Accidental bunch impact on FCC collimators made of carbon: energy density estimates

A. Lechner

Acknowledgements to F. Burkart, W. Bartmann, E. Renner, F.X. Nuiry, M. Frankl

FCC collimation meeting $Oct \ 20^{\rm th}, \ 2017$

Introduction

- In case of fast failures like extraction kicker malfunctions bunches can impact on collimators in the betatron cleaning insertion
- For example, spontaneous trigger of extraction kicker in this case the # of bunches escaping the extraction region depends on various parameters:
 - # number of extraction kickers
 - $\circ~$ kicker rise-time + time delay between spontaneous trigger and next bunch
 - o asynchronous beam dump or delayed dump until abort gap arrives
 - half gap of extraction protection devices

Figures courtesy of F. Burkart and E. Renner.

FCC extraction protection layout:

Spontaneous trigger+asynchronous beam dump (300 kickers, 1.15 µsec rise-time)

Accidental bunch impact on a collimator

- The shower-induced peak energy density depends on:
 - Proton energy E
 - The number of impacting protons N_b and the impact distribution (x, x', y, y')
 - o The collimator material, density, length
- In this presentation:
 - We assume that entire bunches with **nominal bunch intensity** I_b and a given transverse bunch size ($\sigma = \sigma_x = \sigma_y$) impact on a <u>carbon</u> collimator with a given impact parameter (*d*)
 - ⇒ In reality the impact distribution can be a more complicated since bunches might only be partially intercepted by extraction protection devices and/or particles might be scattered out of extraction protection devices

• Part 1 (7 TeV and 50 TeV) :

- Bunch impact on a long[†] absorber made of carbon with ρ =1.83 g/cm³ (a la Graphite R4550/R7550 used in TCDIs, TDI)
- Large impact parameter

[†] long enough to contain the shower maximum (several meters)

• Part 2 (50 TeV):

- Bunch impact on a 0.3, 0.6 and 1 m long collimators made of carbon with ρ =1.67 g/cm³ (a la CfC AC150K used in present TCPs, TCSGs, TCLIBs)
- \circ 1 σ impact + large impact parameter

• Note:

- o In all cases, only the energy deposition in the absorber material has been studied
- Additional limitations may arise from the energy deposition in other jaw components (backstiffener, cooling pipes, clamps, etc.)
- No studies were carried out for beam line components downstream of the impacted absorber/collimator

イロト イポト イヨト イヨト

"Damage limit" of collimators made of carbon?

• HiRadMat-28 (TCDI&TDI, F.X. Nuiry et al.):

- Peak dose of around 3.4 kJ/g (>6 kJ/cm³) achieved in Graphite with ρ=1.83 g/cm³ without visible damage
- In this presentation, I tentatively use this value as material limit (one could equally use results from other tests like HRM-23 (MME), but I didn't have the values at hand)

• A word of caution:

- The adopted dose limit allows only for a very approximative assessment if an absorber material can sustain the impact
- For a more detailed assessment, thermo-structural studies would be necessary to evaluate the stresses generated by the shower-induced temperatures and temperature gradients inside the absorbers

< □ > < □ > < □ > < □ > < □ > < □ >

1) Bunch impact on a long* Carbon absorber (1.8 g/cm³): 7 TeV vs 50 TeV (* long enough to contain the shower max., i.e. several meters)

2) Bunch impact on 0.3, 0.6 and 1 m Carbon collimators (1.67 g/cm³): 50 TeV

Conclusions

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Proton-induced showers: 7 TeV vs 50 TeV

r-z energy density maps[†] for protons impacting on Graphite

 $\sigma_{x,y} = 100 \,\mu \text{m}$

 $\sigma_{x,y} = 400 \,\mu \text{m}$

Some basic remarks:

- the depth where the energy density is max., $d_{\varepsilon,max}$, increases with transv. bunch size $(\sigma_{x,y})$
- $d_{\varepsilon, max}$ increases moderately with energy (remember: shower length $\propto \log(E)$)
- the transverse momentum of hadrons produced in nuclear collisions is more or less invariant with energy → shower opening angle decreases with increasing energy

・ロト ・ 日 ・ ・ 日 ・ ・ 日

[†] normalized to the maximum value.

Longitudinal peak dose profile (per proton) in Graphite

Material density ρ =1.83 g/cm³

Maximum energy density:

- for a given transverse proton density (i.e. a given σ), the maximum energy density increases by more than the simple ratio of beam energies (50/7≈7)
- For example: energy density increase in Graphite with ρ =1.83 g/cm³:
 - $\circ \sigma$ =100 μ m \rightarrow roughly a factor of 15 increase
 - $\circ~\sigma\text{=1}~\text{mm} \rightarrow \text{roughly a factor of 9 increase}$

<ロト < 部 > < き > < き

Max. dose vs $\sqrt{\beta_x \beta_y}$ induced by a single bunch in Graphite

Material density ρ =1.83 g/cm³

(dispersion contribution to beam size neglected)

	LHC	HL-LHC	FCC
E (TeV)	7	7	50
$\epsilon_n (\mu m \cdot rad)$	3.75	2.5	2.2
ppb (×10 ¹¹)	1.15	2.2	1.0

ightarrow For small spot sizes could expect some (localized) material damage already from 1 bunch

A. Lechner (FCC coll)

1) Bunch impact on a long^{*} Carbon absorber (1.8 g/cm³): 7 TeV vs 50 TeV (*tong enough to contain the shower max., i.e. several meters)

2) Bunch impact on 0.3, 0.6 and 1 m Carbon collimators (1.67 g/cm³): 50 TeV

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ >

Longitudinal peak dose profile for a FCC bunch in CfC

Material density $\rho = 1.67 \text{ g/cm}^3$, bunch intensity of $I_b = 1 \times 10^{11} \text{ p}$

Fraction of impacting protons escaping at the downstream face:

- TCP 0.3 m: 48%
- TCP 0.6 m: 23%
- TCSG 1.0 m: 9%

+ showers escaping \rightarrow would be important to look also at downstream elements

Max. dose vs $\sigma_x \sigma_y$ by a FCC bunch in a CfC collimator

Material density $\rho = 1.67 \text{ g/cm}^3$, bunch intensity of $I_b = 1 \times 10^{11} \text{ p}$

Minimum spot sizes at TCPs and TCSGs (simply using the local β -functions):

• $\sigma_x \sigma_y = \varepsilon / (\beta \gamma) \sqrt{\beta_x \beta_y} \rightarrow \sigma_x \sigma_y |_{min}^{TCP} \approx 0.023 \text{ mm}^2, \sigma_x \sigma_y |_{min}^{TCSG} \approx 0.020 \text{ mm}^2$

Acceptable number of bunches on the same spot (using the simple criterion on p.5):

- TCP 0.3 m: 11 bunches
- TCP 0.6 m: 5 bunches
- TCSG 1.0 m: 2 bunches

- 1) Bunch impact on a long^{*} Carbon absorber (1.8 g/cm³): 7 TeV vs 50 TeV (* long enough to contain the shower max., i.e. several meters)
- 2) Bunch impact on 0.3, 0.6 and 1 m Carbon collimators (1.67 g/cm³): 50 TeV

Conclusions

< < >> < <</p>

• Summary:

- If the spot size is too small, already a single FCC proton bunch might induce damage in a long Graphite absorber
- Not surprisingly, a short CfC collimator (30 cm) can sustain the impact of around 11 bunches, but half of the protons (!) will be escaping (can induce damage further downstream)
- If the collimator length is 1 m, damage can be expected for more than 2 bunches

• Keep in mind:

- o only the energy depositon in the absorber material was studied, but not in the entire jaw
- $\circ~$ a perfect Gaussian bunch shape was assumed (based on the local β -functions) \rightarrow to be updated once a more realistic impact distribution is available from tracking simulations
- $\circ~$ we only studied the energy density but not the stresses \rightarrow the assumed "damage limit" provides only a first rough assessment

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・