uglov

Dzhelepov Laboratory for Nuclear Problems, JINR, ul. Joliot-Curie 6, RU-141980 Dubna, Russia

Figure 2: $\gamma\gamma \to \gamma\gamma$ process EW diagrams

D. Bardin et al, Phys. Atom. Nucl. 73 (2010) 1878-1888

- Impact of W loops at high mass clear. For $s_{\gamma\gamma}\gg M_W^2$ completely dominates!
- Also shown is QCD-mediated contribution ('gg'). In the mass region the $\gamma\gamma$ mediated contribution dominates (\rightarrow Sudakov suppression of gg).

Monopoles/monopolium

• Monopoles - add symmetry to Maxwell's equations and explain charge quantisation. As Dirac said:

"...one would be surprised if Nature had made no use of it [the monopole]."

- Dirac quantization leads to monopole coupling, $g^2=N^2\pi/\alpha$.
- Photon-initiated production ideal channel to search for these object, with large QED couplings.
- As well as monopole pair production, can produce a $M\overline{M}$ bound state monopolium.

T. Dougall and S. D. Wick, Eur. Phys. J. A39 (2009) 213-217

L. N. Epele et al., Eur. Phys. J C62 (2009) 587-592

- Dirac quantization leads to monopole coupling $g^2 = N\pi/\alpha$
 - → Monopole production non-perturbative process.
- Different approaches to deal with this are available, correspond to different choices of coupling. We implement two:
 - Basic Dirac monopole coupling $g_D = (\pi/\alpha)^{1/2}$.
 - The beta-coupling βg_D , where β is monopole velocity.

- `LHC ring proto-collaboration' searching for CEP physics with the LHC BLMs.
- Monopolium production (SuperChic implementation) a case study to demonstrate possibilities.
- Ongoing study paper in preparation.

Turning the LHC Ring into a New Physics Search Machine

Risto Orava^{1, a)}

For the LHC Ring proto-collaboration

R. Orava, AIP Conf. Proc. 1819 (2017) no .1, 04022

Axion-like particles

- The $\gamma\gamma \to \gamma\gamma$ transition in CEP can be sensitive to Axion like particles.

 S. Knapen et al., Phys. Rev. Lett. 118 (2017) no.17, 171801
- Discussed in Kapen et al. (1607.06083) find that in heavy ion collisions can set the strongest limits yet on these couplings.
- Lagrangian:

$$\mathcal{L}_a = \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} \frac{a}{\Lambda} F \widetilde{F} ,$$

gives simple production amplitudes:

$$\mathcal{M}_{\pm\pm} = \frac{1}{2} \frac{m_a^2}{\Lambda} \qquad \mathcal{M}_{\pm\mp} = 0$$

• Implementation, including full decay kinematics, will be included in next release.

Ultra-peripheral heavy ion collisions

Heavy ions

• Work ongoing on extending to heavy ions. Typically work in impact parameter space. Flux often given by:

$$N(\omega, b) = \frac{Z^2 \alpha \omega^2}{\pi^2 \gamma^2 \hbar^2 \beta^2 c^2} \left(K_1^2(x) + \frac{1}{\gamma^2} K_0^2(x) \right). \qquad x = \omega b / \gamma \beta \hbar c$$

- Then integrate over $b_{1_{\perp}}, b_{2_{\perp}}$, requiring $|b_{1_{\perp}} b_{2_{\perp}}| > R_1 + R_2$.
- Implemented in unofficial* SuperChic release, provided by authors of arXiv:1305.7142
- However this approach is simplified. We now wish to be more exact:
 - Exact kinematics ($Q^2 \neq 0$).
 - Nuclear overlap/Form factors.
 - Survival effects.
 - Dissociation?

• As starting point, we write

$$\sigma = \int d^2b_1 d^2b_2 \, \sigma_{\text{CEP}}(\vec{b_1}, \vec{b_2}) e^{-\Omega(b)}$$

where $e^{-\Omega}$ is the survival factor, i.e. direct analogue of pp case. To first approx we have $e^{-\Omega(b)} \approx \Theta(b-R_1-R_2)$ but not exact!

• More precisely:

$$S^2 \leftrightarrow e^{-\Omega}$$

$$\Omega(b) = \sigma_{\rm inel.} \int \mathrm{d}^2b_1' \mathrm{d}^2b_2' \, T(b_1') T(b_2') \delta(\vec{b} - \vec{b'}) \;, \quad \text{survival factor}$$

$$\vec{b}(') = \vec{b_1}(') - \vec{b_2}(')$$

$$T(b) = \int \mathrm{d}z \rho(r) \;, \text{ with e.g.} \qquad \rho(r) = \frac{\rho_0}{1 + \exp((r-R)/D)} : \text{nucleon density}$$

- Some simple consequences follow from this:
 - Consequence 1: $A^{1/3}$ scaling for QCD-mediated production.
 - Consequence 2: departure from simple $b > R_{\min}$ for QED-mediated production.

Consequence 1 - QCD-mediated production

- Question: do we need to worry about QCD-induced CEP background in heavy ion collisions?
- Considered in (first!) ATLAS evidence for light-by-light scattering.
- Argued that SuperChic prediction for $pp \to p\gamma\gamma p$ via gg should be scaled by A^2 . Found to be quite small (also $p_{\perp}^{\gamma\gamma}$ distribution broader).

Is this right?

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

ATLAS
EXPERIMENT
Submitted to: Nature Physics

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

The ATLAS Collaboration

arXiv:1702.01625

• Cross section:
$$\sigma = \int \mathrm{d}^2 b_1 \mathrm{d}^2 b_2 \, \sigma_{\mathrm{CEP}}(\vec{b_1}, \vec{b_2}) e^{-\Omega(b)}$$

• The exponent in the $e^{-\Omega}$ suppression factor:

$$\Omega(b) = \sigma_{\text{inel.}} \int d^2b'_1 d^2b'_2 T(b'_1) T(b'_2) \delta(\vec{b} - \vec{b'}) ,$$

is generally very large \rightarrow need $b \gtrsim R_1 + R_2$ for non-negligible contribution, where nuclear density not too large.

- On the other hand, QCD is short-range $R_{\rm QCD} \ll R_A$
- → all interactions must happen on ion periphery, with some small separation Δ along impact parameter direction.

• QCD is short-range - $R_{\rm QCD} \ll R_A$ - so simplify

$$\sigma = \int d^2b_1 d^2b_2 \,\sigma_{\text{CEP}}(\vec{b_1}, \vec{b_2}) e^{-\Omega(b)}$$

 A_1

with:

$$\sigma \approx \int \mathrm{d}^2 b_1 \mathrm{d}^2 b_2 \, T(b_1) T(b_2) \sigma_{\mathrm{CEP}}^{gg} \, e^{-\Omega(b)} \, , \quad \rho(r) = \frac{\rho_0}{1 + \exp((r - R)/D)}$$

$$\rho(r) = \frac{\rho_0}{1 + \exp((r - R)/D)}$$

• Performing the integral, with $d^2b \rightarrow 2\pi(R_1 + R_2)d\Delta$, we end up with:

$$\sigma \sim (R_1 + R_2)D \sim (A_1 + A_2)^{1/3}$$

QCD-mediated CEP occurs in ring of radius $R_1 + R_2$ and width D. This surface-like interactions has a $\sim A^{1/3}$, and not $\sim A^2$ scaling, i.e. much lower cross section than ATLAS expectations.

Numerical calculation in prep.

Consequence 2 - photon-induced production

• What about photon-initiated CEP? No longer dealing with short range interaction \Rightarrow must keep full b-dependent form:

$$\sigma = \int d^2b_1 d^2b_2 \sigma_{\text{CEP}}^{\gamma\gamma}(\vec{b}_1, \vec{b}_2) e^{-\Omega(b)} ,$$

now $\sigma_{\rm CEP}^{\gamma\gamma}$ in general extends far beyond $b\sim R_A$, where $e^{-\Omega}\sim 1$.

- \longrightarrow As we know well, S^2 not dramatic for ultra-peripheral collisions.
- However cannot ignore completely:
 - Contribution for $b \lesssim R_A$ not negligible, in particular for larger M_X , where $t_{\min} \uparrow$ and $b \downarrow$.
 - For $b \gtrsim R_A$ will have some suppression as well.

$$\sigma = \int d^2b_1 d^2b_2 \sigma_{\text{CEP}}^{\gamma\gamma}(\vec{b}_1, \vec{b}_2) e^{-\Omega(b)} ,$$

• Often S^2 effects included via simple $b > R_1 + R_2$ cut. However this approximates:

$$e^{-\Omega(b)} \approx \Theta(b - R_1 - R_2)$$

which is clearly not exactly true \Rightarrow misses physics in $b \sim R$ region.

- In addition, as in pp collisions $\sigma_{\text{CEP}}^{\gamma\gamma}$ has non-trivial vector \vec{b}_1 , \vec{b}_2 dependence, due to the polarization structure of the $\gamma\gamma \to X$ process. Will impact final result and should be included.
- Finally, transforming back to q_{\perp} space at the end we can calculate the impact of this on the ion q_{\perp} distribution (typically assume $\delta(\vec{q}_{\perp})$).
 - → Work actively ongoing to do this. Watch this space!

Conclusion and outlook

- SuperChic a MC event generator for CEP processes.
- Unified platform for QCD-induced, photoproduction and photon-photon collisions. Differential treatment of survival factor.
- Recent updates:
 - ▶ Light-by-light scattering *W* loops.
 - Monopole pair/monopolium production.
 - Axion-like particle production.
- Ongoing work: complete treatment of ultra-peripheral heavy ion collisions following extension of SuperChic approach.
- A new public release with these updates to come soon.
- Open to suggestions- collaborations/requests welcome.

Thank you for listening!