

Energy deposition studies: 30 cm TCP vs 60 cm TCP

M.I. Besana, F. Cerutti, E. Skordis and <u>M. Varasteh</u> EN-STI-FDA (FLUKA Team)

Tracking input from Collimation Team; R. Bruce, A. Mereghetti and D. Mirarchi European Organization for Nuclear Research (CERN), Geneva, Switzerland

Introduction

2.7km long Betatron cleaning insertion region (\approx 5 times of LHC)

Same geometry as previous study which

was presented at FCC collimation design meeting #12

- 8 warm dipoles
 - 17m long and 1.85 T magnetic field
 - return coil \rightarrow design was changed to protect them from radiation (*A. Milanese*)
 - beam-beam separation \rightarrow 250mm and 400mm in the dog-leg
 - beam-pipe aperture \rightarrow 29.5mm x 22mm

24 warm quadrupoles

- 15.54m long
- simple design (LHC inspired) \rightarrow 400mm beam separation
- beam-pipe aperture \rightarrow 15.26mm x 26.14mm

LHC dipole

Collimators and Absorbers

✓ With the same design and composition as LHC!

Collimators	Length (cm)	Aperture (σ)	Material	Number
Primaries	60	7.6	CFC	3
Secondaries	100	8.8	CFC	11
Active Absorbers	100	12.6	tungsten	4

Passive absorbers:

- TCAPA.6L (1.5m long) \rightarrow in front of MBW.B6L
- TCAPB.6L (0.4m long) \rightarrow in front of MBW.A6L
- TCAPC.6L (1m long) \rightarrow in front of MQWA.E5L

30 cm TCP was proposed in order to reduce the shower development inside the primary collimators

Power distribution in FCC

- FLUKA showering calculation takes the touch distribution from the SixTrack-FLUKA coupling
- Assuming 12 minutes of beam lifetime \rightarrow total power loss = 11.8MW
- Power sharing between different elements of the warm section for:
 - 60cm TCP, horizontal halo \rightarrow presented in April by M.I.Besana
 - 60cm TCP, vertical halo \rightarrow presented in July by M.I.Besana
 - 30cm TCP, Vertical halo:

The active length of the TCP is reduced to 30 cm but the actual length is still 1.2 m!

- Normalization factor $(=\frac{\#touch}{\#loss})$
 - For 60 cm TCP \rightarrow 1.58
 - For 30 cm TCP → 2.11

Power Fraction			
ELEMENTS	TCP 60cm	TCP 30cm	
TCP and TCS jaws	6.7%	5.7%	
Warm dipoles	13.7%	14.3%	
Warm quadrupoles	5.4%	6.9%	
Passive absorbers (TCAP)	7.9%	8.8%	
Beam pipe	14.2%	13.6%	
Tunnel wall	44.9%	43.3%	
Other elements	3.3%	3.2%	
Neutrinos/E -> m	4%	4.3%	

Power deposited on collimator jaws & absorbers

Collimator Jaws	TCP 60cm	TCP 30cm	
Primaries (kW)			
TCP.D6L	14.7	7.7	
TCP.C6L	158.7	99.2	
TCP.B6L	260.8	153.7	
Secondaries (kW)			
TCSG.A6L	220.9	226.6	
TCSG.B5L	10.6	13.9	
TCSG.A5L	40.8	51.2	
TCSG.D4L	33	43.5	
TCSG.B4L	8.2	11.7	
TCSG.A4L	10.8	14.1	
TCSG.A4R	13.7	18.2	
TCSG.B5R	3.9	5	
TCSG.D5R	6.7	9.4	
TCSG.E5R	10.9	14.6	
TCSG.6R	1.8	2.4	

	TCP 60cm	TCP 30cm		
Active absorbers (kW)				
TCLA.A6R	23	37.7		
TCLA.B6R	1.6	2.7		
TCLA.C6R	1.75	2.34		
TCLA.D6R	0.46	1.7		
Passive absorbers (kW)				
TCAPA.6L	450.8	501.9		
TCAPB.6L	73.4	74.8		
TCAPC.6L	404.7	455.96		

A factor of 2 reduction only on the vertical primary collimator!

TCSG.A6L \rightarrow With ticker jaws, can be reduced a lot!

Power density in the jaws of Vertical TCP

M. Varasteh O Energy deposition studies with 30cm TCP FCC collimation design meeting #13 – CERN

Power density in the jaws of Horizontal TCP

Energy deposition studies with 30cm TCP FCC collimation design meeting #13 – CERN

Power density in the jaws of **Skew TCP**

Power density in the jaws of **first TCSG**

FCC collimation design meeting #13 - CERN

resolution \rightarrow 0.24cm, 1cm, 10cm

0.01

First TCSG with thicker jaws (60cm TCP, v-halo)

Larger collimator jaws: <u>4.5 cm instead of 2.5 cm</u>

- Max peak power density was on the negative jaw
 → is reduced from 750 Wcm⁻³ to 130 Wcm⁻³
- Total power on the first TCSG

M. Varasteh

 \rightarrow is reduced from 220.9 kW to 91.6 kW!

Power Fraction	Vertical	Vertical, thicker TCGS
TCP and TCS jaws	6.7%	5.4%
Warm dipoles	13.7%	13.4%
Warm quadrupoles	5.4%	5.6%
Passive absorbers (TCAP)	7.9%	7.8%
Beam pipe	14.2%	14.7%
Tunnel wall	44.9%	45.8%
Other Elements	3.3%	3.2%
Neutrinos/E → m	4%	4.2%

The most exposed dipole modules

The 2 dipoles after the primary collimators take more than 95% of the total power on the dipoles!

- By reducing the active length of TCPs, the global picture does not change dramatically (impact on the magnets are practically unchanged)
- Situation of directly impacted collimator is worsened \rightarrow 50 kWcm⁻³ w.r.t. 35 kWcm⁻³
- Afterward collimators:
 - **TCPC & TCPB** → we gain at least a factor of 3 in terms of peak power density
 - Secondaries \rightarrow almost similar as for 60 cm TCP vertical halo
 - > Max peak power density is in the metallic part which can be addressed with thicker jaws!
- Values on the downstream collimators starts to get closer to a manageable range (lighter density material could be considered)
- The surface of the directly impacted collimator is at tens of kW/cc

Mohammad Varasteh

CERN EN-STI-FDA FLUKA Team m.varasteh @cern.ch

Backup Slides

Distribution of touches (60 cm vs 30 cm)

FCC vs LHC

60 cm TCP

Table 2: Sharing of beam energy deposition in the collimation betatron cleaning insertion for FCC (50 TeV) and LHC (6.5 TeV).

Element	FCC	LHC
Warm dipoles	16%	8.5%
Warm quadrupoles	4.6%	9.5%
TCP and TCS jaws	5.1%	10.5%
Passive absorbers	8.6%	13.5%
Tunnel and other elements	47.5%	42.4%
Beam pipe	14.2%	8.6%
Missing	4%	6.5%

Vertical TCP

M. Varasteh O *Energy deposition studies with 30cm TCP* FCC collimation design meeting #13 – CERN

Impact of Passive Absorbers

60 cm TCP

- Passive absorbers put in front of the magnets:
 - o design not optimized: LHC models
 - TCAPA.6L in front of MBW.B6L (1.5 m long)
 - TCAPB.6L in front of MBW.A6L (0.4 m long)
 - TCAPC.6L (1 m long)

Power Fraction	FCC w/o TCAP	FCC w TCAP
Power Loss for 12 minutes beam life-time	11.8 MW	11.8 MW
Passive absorbers (TCAP)	-	8.6%
Warm dipoles	20.3%	16%
Warm quadrupoles	6.6%	4.6%
TCP and TCS jaws	5.5%	5.1%
Tunnel wall	44.4%	44%
Beam pipe	15%	14%

- Max power on a dipole (MBW.A6L): ~1 MW
 - o 22 kW at LHC (6.5 TeV)

